DVP-PLC Application Manual (Programming)

DVP-PLC Application Manual: Programming

Table of Contents

Chapter 1 Basic Principles of PLC Ladder Diagram
Foreword: Background and Functions of PLC 1-1
1.1 The Working Principles of Ladder Diagram 1-1
1.2 Differences Between Traditional Ladder Diagram and PLC Ladder Diagram 1-2
1.3 Edition Explanation of Ladder Diagram 1-3
1.4 How to Edit Ladder Diagram 1-8
1.5 The Conversion of PLC Command and Each Diagram Structure 1-12
1.6 Simplified Ladder Diagram 1-15
1.7 Basic Program Designing Examples 1-17
Chapter 2 Functions of Devices in DVP-PLC
2.1 All Devices in DVP-PLC 2-1
2.2 Values, Constants [K] / [H] 2-8
2.3 Numbering and Functions of External Input/Output Contacts [X] / [Y] 2-10
2.4 Numbering and Functions of Auxiliary Relays [M] 2-14
2.5 Numbering and Functions of Step Relays [S] 2-14
2.6 Numbering and Functions of Timers [T] 2-15
2.7 Numbering and Functions of Counters [C] 2-17
2.8 Numbering and Functions of Registers [D], [E], [F] 2-31
2.8.1 Data register [D] 2-31
2.8.2 Index Register [E], [F] 2-33
2.8.3 Functions and Features of File Registers 2-33
2.9 Pointer [N], Pointer [P], Interruption Pointer [I] 2-34
2.10 Special Auxiliary Relays and Special Data Registers 2-38
2.11 Functions of Special Auxiliary Relays and Special Registers 2-71
2.12 Communication Addresses of Devices in DVP Series PLC 2-144
2.13 Error Codes 2-146
Chapter 3 Basic Instructions
3.1 Basic Instructions and Step Ladder Instructions 3-1
3.2 Explanations on Basic Instructions 3-3

Chapter 4 Step Ladder Instructions

4.1 Step Ladder Instructions [STL], [RET] 4-1
4.2 Sequential Function Chart (SFC) 4-2
4.3 How does a Step Ladder Instruction Work? 4-3
4.4 Things to Note for Designing a Step Ladder Program 4-9
4.5 Types of Sequences 4-11
4.6 IST Instruction 4-19
Chapter 5 Categories \& Use of Application Instructions
5.1 List of Instructions 5-1
5.2 Composition of Application Instruction 5-6
5.3 Handling of Numeric Values 5-11
5.4 E, F Index Register Modification 5-14
5.5 Instruction Index 5-15
Chapter 6 Application Instructions API 00-49

- (APIOO ~ 09) Loop Control 6-1
- (API10 ~ 19) Transmission Comparison 6-20
- (API20 ~ 29) Four Arithmetic Operation 6-35
- (API30 ~ 39) Rotation \& Displacement 6-50
- (API40 ~ 49) Data Processing 6-61
Chapter 7 Application Instructions API 50-88
- (API50 ~ 59) High Speed Processing 7-1
- (API60 ~ 69) Handy Instructions 7-43
- (API70 ~ 79) Display of External Settings 7-74
- (API80~88) Serial I/O 7-97
Chapter 8 Application Instructions API 100-149
- (API100 ~ 109) Communication 8-1
- (API110 ~ 119) Floating Point Operation 8-21
- (API120 ~ 129) Floating Point Operation 8-35
- (API130 ~ 139) Floating Point Operation 8-47
- (API143 ~ 149) Others 8-59
Chapter 9 Application Instructions API 150-199
- (API150 ~ 154) Others 9-1
- (API155 ~ 159) Position Control 9-38
- (API160 ~ 169) Real Time Calendar 9-68
- (API170 ~ 179) Gray Code Conversion/Floating Point Operation 9-79
- (API180 ~ 189) Matrix 9-95
- (API190 ~ 199) Positioning Instruction 9-111
Chapter 10 Application Instructions API 202-313
- (API202 ~ 207) Others 10-1
- (API215 ~ 223) Contact Type Logic Operation Instruction 10-15
- (API224~246) Contact Type Comparison Instruction 10-18
- (API266 ~ 274) Word Device Bit Instruction 10-21
- (API275 ~ 313) Floating-point Contact Type Comparison Instruction 10-30
Chapter 11 Appendix
11.1 Appendix A: Table for Self-detecting Abnormality 11-1
11.2 Appendix B: MPU Terminal Layout 11-2
11.3 Appendix C: Terminal Layout for Digital I/O Modules 11-6
11.4 Appendix D: Difference between EH2 and EH3 11-9
11.5 Appendix E: Current Consumption of a Slim PLC/an Extension Module 11-10
11.6 Appendix F: Current Consumption of an EH2/EH3 Series PLC/an Extension Module 11-12
11.7 Appendix G: Using Ethernet Communication 11-14
11.8 Appendix H: Revision History 11-27

The models that every series includes are as follows.

Series	Model name
DVP-ES	DVP14ES00R2, DVP14ES00T2, DVP14ES01R2, DVP14ES01T2, DVP24ES00R, DVP24ES00R2, DVP24ES00T2, DVP24ES01R2, DVP24ES01T2, DVP24ES11R2, DVP30ES00R2, DVP30ES00T2, DVP32ES00R, DVP32ES00R2, DVP32ES00T2, DVP32ES01R2, DVP32ES01T2, DVP40ES00R2, DVP40ES00T2, DVP60ES00R2, DVP60ES00T2 DVP10EC00R3, DVP10EC00T3, DVP14EC00R3, DVP14EC00T3, DVP16EC00R3, DVP16EC00T3, DVP20EC00R3, DVP20EC00T3, DVP24EC00R3, DVP24EC00T3, DVP30EC00R3, DVP30EC00T3, DVP32EC00R3, DVP32EC00T3, DVP40EC00R3, DVP40EC00T3, DVP60EC00R3, DVP60EC00T3
DVP-EX	DVP20EX00R2, DVP20EX00T2, DVP20EX11R2
DVP-SS	DVP14SS11R2, DVP14SS11T2
DVP-SA	DVP12SA11R, DVP12SA11T
DVP-SX	DVP10SX11R, DVP10SX11T
DVP-SC	DVP12SC11T
DVP-EH2	DVP16EH00R2, DVP16EH00T2, DVP20EH00R2, DVP20EH00T2, DVP32EH00M2, DVP32EH00R2, DVP32EH00T2, DVP40EH00R2, DVP40EH00T2, DVP48EH00R2, DVP48EH00T2, DVP60EH00T2, DVP64EH00R2, DVP64EH00T2, DVP80EH00R2, DVP80EH00T2, DVP32EH00R2-L, DVP32EH00T2-L
DVP-SV	DVP28SV11R, DVP28SV11T
DVP-EH3	DVP16EH00R3, DVP16EH00T3, DVP20EH00R3, DVP20EH00T3, DVP32EH00M3, DVP32EH00R3, DVP32EH00T3, DVP40EH00R3, DVP40EH00T3, DVP48EH00R3, DVP48EH00T3, DVP60EH00T3, DVP64EH00R3, DVP64EH00T3, DVP80EH00R3, DVP80EH00T3, DVP32EH00R3-L, DVP32EH00T3-L
DVP-SV2	DVP28SV11R2, DVP28SV11T2

Foreword: Background and Functions of PLC

PLC (Programmable Logic Controller) is an electronic device, previously called "sequence controller". In 1978, NEMA (National Electrical Manufacture Association) in the United States officially named it as "programmable logic controller". PLC reads the status of the external input devices, e.g. keypad, sensor, switch and pulses, and execute by the microprocessor logic, sequential, timing, counting and arithmetic operations according the status of the input signals as well as the pre-written program stored in the PLC. The generated output signals are sent to output devices as the switch of a relay, electromagnetic valve, motor drive, control of a machine or operation of a procedure for the purpose of machine automation or processing procedure. The peripheral devices (e.g. personal computer/handheld programming panel) can easily edit or modify the program and monitor the device and conduct on-site program maintenance and adjustment. The widely used language in designing a PLC program is the ladder diagram. With the development of the electronic technology and wider applications of PLC in the industry, for example in position control and the network function of PLC, the input/output signals of PLC include DI (digital input), AI (analog input), PI (pulse input), NI (numeric input), DO (digital output), AO (analog output), and PO (pulse output). Therefore, PLC will still stand important in the industrial automation field in the future.

1.1 The Working Principles of Ladder Diagram

The ladder diagram was a diagram language for automation developed in the WWII period, which is the oldest and most widely adopted language in automation. In the initial stage, there were only A (normally open) contact, B (normally closed) contact, output coil, timer and counter...the sort of basic devices on the ladder diagram (see the power panel that is still used today). After the invention of programmable logic controllers (PLC), the devices displayable on the ladder diagram are added with differential contact, latched coil and the application commands which were not in a traditional power panel, for example the addition, subtraction, multiplication and division operations.
The working principles of the traditional ladder diagram and PLC ladder diagram are basically the same. The only difference is that the symbols on the traditional ladder diagram are more similar to its original form, and PLC ladder diagram adopts the symbols that are easy to recognize and shown on computer or data sheets. In terms of the logic of the ladder diagram, there are combination logic and sequential logic.

1. Combination Logic

Examples of traditional ladder diagram and PLC ladder diagram for combination logic:

Traditional Ladder Diagram

PLC Ladder Diagram

Row 1: Using a normally open (NO) switch X0 (" A " switch or " A " contact). When $X 0$ is not pressed, the contact
will be open loop (Off), so Y0 will be Off. When X 0 is pressed, the contact will be On, so Y0 will be On. Row 2: Using a normally closed (NC) switch X1 ("B" switch or "B" contact). When X1 is not pressed, the contact will be On, so Y1 will be On. When X 1 is pressed, the contact will be open loop (Off), so Y1 will be Off.
Row 3: The combination logic of more than one input devices. Output $Y 2$ will be On when $X 2$ is not pressed or X3 and X4 are pressed.
2. Sequential Logic

Sequential logic is a circuit with "draw back" structure, i.e. the output result of the circuit will be drawn back as an input criterion. Therefore, under the same input criteria, different previous status or action sequence will follow by different output results.

Examples of traditional ladder diagram and PLC ladder diagram for sequential logic:

Traditional Ladder Diagram

PLC Ladder Diagram

When the circuit is first connected to the power, though X 6 is $\mathrm{On}, \mathrm{X} 5$ is Off, so Y 3 will be Off. After X 5 is pressed, $Y 3$ will be On. Once $Y 3$ is On, even $X 5$ is released ($O f f$), $Y 3$ can still keep its action because of the draw back (i.e. the self-retained circuit). The actions are illustrated in the table below.

Action sequence	X5	X6	Y3
1	No action	No action	Off
2	Action	No action	On
3	No action	No action	On
4	No action	Action	Off
5	No action	No action	Off

From the table above, we can see that in different sequence, the same input status can result in different output results. For example, switch $X 5$ and $X 6$ of action sequence 1 and 3 do not act, but $Y 3$ is Off in sequence 1 and On in sequence 3. Y3 output status will then be drawn back as input (the so-called "draw back"), making the circuit being able to perform sequential control, which is the main feature of the ladder diagram circuit. Here we only explain contact A, contact B and the output coil. Other devices are applicable to the same method. See Chapter 3 "Basic instructions" for more details.

1.2 Differences Between Traditional Ladder Diagram and PLC Ladder Diagram

Though the principles of traditional ladder diagram and PLC ladder diagram are the same, in fact, PLC adopts microcomputer to simulate the motions of the traditional ladder diagram, i.e. scan-check status of all the input devices and output coil and calculate to generate the same output results as those from the traditional ladder diagram based on the logics of the ladder diagram. Due to that there is only one microcomputer, we can only check the program of the ladder diagram one by one and calculate the output results according to the program and the I/O status before the
cyclic process of sending the results to the output interface \rightarrow re-reading of the input status \rightarrow calculation \rightarrow output. The time spent in the cyclic process is called the "scan time" and the time can be longer with the expansion of the program. The scan time can cause delay from the input detection to output response of the PLC. The longer the delay, the bigger the error is to the control. The control may even be out of control. In this case, you have to choose a PLC with faster scan speed. Therefore, the scan speed is an important specification requirement in a PLC. Owing to the advancement in microcomputer and ASIC (IC for special purpose), there has been great improvement in the scan speed of PLC nowadays. See the figure below for the scan of the PLC ladder diagram program.

The output result is calculated based on the ladder diagram. (The result has not yet sent to the external output point, but the internal device will perform an immediate output.)

Executing in cycles

Besides the difference in the scan time, PLC ladder and traditional ladder diagram also differ in "reverse current". For example, in the traditional ladder diagram illustrated below, when $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 4$ and X 6 are On and others are Off, Y0 output on the circuit will be On as the dotted line goes. However, the PLC ladder diagram program is scanned from up to down and left to right. Under the same input circumstances, the PLC ladder diagram editing tool WPLSoft will be able to detect the errors occurring in the ladder diagram.

Reverse current of traditional ladder diagram

Reverse current of PLC ladder diagram

Error detected in the third row

1.3 How to Edit Ladder Diagram

Ladder diagram is a diagram language frequently applied in automation. The ladder diagram is composed of the symbols of electric control circuit. The completion of the ladder diagram by the ladder diagram editor is the completion
of the PLC program design. The control flow illustrated by diagram makes the flow more straightforward and acceptable for the technicians of who are familiar with the electric control circuit. Many basic symbols and actions in the ladder diagram come from the frequently-seen electromechanical devices, e.g. buttons, switches, relay, timer and counter, etc. in the traditional power panel for automation control.
Internal devices in the PLC: The types and quantity of the devices in the PLC vary in different brand names. Though the internal devices in the PLC adopt the names, e.g. transistor, coil, contact and so on, in the traditional electric control circuit, these physical devices do not actually exist inside the PLC. There are only the corresponding basic units (1 bit) inside the memory of the PLC. When the bit is " 1 ", the coil will be On, and when the bit is " 0 ", the coil will be Off. The normally open contact (NO or contact A) directly reads the value of the corresponding bit. The normally close contact (NC or contact B) reads the opposite state of the value of the corresponding bit. Many relays will occupy many bits. 8 bits equal a "byte". 2 bytes construct a "word" and 2 words combined is "double word". Byte, word or double words are used when many relays are processed (e.g. addition/subtraction, displacement) at the same time. The other two devices, timer and counter, in the PLC have coil, timer value and counter value and they have to process some values in byte, word or double word.
All kinds of internal devices in the value storage area in the PLC occupy their fixed amount of storage units. When you use these devices, you are actually read the contents stored in the form of bit, byte or word.
Introductions on the basic internal devices in the PLC (See Ch 2. Functions of Devices in DVP-PLC for more details.)

Device	Functions
Input relay	$\begin{array}{l}\text { The input relay is an internal memory (storage) unit in the PLC corresponding to an external } \\ \text { input point and is used for connecting to the external input switches and receiving external } \\ \text { input signals. The input relay will be driven by the external input signals which make it "0" or } \\ \text { "1". Program designing cannot modify the status of the relay, i.e. it cannot re-write the basic } \\ \text { unit of a relay, nor can it force On/Off of the relay by HPP/WPLSoft. } \\ \text { SA/SX/SC/EH2/SV/EH3/SV2 series MPU can simulate input relay X and force On/Off of the } \\ \text { relay. But the status of the external input points will be updated and disabled, i.e. the external } \\ \text { input signals will not be read into their corresponding memories inside PLC, but only the input }\end{array}$
points on the MPU. The input points on the extension modules will still operate normally. There	
are no limitations on the times of using contact A and contact B of the input relay. The input	
relays without corresponding input signals can only be left unused and cannot be used for	
other purposes.	
Device indication: X0, X1, ..X7, X10, X11, ... are indicated as X and numbered in octal	
form. The numbers of input points are marked on MPU and extension modules.	

Device	Functions
Internal relay	The internal relay does not have connection with the external. It is an auxiliary relay inside the PLC with the functions same as those of the auxiliary (middle) relay in the electric control circuit. Every internal relay corresponds to a basic internal storage unit and can be driven by the contacts of the input relay, contacts of the output relay and the contacts of other internal devices. There are no limitations on the times of using the contacts of the internal relay and there will be no output from the internal relay, but from the output point. o Device indication: M0, M1, ..., M4095 are indicated as M and numbered in decimal form.
Step	DVP series PLC offers a step-type control program input method. STL instruction controls the transfer of step S, which makes it easy for the writing of the control program. If you do not use any step program in the control program, step S can be used as an internal relay M as well as an alarm point. o Device indication: S0, S1, ...S1023 are indicated as S and numbered in decimal form.
Timer	The timer is used for timing and has coil, contact and register in it. When the coil is On and the estimated time is reached, its contact will be enabled (contact A closed, contact B open). Every timer has its fixed timing period (unit: $1 \mathrm{~ms} / 10 \mathrm{~ms} / 100 \mathrm{~ms}$). Once the coil is Off, the contact iwlwl be disabled (contact A open, contact B closed) and the present value on the timer will become " 0 ". σ Device indication: $\mathrm{TO}, \mathrm{T} 1, \ldots, \mathrm{~T} 255$ are indicated as T and numbered in decimal form. Different No. refers to different timing period.
Counter	The counter is used for counting. Before using the counter, you have to give the counter a set value (i.e. the number of pulses for counting). There are coil, contact and registers in the counter. When the coil goes from Off to $O n$, the counter will regard it as an input of 1 pulse and the present value on the counter will plus " 1 ". We offer 16 -bit and 32 -bit high-speed counters for our users. o Device indication: $\mathrm{C} 0, \mathrm{C} 1, \ldots, \mathrm{C} 255$ are indicated as C and numbered in decimal form.
Data register	Data processing and value operations always occur when the PLC conducts all kinds of sequential control, timing and counting. The data register is used for storing the values or all kinds of parameters. Every register is able to store a word (16-bit binary value). Double words will occupy 2 adjacent data registers. © Device indication: D0, D1, ..., D11999 are indicated as D and numbered in decimal form.
File register	The file register is used for storing the data or all kinds of parameters when the data registers required for processing the data and value operations are insufficient. Every file register is able to store a 16 -bit word. Double words will occupy 2 adjacent file registers. In SA/SX/SC series MPU, there are 1,600 file registers. In EH2/SV/EH3/SV2 series MPU, there are 10,000 file registers. There is not an actual device No. for a file register. The reading and writing of file registers should be executed by instructions API 148 MEMR, API 149 MEMW, or through the peripheral device HPP02 and WPLSoft. © Device indication: K0 ~K9,999, numbered in decimal form.

Device	Functions
Index register	E and F index registers are 16-bit data registers as other data registers. They can be read and written and can be used in word devices, bit devices or as a constant for index indication. Device indication: E0~E7, F0~F7 are indicated as E and F and numbered in decimal form.

The structure of a ladder diagram:

Structure	Explanation	Instruction	Devices Used
HЮ	Normally open, contact A	LD	X, Y, M, S, T, C
$1-$	Normally closed, contact B	LDI	X, Y, M, S, T, C
Hト-	Normally open in series connection	AND	X, Y, M, S, T, C
HЮ-	Normally closed in series connection	ANI	X, Y, M, S, T, C
	Normally open in parallel connection	OR	X, Y, M, S, T, C
	Normally closed in parallel connection	ORI	X, Y, M, S, T, C
$\text { - } 14-$	Rising-edge trigger switch	LDP	X, Y, M, S, T, C
-	Falling-edge trigger switch	LDF	X, Y, M, S, T, C
$H \longmapsto-14-$	Rising-edge trigger in series connection	ANDP	X, Y, M, S, T, C
$H \vdash-\downarrow \downarrow$	Falling-edge trigger in series connection	ANDF	X, Y, M, S, T, C
	Rising-edge trigger in parallel connection	ORP	X, Y, M, S, T, C
	Falling-edge trigger in parallel connection	ORF	X, Y, M, S, T, C
	Block in series connection	ANB	-
	Block in parallel connection	ORB	-

Structure	Explanation	Instruction	Devices Used
	Multiple output	MPS MRD MPP	-
\longrightarrow	Coil driven output instruction	OUT	Y, M, S
$H\langle s\rangle$	Step ladder	STL	S
-	Basic instruction Application instruction	Application instructions	See Ch. 3 for basic instructions (RST/SET and CNT/TMR) and Ch. 5 ~ 10 for application instructions
\checkmark	Inverse logic	INV	-

Block:

A block is a series or parallel operation composed of more than 2 devices. There are series block and parallel block.

Separation line and combination line:

The vertical line is used for separating the devices. For the devices on the left, the vertical line is a combination line, indicating that there are at least 2 rows of circuits on the left connected with the vertical line. For the devices on the right, the vertical line is a separation line, indicating that there are at least 2 rows of circuits interconnected on the right side of the vertical line).

Network:
A complete block network is composed of devices and all kinds of blocks. The blocks or devices connectable by a vertical line or continuous line belong to the same network.

1.4 How to Edit a PLC Ladder Diagram

The editing of the program should start from the left power line and ends at the right power line, a row after another. The drawing of the right power line will be omitted if edited from WPLSoft. A row can have maximum 11 contacts on it. If 11 is not enough, you can continuously connect more devices and the continuous number will be generated automatically. The same input points can be used repeatedly. See the figure below:

The operation of the ladder diagram program is scanning from top left to bottom right. The coil and the operation frame of the application instruction belong to the output side in the program and are placed in the right if the ladder diagram. Take the figure below for example, we will step by step explain the process of a ladder diagram. The numbers in the black circles indicate the order.

The order of the instructions:

1	LD	X0
2	OR	M0
3	AND	X1
4	LD	X3
	AND	M1
	ORB	
5	LD	Y1
	AND	X4
6	LD	T0
	AND	M3
	ORB	
7	ANB	
8	OUT	Y1
	TMR	T0

Explanations on the basic structures in the ladder diagram:

1. LD (LDI) instruction: Given in the start of a block.

The structure of LDP and LDF instructions are the same as that of LD instruction, and the two only differ in their actions. LDP and LDF instructions only act at the rising edge or falling edge when the contact is On, as shown in the figure below.

2. AND (ANI) instruction: A single device connects to another single device or a block in series

The structure of ANDP and ANDF instructions are the same. ANDP and ANDF instructions only act at the rising edge or falling edge.
3. OR (ORI) instruction: A single device connects to another single device or a block

The structure of ORP and ORF instructions are the same. ORP and ORF instructions only act at the rising edge or falling edge.
4. ANB instruction: A block connects to a device or another block in series

5. ORB instruction: A block connects to a device or another block in parallel

If the ANB and ORB operations are with several blocks, the operation should be performed from up to down or left to right, combining into a block or network.
6. MPS, MRD, MPP instructions: Bifurcation point of multiple outputs, for generating many and diverse outputs. MPS instruction is the start of the bifurcation point. The bifurcation point is the intersection of the horizontal line and vertical line. We will have to determine whether to give a contact memory instruction by the contact status of the same vertical line. Basically, every contact can be given a memory instruction, but considering the convenience of operating the PLC and the limitation on its capacity, some parts in the ladder diagram will be omitted during the conversion. We can determine the type of contact memory instruction by the structure of the ladder diagram. MPS is recognized as " T " and the instruction can be given continuously for 8 times.

MRD instruction is used for reading the memory of the bifurcation point. Due to that the same vertical line is of the same logic status, in order to continue analyzing other ladder diagrams, we have to read the status of the original contact again. MRD is recognized as " F ".
MPP instruction is used for reading the start status of the top bifurcation point and popping it out from the stack. Since MPP is the last item on the vertical line, the vertical line ends at this point.

MPP is recognized as " L ". Using the method given above for the analysis cannot be wrong. However, sometimes the compiling program will ignore the same output status, as shown in the figure.

7. STL instruction: Used for designing the syntax of the sequential function chart (SFC).

STL instruction allows the program designer a clearer and readable picture of the sequence of the program as when they draw a sequence chart. From the figure below, we can see clearly the sequence to be planned. When the step S moves to the next step, the original S will be "Off". Such a sequence can then be converted into a PLC ladder diagram and called "step ladder diagram".

8. RET instruction: Placed after the completed step ladder diagram.

RET also has be placed after STL instruction. See the example below.

See step ladder instructions [STL], [RET] in Ch. 4 for the structure of the ladder diagram.

1.5 The Conversion of PLC Command and Each Diagram Structure

- Fuzzy Syntax

The correct ladder diagram analysis and combination should be conducted from up to down and left to right. However,
without adopting this principle, some instructions can make the same ladder diagram.

Example Program 1

See the ladder diagram below. There are 2 ways to indicate the ladder by instruction programs with the same result.

Ideal way		Less ideal way	
LD	X0	LD	X0
OR	X1	OR	X1
LD	X2	LD	X2
OR	X3	OR	X3
ANB		LD	X4
LD	X4	OR	X5
OR	X5	ANB	
ANB		ANB	

The two instruction programs will be converted into the same ladder diagram. The difference between the ideal one and less ideal one is the operation done by the MPU. For the ideal way, the combination is done block by block whereas the less idea way combines all the blocks combine with one another in the last step. Though the length of the program codes of the two ways are equal, the combination done in the last step (by ANB instruction, but ANB cannot be used continuously for more than 8 times) will have to store up the previous calculation results in advance. In our case, there are only two blocks combined and the MPU allows such kind of combination. However, once the number of blocks exceeds the range that the MPU allows, problems will occur. Therefore, the best way is to execute the block combination instruction after a block is made, which will also make the logic sequence planned by the programmer more in order.

Example Program 2

See the ladder diagram below. There are 2 ways to indicate the ladder by instruction programs with the same result.

Ideal way		Less ideal way	
LD	X0	LD	X0
OR	X1	LD	X1
OR	X2	LD	X2
OR	X3	LD	X3
		ORB	
		ORB	
		ORB	

In this example, the program codes and the operation memory in the MPU increase in the less ideal way. Therefore, it is better that you edit the program following the defined sequence.

- Incorrect Ladder Diagram

PLC processes the diagram program from up to down and left to right. Though we can use all kinds of ladder symbols to combine into various ladder diagrams, when we draw a ladder diagram, we will have to start the diagram from the left power line and end it at the right power line (In WPLSoft ladder diagram editing area, the right power line is
omitted), from left to right horizontally, one row after another from up to down. See bellows for the frequently seen incorrect diagrams:

	OR operation upward is not allowed.
	"Reverse flow" exists in the signal circuit from the beginning of input to output.
	The up-right corner should output first.
	Combining or editing should be done from the up-left to the bottom-right. The dotted-lined area should be moved up.
	Parallel operation with empty device is not allowed.
	Empty device cannot do operations with other devices.
	No device in the middle block.
	Devices and blocks in series should be horizontally aligned.
	Label PO should be in the first row of a complete network.
$\begin{aligned} & \text { HЮ } \\ & \hdashline 11 \end{aligned}$	Blocks connected in series should be aligned with the upmost horizontal line.

1.6 Simplified Ladder Diagram

■ When a series block is connected to a parallel block in series, place the block in the front to omit ANB instruction.

$\sqrt{3}$
Ladder diagram complied into instruction
LD X0
LD X1
OR X2
ANB

Ladder diagram complied into instruction

LD	X1
OR	X2
AND	X0

When a single device is connected to a block in parallel, place the block on top to omit ORB instruction.

Ladder diagram complied into instruction
LD
T0
LD X1
AND X2
ORB

Ladder diagram complied into instruction
LD X1
AND X2
OR T0

■ In diagram (a), the block on top is shorter than the block in the bottom, we can switch the position of the two blocks to achieve the same logic. Due to that diagram (a) is illegal, there is a "reverse flow" in it.

Ladder diagram complied into instruction
(a)
,
(b)

LD	X0
OR	X1
AND	X2
LD	X3

AND X4
ORB
Ladder diagram complied into instruction

LD	X3
AND	X4
LD	X1
OR	X0
AND	X2
ORB	

■ MPS and MPP instruction can be omitted when the multiple outputs in the same horizontal line do not need to operate with other input devices.

- Correct the circuit of reverse flow

In the following two examples, the diagram in the left hand side is the ladder diagram we desire. However, the illegal "reverse flow" in it is incorrect according to our definition on the ladder diagram. We modify the diagram into the diagram in the right hand side.

Example 1

Example 2

Reverse flow

1.7 Basic Program Designing Examples

- Start, Stop and Latched

In some application occasions, we need to use the transient close/open buttons for the start and stop of equipment. To maintain its continuous action, you have to design latched circuits.

Example 1: Stop first latched circuit

When the normally open contact $\mathrm{X} 1=\mathrm{On}$ and the normally closed contact $\mathrm{X} 2=\mathrm{Off}, \mathrm{Y} 1$ will be On . If you make $\mathrm{X} 2=\mathrm{On}$ at this time, Y1 will be Off. It is the reason why this is called "stop first".

Example 2: Start first latched circuit

When the normally open contact X1 = On and the normally closed contact $\mathrm{X} 2=\mathrm{Off}, \mathrm{Y} 1$ will be On and latched. If you make $\mathrm{X} 2=\mathrm{On}$ at this time, Y 1 will continue to be On because of the latched contact. It is the reason why this is called "start first".

Example 3: Latched circuit for SET and RST instructions

See the diagram in the right hand side for the latched circuit consist of RST and SET instructions.

In the stop first diagram, RST is placed after SET. PLC executes the program from up to down, so the On/Off of Y1 will be determined upon its status in the end of the program. Therefore, when X1 and X2 are enabled at the same time, Y1 will be Off. It is the reason why this is called "stop first". In the start first diagram, SET is placed after RST. When X1

Stop first
 and X 2 are enabled at the same time, Y 1 will be On. It is the reason why this is called "start first".

Example 4: Power shutdown latched

The auxiliary relay M512 is latched (see instruction sheets for DVP series PLC MPU). The circuit can not only be latched when the power is on, but also keep the continuity of the original control when the power is shut down and switched on again.

- Frequently Used Control Circuit

Example 5: Conditional control

X1 and X3 enables and disables Y1; X2 and X4 enables and disables Y2, and all are latched. Due to that the normally open contact of Y 1 is connected to the circuit of Y 2 in series, Y 1 becomes an AND condition for Y 2 . Therefore, only when Y 1 is enabled can Y 2 be enabled.

Example 6: Interlock control

Which of the X 1 and X 2 is first enabled decides either the corresponding output Y 1 or Y 2 will be enabled first. Either Y1 or Y2 will be enabled at a time, i.e. Y1 and Y2 will not be enabled at the same time (the interlock). Even X1 and $X 2$ are enabled at the same time, $Y 1$ and $Y 2$ will not be enabled at the same time due to that the ladder diagram program is scanned from up to down. In this ladder diagram, Y1 will be enabled first.

Example 7: Sequential control

If we serially connect the normally closed contact of Y2 in example 5 to the circuit of Y 1 as an AND condition for Y1 (as the diagram in the left hand side), the circuit can not only make Y1 as the condition for Y2, but also allow the stop of $Y 1$ after $Y 2$ is enabled. Therefore, we can make Y 1 and Y 2 execute exactly the sequential control.

Example 8: Oscillating circuit

An oscillating circuit with cycle $\Delta T+\Delta T$

The ladder diagram above is a very simple one. When the program starts to scan the normally closed contact Y1, Y1 will be closed because coil Y1 is Off. When the program then scan to coil Y1 and make it On, the output will be 1. When the program scans to the normally closed contact Y1 again in the next scan cycle, because coil Y1 is On, Y1 will be open and make coil Y1 Off and output 0 . The repeated scans will result in coil Y 1 outputs oscillating pulses by the cycle $\Delta T(O n)+\Delta T(O f f)$.

An oscillating circuit with cycle $n T+\Delta T$

The ladder diagram program controls the On time of coil Y1 by timer T0 and disable timer T0 in the next scan cycle, resulting in the oscillating pulses in the output of $Y 1$. n refers to the decimal set value in the timer and T is the cycle of the clock.

Example 9: Flashing circuit

The ladder diagram is an oscillating circuit which makes the indicator flash or enables the buzzer alarms. It uses two timers to control the On/Off time of coil Y1. n1 and n2 refer to the set values in T1 and T2 and T is the cycle of the clock.

Example 10: Trigger circuit

The rising-edge differential instruction of XO makes coil MO generate a single pulse of $\Delta \mathrm{T}$ (one scan cycle). Coil Y1 will be On during this scan period. In the next scan period, coil M0 will be Off and the normally closed contact M0 and $Y 1$ will all be closed, making coil $Y 1$ continue to be On until another rising-edge arrives in input X 0 , making coil M0 On for another scan period and Y1 Off. Such kind of circuit relies on an input to make two actions execute interchangeably. Also from the timing diagram on the last page, we can see that input $\mathrm{X0}$ are square pulse signals of the cycle T and coil Y 1 output are square pulse signals of the cycle 2T.

Example 11: Delay circuit

Time base: $\mathrm{T}=0.1 \mathrm{sec}$
When input $\mathrm{X0}$ is On, due to that its corresponding normally closed contact is Off, time T10 will be Off and the output coil Y 1 will be On. T10 will be On and start to count until input X0 is Off. Output coil Y1 will be delayed for 100 seconds (K1,000 $\times 0.1 \mathrm{sec}=100 \mathrm{secs})$ and be Off. See the timing diagram above.

Example 12: Output delay circuit

The output delay circuit is the circuit composed of two timers. When input X0 is On and Off, output $Y 4$ will be delayed.

Example13: Timing extension circuit

Timer $=\mathrm{T} 11, \mathrm{~T} 12$
Clock cycle: T
The total delay time from input XO is closed to output Y 1 is $\mathrm{On}=(\mathrm{n} 1+\mathrm{n} 2)^{\star} \mathrm{T}$. T refers to the clock cycle.

Example 14: How to enlarge the counting range

The counting range of a 16 -bit counter is $0 \sim 32,767$. As the circuit in the left hand side, using two counters can increase the counting range to $\mathrm{n} 1 * \mathrm{n} 2$. When the counting of counter C 5 reaches $\mathrm{n} 1, \mathrm{C} 6$ will start to count for one time and reset for counting the pulses from X13. When the counting of counter C 6 reaches n 2 , the pulses from input X13 will be n1*n2.

Example 15: Traffic light control (by using step ladder instruction)
Traffic light control

	Red light	Yellow light	Green light	Green light flashes
Vertical light	Y0	Y1	Y2	Y2
Horizontal light	Y10	Y11	Y12	Y12
On time	35 secs	5 secs	25 secs	5 secs

Timing Diagram:

SFC Figure:

Ladder Diagram:

■ Drawing by SFC Editor (WPLSoft)

2.1 All Devices in DVP-PLC

ES/EXISS series MPU:

Type	Device	Item			Range		Function
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{\pi}{\widetilde{0}} \\ & \frac{\pi}{\mathbb{O}} \end{aligned}$	X	External input relay			X0 ~ X177, 128 points, octal	Total 256 points	Corresponds to external input points
	Y	External output relay			Y0 ~ Y177, 128 points, octal		Corresponds to external output points
	M	Auxiliary relay	General purpose		$\begin{aligned} & \text { M0 ~ M511, M768 ~ M999, } 744 \\ & \text { points } \end{aligned}$	Total 1,280 points	
			Latched*		M512 ~ M767, 256 points		The contact can be
			Special purpose		M1000 ~ M1279, 280 points (some are latched)		
	T	Timer	100ms timer		T0 ~ T63, 64 points	Total 128 points	Timer indicated by TMR instruction. If timing reaches its target, the T contact of the same No. will be On.
			$10 \mathrm{~ms} \mathrm{timer}(\mathrm{M} 1028=0 \mathrm{O})$		$\begin{aligned} & \text { T64 ~ T126, } 63 \text { points (M1028 } \\ & =\text { Off: 100ms) } \end{aligned}$		
			1 ms timer		T127, 1 points		
	C	Counter	16-bit counting up (general purpose)		C0 ~ C111, 112 points	Total 128 points	Counter indicated by CNT (DCNT) instruction. If counting reaches its target, the C contact of the same No. will be On.
			16-bit counting up (latched*)		C112 ~ C127, 16 points		
			32-bit counting up/down high-speed counter (latched*)	1-phase 1 input	$\begin{aligned} & \mathrm{C} 235 \sim \mathrm{C} 238, \mathrm{C} 241, \mathrm{C} 242, \\ & \mathrm{C} 244,7 \text { points } \end{aligned}$	Total 13 points	
				1-phase 2 inputs	C246, C247, C249, 3 points		
				2-phase 2 inputs	C251, C252, C254, 3 points		
	S	Step	Initial step (latched*)		S0 ~ S9, 10 points	Total 128 points	Used for SFC.
			Zero return (latched*)		S10 ~ S19, 10 points (used with IST instruction)		
			Latched*		S20 ~ S127, 108 points		
	T	Present value of timer			T0 ~ T127, 128 points		When the timing reaches the target, the contact of the timer will be On.
	C	Present value of counter			C0 ~ C127, 16-bit counter, 128 points C235 ~ C254, 32-bit counter, 13 points		When the counting reaches the target, the contact of the counter will be On.
	D	Data register	General purpose		D0 ~ D407, 408 points	Total 600 points	Memory area for data storage; E, F can be used for index indication.
			Latched*		D408 ~ D599, 192 points		
			Special p	urpose	D1000 ~ D1311, 312 points	Total	
			Index ind	cation	E, F, 2 points	312 points	
	N	For master control nested loop			N0 ~ N7, 8 points		Control point for main control loop
	P	For CJ, CA	ALL instructio		P0 ~ P63, 64 points		Position index for CJ and CALL
	1	Interruption	External interruption		I001, I101, I201, I301, 4 points		Position index for interruption subroutine.
			Timed interruption		16 $\square \square$, 1 point ($\square \square=10 \sim 99, \quad$ time base $=$ 1 ms) (for V5.7 and versions above)		
			Commun	cation interruption	I150, 1 point		
$\begin{aligned} & \underset{0}{0} \\ & \underset{0}{0} \\ & \hline \end{aligned}$	K	Decimal form			$\begin{aligned} & \text { K-32,768~ K32,767 (16-bit operation) } \\ & \text { K-2,147,483,648 ~ K2,147,483,647 (32-bit operation) } \\ & \hline \end{aligned}$		
	H	Hexadecimal form			H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFFF (32-bit operation)		

* The latched area is fixed and cannot be changed.

SA/SXISC series MPU:

Type	Device	Item		Range		Function
	X	External input relay		X0 ~ X177, 128 points, octal	Total 256 points	Corresponds to external input points
	Y	External output relay		Y0 ~ Y177, 128 points, octal		Corresponds to external output points
	M	Auxiliary Relay	General purpose	M0 ~ M511, 512 points (*1)	Total 4,096 points	The contact can be On/Off in the program.
			Latched*	$\begin{aligned} & \text { M512 ~ M999, } 488 \text { points (*3) } \\ & \text { M2000 ~ M4095, 2,096 points (*3) } \end{aligned}$		
			Special purpose	M1000 ~ M1999, 1,000 points (some are latched)		
	T	Timer	100ms	T0 ~ T199, 200 points (*1) T192 ~ T199 for subroutine T250 ~ T255, 6 accumulative points (*4)	Total 256 points	Timer indicated by TMR instruction. If timing reaches its target, the T contact of the same No. will be On.
			10ms	```T200 ~ T239,40 points (*1) T240 ~ T245, }6\mathrm{ accumulative points (*4)```		
			1 ms	T246 ~ T249, 4 accumulative points (*4)		
	C	Counter	16-bit counting up	$\begin{aligned} & \text { C0 ~ C95, } 96 \text { points (*1) } \\ & \text { C96 ~ C199, } 104 \text { points (*3) } \end{aligned}$	Total 235 points	Counter indicated by CNT (DCNT) instruction. If counting reaches its target, the C contact of the same No. will be On.
			32-bit counting up/down	$\begin{aligned} & \text { C200 ~ C215, } 16 \text { points (*1) } \\ & \text { C216 } \sim \text { C234, } 19 \text { points (*3) } \end{aligned}$		
			For SA/SX, 32-bit high-speed counter	$\begin{aligned} & \text { C235 ~ C244, 1-phase } 1 \text { input, } 9 \\ & \text { points (*3) } \\ & \text { C246 ~ C249, 1-phase } 2 \text { inputs, } 3 \\ & \text { points (*3) } \\ & \text { C251 ~ C254, 2-phase } 2 \text { inputs, } 4 \\ & \text { points (*3) } \end{aligned}$	Total 16 points	
			For SC, 32-bit high-speed counter	C235 ~ C245, 1-phase 1 input, 11 points (*3) C246 ~ C250, 1-phase 2 inputs, 4 points (*3) C251 ~ C255, 2-phase 2 inputs, 4 points (*3)	$\begin{gathered} \text { Total } \\ 19 \\ \text { points } \end{gathered}$	
	S	Step point	Initial step	S0 ~ S9, 10 points (*1)	Total 1,024 points	Used for SFC.
			Zero return	S10~S19, 10 points (used with IST instruction) (*1)		
			General purpose	S20 ~ S511, 492 points (*1)		
			Latched*	S512 ~ S895, 384 points (*3)		
			Alarm	S896 ~ S1023, 128 points (*3)		
	T	Present value of timer		T0 ~ T255, 256 points		When the timing reaches the target, the contact of the timer will be On.
	C	Present value of counter		C0 ~ C199, 16-bit counter, 200 points C200 ~ C254, 32-bit counter, 50 points (SC: 53 points)		When the counting reaches the target, the contact of the counter will be On.
	D	Data register	General purpose	D0 ~ D199, 200 points (*1) D5000~D9999, 5,000 points (*1) (Only supported by SX v.3.0 and above)	Total5,000points(SX v.3.0andabove:10,000points)	Memory area for data storage; E, F can be used for index indication.
			Latched*	$\begin{array}{\|l\|} \hline \text { D200 ~ D999, } 800 \text { points }(* 3) \\ \text { D2000 ~ D4999, } 3,000 \text { points (} * 3) \\ \hline \end{array}$		
			Special purpose	D1000 ~ D1999, 1,000 points		
			Index indication	E0 ~ E3, F0 ~ F3, 8 points (*1)		
	N/A	File register		K0 ~ K1,599 (1,600 points) (*4)		Expanded register for data storage.

Type	Device		Item	Range	Function
$\begin{aligned} & \overline{\#} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	N	For Master control loop		N0 ~ N7, 8 points	Control point for main control loop
	P	For CJ, CALL instructions		P0 ~ P255, 256 points	Position index for CJ and CALL
	1	Interruption	External interruption	I001, I101, I201, I301, I401, I501, total 6 points	Position index for interruption subroutine.
			Timed interruption	I6 $\square \square$, I7 $\square \square$, 2 points ($\square \square=1 \sim 99$, time base $=1 \mathrm{~ms}$)	
			Interruption inserted when high-speed counter reaches target	1010, 1020, 1030, 1040, 1050, 1060, total 6 points	
			Communication interruption	I150, 1 point	
	K	Decimal form		K-32,768~K32,767 (16-bit operation)K-2,147,483,648~K2,147,483,647 (32-bit operation)	
O	H	Hexadecimal form		H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFFF (32-bit operation)	

*1. Non-latched area cannot be modified.
*2. The preset non-latched area can be modified into latched area by setting up parameters.
*3. The preset latched area can be modified into non-latched area by setting up parameters.
*4. The fixed latched area cannot be modified

Latched settings for all devices in SA/SX/SC series MPU:

EH2/SV series MPU:

Type	Device	Item		Range		Function
	X	External input relay		X0 ~ X377, 256 points, octal	Total 512 points	Corresponds to external input points
	Y	External output relay		Y0 ~ Y377, 256 points, octal		Corresponds to external output points
	M	Auxiliary relay	General purpose	M0 ~ M499, 500 points (*2)	Total 4,096 points	The contact can be On/Off in the program.
			Latched	$\begin{aligned} & \text { M500 ~ M999, } 500 \text { points (*3) } \\ & \text { M2000 ~ M4095, 2,096 points (*3) } \end{aligned}$		
			Special purpose	M1000 ~ M1999, 1,000 points (some are latched)		
	T	Timer	100ms	T0 ~ T199, 200 points (*2) T192 ~ T199 is for subroutine T250~T255, 6 accumulative points (*4)	Total 256 points	Timer indicated by TMR instruction. If timing reaches its target, the T contact of the same No. will be On.
			10 ms	$\begin{aligned} & \text { T200 } \sim \text { T239, } 40 \text { points (} * 2 \text {) } \\ & \text { T240 } \sim \text { T245, } 6 \text { accumulative points (* } 4 \text {) } \end{aligned}$		
			1 ms	T246 ~ T249, 4 accumulative points (*4)		
	C	Counter	16-bit counting	$\begin{aligned} & \hline \text { C0 ~ C99, } 100 \text { points (*2) } \\ & \text { C100~C199, } 100 \text { points (} * 3 \text {) } \end{aligned}$	Total 253 points	Counter indicated by CNT (DCNT) instruction. If counting reaches its target, the C contact of the same No. will be On.
			32-bit counting up/down	$\begin{aligned} & \mathrm{C} 200 \sim \mathrm{C} 219,20 \text { points (*2) } \\ & \mathrm{C} 220 \sim \mathrm{C} 234,15 \text { points (*3) } \end{aligned}$		
			32-bit high-speed counter	C235 ~ C244, 1-phase 1 input, 10 points ($* 3$) C246 ~ C249, 1-phase 2 inputs, 4 points($* 3$) C251 ~ C254, 2-phases 2 inputs, 4 points ($* 3$)		
	S	Step	Initial step point	S0 ~ S9, 10 points (*2)	Total 1,024 points	Used for SFC.
			Zero return	S10 ~ S19, 10 points (used with IST instruction) (*2)		
			General purpose	S20 ~ S499, 480 points (*2)		
			Latched	S500 ~ S899, 400 points (*3)		
			Alarm	S900 ~ S1023, 124 points (*3)		
	T	Present value of timer		T0 ~ T255, 256 points		When the timing reaches the target, the contact of the timer will be On.
	C	Present value of counter		C0 ~ C199, 16-bit counter, 200 points C200 ~ C254, 32-bit counter, 53 points		When the counting reaches the target, the contact of the counter will be On.
	D	Data register	General purpose	D0 ~ D199, 200 points, (*2)	Total10,000 points	Memory area for data storage; E, F can be used for index indication.
			Latched	$\begin{array}{\|l\|} \hline \text { D200 ~ D999, } 800 \text { points }(* 3) \\ \text { D2000 ~ D9999, 8,000 points (*3) } \\ \hline \end{array}$		
			Special purpose	D1000 ~ D1999, 1,000 points		
			Index indication	E0 ~ E7, F0 ~ F7, 16 points (*1)		
	N/A	File register		K0 ~ K9,999 (10,000 points) (*4)		Expanded register for data storage.
	N	For master control loop		NO ~ N7, 8 points		Control point for main control loop
	P	For CJ, CALL instructions		P0~P255, 256 points		Position index for CJ and CALL
	1		nal interruption (*5)	$\mathrm{I} 00 \square$ (X0), $\mathrm{I} 10 \square$ (X1), $\mathrm{I} 20 \square$ (X2), $\mathrm{I} 30 \square$ (X3), $\mathrm{I} 40 \square$ (X $150 \square$ (X5), 6 points $(\square=1$, rising-edge trigger \rfloor 0 , falling-edge trigger \quad)	(X4), \square $=$	Position index for interruption subroutine.
			interruption	I6 $\square \square$, I7 $\square \square$, 2 points($\square \square=01 \sim 99 \mathrm{~ms}$) time bas 1 ms 18 $\square \square$, 1 point ($\square \square=05 \sim 99$, time base $=0.1 \mathrm{~ms}$)		
			uption inserted high-speed er reaches target	1010, 1020, 1030, 1040, 1050, 1060, 6 points		
			interruption	I110, I120, I130, I140, 4 points		
			munication uption	I150, I160, I170, 3 points		
			ency urement card uption	I180, 1 point		

Type	Device	Item	Range	Function
	K	Decimal form	K-32,768 ~ K32,767 (16-bit operation) K-2,147,483,648 ~ K2,147,483,647 (32-bit operation)	
	H	Hexadecimal form	H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFFF (32-bit operation)	

*1. Non-latched area cannot be modified.
*2. The preset non-latched area can be modified into latched area by setting up parameters.
*3. The preset latched area can be modified into non-latched area by setting up parameters.
*4. The fixed latched area cannot be modified.
*5. The speed at which an external interrupt subroutine is executed depends on the size of the external interrupt subroutine. It is suggested that external interrupt subroutines not be used with high-speed counters.

Latched settings for all devices in EH2/SV series MPU:

M (Auxiliary relay)	General purpose		Latched		Special auxiliary relay		Latched	
	M0 ~ M499		M500 ~ M999		M1000 ~ M1999		M2000 ~ M4095	
	Start: D1200 (K500)End: D1201 (K999)				Some are latched and cannot be modified.		Start: D1202 (K2,000) End: D1203 (K4,095)	
$\begin{gathered} \mathrm{T} \\ \text { (Timer) } \end{gathered}$	100 ms		10 ms		10 ms	1 ms		100 ms
	T0 ~ T199		T200 ~ T239		T240 ~ T245	T246 ~ T249		T250 ~ T255
	Default: non-latched		Default: non-latched		Accumulative type It is fixed to be latched.			
	$\begin{aligned} & \text { Start: D1204 (K-1)*1 } \\ & \text { End: D1205 (K-1)*1 } \end{aligned}$		Start: D1206 (K-1)*1End: D1207 (K-1)*1					
C (Counter)	16-bit counting up			32-bit counting up/down		32-bit high-speed counting up/down		
	C0 ~ C99	C100 ~ C199		C200 ~ C219	C220~C234	C235 ~ C245		C246 ~ C255
	Default: non-latched	Default: latched		Default: non-latched	Default: latched	Default: latched		
	Start: D1208 (K100)End: D1209 (K199)			Start: D1210 (K220)End: D1211 (K234)		Start: D1212 (K235)End: D1213 (K255)		
$\begin{gathered} \mathrm{S} \\ \text { (Step relay) } \end{gathered}$	Initial	Zero return		eneral rpose	Latched	Step alarm		
	S0 ~ S9	S10 ~ S19 S		- S499	500 ~ S899	S900 ~ S1023		
	Non-latched (default)				atched (default)	It is fixed to be latched.		
	Start: D1214 (K500)End: D1215 (K899)							
D (Register)	General purpose		Latched		Special register			atched
	D0 ~ D199		D200 ~ D999		D1000 ~ D1999			0 ~ D9999
	Default: non-latched		Default: latched		Some is latched and cannot be modified.			ult: latched
		Start: End:	$\begin{aligned} & 6 \text { (K200) } \\ & 7 \text { (K999) } \end{aligned}$				Start	$\begin{aligned} & 1218 \text { (K2,000) } \\ & 1219 \text { (K9,999) } \end{aligned}$
File register	K0 ~ K9,999							
	It is fixed to be latched.							

*1: K-1 refers to the default setting is non-latched.

EH3/SV2 series MPU:

Type	Device	Item		Range		Function
	X	External input relay		X0 ~ X377, 256 points, octal	Total 512 points	Corresponds to external input points
	Y	External output relay		YO ~ Y377, 256 points, octal		Corresponds to external output points
	M	Auxiliary relay	General purpose	M0 ~ M499, 500 points (*2)	$\begin{aligned} & \text { Total } \\ & 4,096 \\ & \text { points } \end{aligned}$	The contact can be On/Off in the program.
			Latched	M500 ~ M999, 500 points (*3) M2000 ~ M4095, 2,096 points (*3)		
			Special purpose	M1000 ~ M1999, 1,000 points (some are latched)		
	T	Timer	100ms	$\begin{array}{\|l\|} \hline \text { T0 ~ T199, } 200 \text { points (*2) } \\ \text { T192 ~T199 is for subroutine } \\ \text { T250~T255, } 6 \text { accumulative points (*4) } \\ \hline \end{array}$	$\begin{aligned} & \text { Total } \\ & 256 \\ & \text { points } \end{aligned}$	Timer indicated by TMR instruction. If timing reaches its target, the T contact of the same No. will be On.
			10 ms	$\begin{array}{\|l\|} \hline \text { T200 } \sim \text { T239, } 40 \text { points (} * 2 \text {) } \\ \text { T240 } \sim \text { T245, } 6 \text { accumulative points (* } 4 \text {) } \\ \hline \end{array}$		
			1 ms	T246 ~ T249, 4 accumulative points (*4)		
	C	Counter	16 -bit counting up	$\begin{aligned} & \text { C0 ~ C99, } 100 \text { points (*2) } \\ & \text { C100 ~ C199, } 100 \text { points (}{ }^{*} 3 \text {) } \end{aligned}$	$\begin{gathered} \text { Total } \\ 253 \\ \text { points } \end{gathered}$	Counter indicated by CNT (DCNT) instruction. If counting reaches its target, the C contact of the same No. will be On.
			32-bit counting up/down	$\begin{aligned} & \text { C200 ~ C219, } 20 \text { points (*2) } \\ & \text { C220 ~ C234, } 15 \text { points (*3) } \end{aligned}$		
			32-bit high-speed counter	C235 ~ C244, 1-phase 1 input, 10 points (*3) C246 ~ C249, 1-phase 2 inputs, 4 points (3) C251 ~ C254, 2-phases 2 inputs, 4 points ($* 3$)		
	S	Step	Initial step point	S0 ~ S9, 10 points (*2)	Total 1,024 points	Used for SFC.
			Zero return	S10 ~ S19, 10 points (used with IST instruction) (*2)		
			General purpose	S20 ~ S499, 480 points (*2)		
			Latched	S500 ~ S899, 400 points (*3)		
			Alarm	S900 ~ S1023, 124 points (*3)		
	T	Present value of timer		T0 ~ T255, 256 points		When the timing reaches the target, the contact of the timer will be On.
	C	Present value of counter		C0 ~ C199, 16-bit counter, 200 points C200 ~ C254, 32-bit counter, 53 points		When the counting reaches the target, the contact of the counter will be On.
	D	Data register	General purpose	D0 ~ D199, 200 points, (*2)	Total 12,000 points	Memory area for data storage; E, F can be used for index indication.
			Latched	$\begin{aligned} & \hline \text { D200 ~ D999, } 800 \text { points (*3) } \\ & \text { D2000 ~ D9799, 7,800 points (*3) } \\ & \text { D10000 ~D11999, 2,000 points (*3) } \\ & \hline \end{aligned}$		
			$\begin{aligned} & \hline \begin{array}{l} \text { Special } \\ \text { purpose } \end{array} \\ & \hline \end{aligned}$	D1000 ~ D1999, 1,000 points		
			Right-side special module	D9900~D9999, 100 points (*3) (*6)		
			Left-side special modules	D9800~D9899, 100 points (*3) (*7)		
			Index indication	E0 ~ E7, F0 ~ F7, 16 points (*1)		
	N/A	File register		K0 ~ K9,999 (10,000 points) (*4)		Expanded register for data storage.

Type	Device		Item	Range	Function
	N	For master control loop		N0 ~ N7, 8 points	Control point for main control loop
	P	For CJ, CALL instructions		P0~P255, 256 points	Position index for CJ and CALL
	1		External interruption (*5)	IO0 \square (X0), I10 \square (X1), I20 \square (X2), I30 \square (X3), I40 \square (X4), $\mathrm{I} 50 \square$ (X5), I60 \square (X6), I70 \square (X7), I90 \square (X10), I91 \square (X11) 192 \square (X12), I93 \square (X13), I94 \square (X14), I95 \square (X15), 196 \square (X16), I97 \square (X17), 16 點 ($\square=1$, rising-edge trigger $5, \square=0$, falling-edge trigger \square)	Position index for interruption subroutine.
			Timed interruption	$\begin{aligned} & \text { I6 } \square \square, 17 \square \square, 2 \text { points (} \square \square=02 \sim 99 \mathrm{~ms} \text {) time } \\ & \text { base=1ms) } \\ & \text { 18 } \square, 1 \text { point (} \square \square=05 \sim 99 \text {, time base=0.1ms) } \end{aligned}$	
			Interruption inserted when high-speed counter reaches target	1010, 1020, 1030, 1040, 1050, 1060, 6 points	
			Pulse interruption	I110, I120, I130, I140, 4 points	
			Communication interruption (*8)	I150, I151, I153, I160, I161, I163, I170, 7 points	
प्र0000	K	Decimal form		$\begin{aligned} & \text { K-32,768~K32,767 (16-bit operation) } \\ & \text { K-2,147,483,648 ~ K2,147,483,647 (32-bit operation) } \end{aligned}$	
	H	Hexadecimal form		H0000 ~ HFFFF (16-bit operation) H00000000 ~ HFFFFFFFFF (32-bit operation)	

*1. Non-latched area cannot be modified.
*2. The preset non-latched area can be modified into latched area by setting up parameters.
*3. The preset latched area can be modified into non-latched area by setting up parameters.
*4. The fixed latched area cannot be modified
*5. The speed at which an external interrupt subroutine is executed depends on the size of the external interrupt subroutine. It is suggested that external interrupt subroutines not be used with high-speed counters.
*6. If a PLC is connected to right-side special modules, and M1183 is reset to OFF, the data registers will be available. Every right-side special module connected to a PLC occupies 10 data registers.
*7. If a PLC is connected to left-side special modules, and M1182 is reset to OFF, the data registers will be available. Every left-side special module connected to a PLC occupies 10 data registers.
*8. Please refer to section 2.9 for more information.

2 Functions of Devices in DVP-PLC

Latched settings for all devices in EH3/SV2 series MPU:

M (Auxiliary relay)	General purpose		Latched		Special auxiliary relay		Latched	
	M0 ~ M499		M500 ~ M999		M1000 ~ M1999		M2000 ~ M4095	
	Start: D1200 (K500)End: D1201 (K999)				Some are latched and cannot be modified.		Start: D1202 (K2,000)End: D1203 (K4,095)	
$\begin{gathered} \mathrm{T} \\ \text { (Timer) } \end{gathered}$	100 ms		10 ms		10 ms	1 ms		100 ms
	T0 ~ T199		T200 ~ T239		T240 ~ T245	T246 ~ T249		T250 ~ T255
	Default: non-latched		Default: non-latched		Accumulative type t is fixed to be latched.			
	$\begin{aligned} & \text { Start: D1204 (K-1)*1 } \\ & \text { End: D1205 (K-1)*1 } \end{aligned}$		Start: D1206 (K-1)*1End: D1207 (K-1)*1					
C (Counter)	16-bit counting up			32-bit counting up/down		32-bit high-speed counting up/down		
	C0 ~ C99	C100 ~ C199		C200~C219	C220~C234	C235 ~ C245		C246 ~ C255
	Default: non-latched	Default: latched		Default: non-latched	Default: latched	Default: latched		
	Start: D1208 (K100)End: D1209 (K199)			Start: D1210 (K220)End: D1211 (K234)		Start: D1212 (K235)End: D1213 (K255)		
$\begin{gathered} \mathrm{S} \\ \text { (Step relay) } \end{gathered}$	Initial	Zero return		neral pose	Latched	Step alarm		
	S0 ~ S9	S10 ~ S19 S		~ S499	500 ~ S899	S900 ~ S1023		
	Non-latched (default)				tched (default)	It is fixed to be latched.		
	Start: D1214 (K500)End: D1215 (K899)							
D (Register)	General purpose		Latched		Special register			atched
	D0 ~ D199		D200 ~ D999		D1000 ~ D1999		D2000 ~ D12000	
	Default: non-latched		Default: latched		Some is latched and cannot be modified.			ult: latched
	End: D1217 (K999)						Start	$\begin{aligned} & 1218 \text { (K2,000) } \\ & 1219 \text { (K9,999) } \end{aligned}$
File register	K0 ~ K9,999							

*1: K-1 refers to the default setting is non-latched.

- Power On/Off or the MPU switches between RUN/STOP:

Memory of ES/EXISS V5.5 (and versions above)

Memory type	Power Off \rightarrow On	STOP \rightarrow RUN	RUN \rightarrow STOP	Clear all non-latched areas (M1031)	Clear all latched areas (M1032)	Default setting
Non-latched	Clear	Clear wh	033 = Off	Clear	Unchanged	0
		Remain unchan	hen M1033 = On			
Latched	Unchanged			Unchanged	Clear	Unchanged
Special M, Special D, index register	Initial	Unchanged		Unchanged		Initial setting

Memory of SA/SX/SC/EH2/SV/EH3/SV2 series MPU:

Memory type	Power Off \rightarrow On	STOP \rightarrow RUN	RUN \rightarrow STOP	Clear all non-latched area (M1031)	Clear all latched area (M1032)	Default setting
Non-latched	Clear	Unchanged	Clear when M1033 = Off	Clear	Unchanged	0
			Remain unchanged when M1033 = On			
Latched	Unchanged			Unchanged	Clear	0
Special M, Special D, index register	Initial	Unchanged		Unchanged		Initial setting
File Register	Unchanged					0

2.2 Values, Constants [K]/[H]

Constant	K	Decimal form	K-32,768~K32,767 (16-bit operation) K-2,147,483,648~ K2,147,483,647 (32-bit operation)
	H	Hexadecimal form	H0 \sim HFFFF (16-bit operation) H0 \sim HFFFFFFFFF (32-bit operation)

For different control purposes, there are five types of values inside DVP-PLC for executing the operations. See the
explanations bellows for the functions and works of every type of value.

1. Binary value (BIN)

All the operations and storage of values in PLC are conducted in BIN. Belows are the terms for BIN values.

Bit:	The basic unit for a BIN value, either 1 or 0.
Nibble:	Composed of 4 continuous bits (e.g. b3 ~b0). Presented as the decimal value $0 \sim 9$ of a digit or $0 \sim$ F in hex.
Byte:	Composed of 2 continuous nibble (i.e. 8 bits, b7 ~b0). Presented as $00 \sim$ FF in hex.
Word:	Composed of 2 continuous bytes (i.e. 16 bits, b15 ~b0). Presented as 4-digit $0000 \sim$ FFFF in hex.
Double word:	Composed of 2 continuous words (i.e. 32 bits, b31 ~b0). Presented as 8 digit $00000000 \sim$ FFFFFFFFF.

Bit, nibble, byte, word, and double word in a binary system:

2. Octal value (OCT)

The No. of external input and output terminals in DVP-PLC is numbered in octal system.
For example:
External input: X0 ~ X7, X10 ~ X17...(device No.)
External output: Y0 ~ Y7, Y10 ~ Y17...(device No.)
3. Decimal value (DEC)

Occasions of using decimal values in DVP-PLC:

- Set value in timer T and counter C, e.g. TMR C0 K50 (constant K)
- No. of device S, M, T, C, D, E, F, P, I, e.g. M10, T30. (device No.)
- Operands in application instructions, e.g. MOV K123 D0 (constant K)

4. Binary code decimal (BCD)

A decimal datum is presented by a nibble or 4 bits. Therefore, a continuous 16 bits can be presented as a 4-digit decimal value. BCD is mainly used on reading the input value from the DIP switch or the data output to a 7-section display.
5. Hexadecimal value (HEX)

Occasion of using hexadecimal values:

- Operands in application instructions, e.g. MOV H1A2B D0 (constant H)

Constant K:

"K" is normally placed before a decimal value in the PLC. For example, K100 refers to a decimal value, 100.

Exception:

K and bit devices $\mathrm{X}, \mathrm{Y}, \mathrm{M}$ and S can combine into data in bit, byte, word or double word, e.g. K2Y10, K4M100.
Here K1 refers to a 4-bit data and K2 ~ K4 refer to 8-bit, 12-bit and 16-bit data.

Constant H:

"H" is normally placed before a hexadecimal value in the PLC. For example, H 100 refers to a hexadecimal value, 100. Reference table:

2.3 Numbering and Functions of External Input/Output Contacts [X] / [Y]

No. of input/output contacts (in octal):

The No. of input and output contacts on the PLC MPU starts from X0 and Y0. The range of the No. varies upon the number of points on the MPU. For I/O extension units, the No. of input and output contacts is calculated according to its connection sequence with the MPU.

- ESIEXISS series MPU:

Model	DVP-14ES	DVP-14SS	DVP-20EX	DVP-24ES	DVP-32ES	DVP-40ES	DVP-60ES	I/O Extension Unit
Input X	$\begin{gathered} \hline \mathrm{XO} \sim \mathrm{X7} \\ \text { (8 points) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{XO} \sim \mathrm{X7} \\ \text { (8 points) } \\ \hline \end{gathered}$	X0 ~ X7 (8 points)	$\begin{gathered} \hline \mathrm{X0} \sim \mathrm{X17} \\ (16 \text { points }) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{XO} \sim \mathrm{X} 17 \\ (16 \text { points }) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { X0 } \sim \text { X27 } \\ \text { (} 24 \text { points }) \end{gathered}$	$\begin{gathered} \hline X 0 \sim X 43 \\ \text { (36 points) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { X20/30/50 ~ X177 } \\ \text { (Note) } \end{gathered}$
Output Y	YO ~ Y5 (6 points)	Y0 ~ Y5 (6 points)	$\mathrm{YO} \sim \mathrm{Y} 5$ (6 points)	$\mathrm{YO} \text { ~ Y7 }$ (8 points)	$\begin{gathered} \mathrm{Y} 0 \sim \mathrm{Y} 17 \\ \text { (16 points) } \end{gathered}$	$\begin{gathered} \mathrm{Y} 0 \sim \mathrm{Y} 17 \\ (16 \text { points }) \end{gathered}$	$\begin{aligned} & \mathrm{YO} \sim \mathrm{Y} 27 \\ & (24 \text { points }) \end{aligned}$	$\begin{gathered} \text { Y20/30 ~ Y177 } \\ \text { (Note) } \end{gathered}$

Note: The input points on I/O extension units start from X 20 and output points from Y20, except input points on
DVP-40ES start from X30 and output from Y20; input points on DVP-60ES start from X50 and output from Y30. The No. of input/output points on the I/O extension units increases by 8's multiple. If the number of points is less than 8 , it will be counted as 8.

- SAISXISC series MPU:

Model	DVP-10SX (Note1)	DVP-12SA	DVP-12SC	I/O Extension Unit (Note 2)
Input X	X0 ~ X3 (4 points)	X0 ~ X7 (8 points)	X0 ~ X5, X10 ~ X11 (8 points)	X20 ~ X177
Output Y	Y0 ~ Y1 (2 points)	$\mathrm{Y} 0 \sim \mathrm{Y} 3$ (4 points)	Y0 ~ Y1, Y10 ~ Y11 (4 points)	Y20 ~ Y177

Note 1: Besides 4DI and 2DO, SX series MPU has also 2AI (12-bit) and 2AO (12-bit) of analog input/output.
Note 2: SXISA/SC series MPU share the extension units with SS series MPU. The input points on I/O extension units start from X20 and output points start from Y20. The calculation on the No. of I/O points is the same as that in SS series.

- EH series MPU:

Model	DVP-16EH	$\begin{aligned} & \text { DVP-20EH } \\ & \text { (Note 1) } \end{aligned}$	$\begin{aligned} & \text { DVP-32EH } \\ & \text { (Note1, 2) } \end{aligned}$	DVP-40EH	DVP-48EH	DVP-64EH	DVP-80EH	I/O Extension Unit (Note 3)
Input X	$\mathrm{XO} \sim \mathrm{X7}$ (8 points)	$\begin{gathered} \mathrm{X0} \sim \mathrm{X13} \\ (12 \text { points }) \end{gathered}$	$\begin{gathered} \text { X0 ~ X17 } \\ \text { (16 points) } \end{gathered}$	$\begin{gathered} \text { X0 ~ X27 } \\ (24 \text { points }) \end{gathered}$	$\begin{gathered} \text { X0 ~ X27 } \\ (24 \text { points }) \end{gathered}$	$\begin{gathered} \text { X0 ~ X37 } \\ \text { (32 points) } \\ \hline \end{gathered}$	$\begin{gathered} \text { X0 ~ X47 } \\ \text { (40 points) } \\ \hline \end{gathered}$	X※~X377
Output Y	$Y 0 \sim Y 7$ (8 points)	$\begin{gathered} \mathrm{YO} \sim \mathrm{Y7} \\ \text { (8 points) } \end{gathered}$	$\begin{aligned} & \mathrm{Y0} \sim \mathrm{Y} 17 \\ & (16 \text { points }) \end{aligned}$	$\begin{gathered} \mathrm{Y0} \sim \mathrm{Y} 17 \\ \text { (16 points) } \end{gathered}$	$\begin{gathered} \mathrm{YO} \sim \mathrm{Y} 27 \\ (24 \text { points }) \end{gathered}$	$\begin{gathered} \mathrm{Y} 0 \sim \mathrm{Y} 37 \\ (32 \text { points }) \end{gathered}$	$\mathrm{YO} \sim \mathrm{Y} 47$ (40 points)	Y \% Y 377

Note 1: The output type of 20EH00T and 32EHOOT is transistor, among which Y0 and Y2 are high-speed transistor output $(200 \mathrm{kHz})$ and other outputs are normal transistor output (10 kHz). The output type of other MPUs with 16/48/64/80 points is transistor and all outputs are normal transistor output (10 kHz).
Note 2: The terminal layouts of 32EHOOT, 32EHOOR and 32EHOOM are different. See the instruction sheets of EH series MPU. In 32EH00M, CH0 (Y0, Y1) and CH1 (Y2, Y3) are high-speed differential output (200kHz).
Note 3: The start No. of the input and output points on the I/O extension unit resumes from the last No. in the MPU. The start No. of input points on the I/O extension unit of DVP-16EH and DVP-20EH start from X20 and output points start from Y20. The numbers on the I/O extension unit are in sequence, with max. input point No. X377 and max. output point No. Y377.

- EH2 series MPU:

Model	DVP-16EH2	$\begin{aligned} & \text { DVP-20EH2 } \\ & (\text { Note } 1) \end{aligned}$	$\begin{aligned} & \text { DVP-32EH2 } \\ & \text { (Note1) } \end{aligned}$	$\begin{aligned} & \hline \text { DVP-40EH2 } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	DVP-48EH2	DVP-64EH2	DVP-80EH2	I/O Extension Unit (Note 3)
Input X	$\begin{gathered} \mathrm{X0} \sim \mathrm{X7} \\ \text { (8 points) } \\ \hline \end{gathered}$	$\begin{gathered} X 0 \sim X 13 \\ (12 \text { points }) \\ \hline \end{gathered}$	$\begin{gathered} X 0 \sim X 17 \\ (16 \text { points }) \\ \hline \end{gathered}$	X0 ~ X27 (24 points)	$\begin{gathered} X 0 \sim X 27 \\ (24 \text { points }) \\ \hline \end{gathered}$	$\begin{gathered} \text { X0 } \sim \text { X37 } \\ (32 \text { points }) \\ \hline \end{gathered}$	$\begin{gathered} \text { X0 ~ X47 } \\ (40 \text { points }) \\ \hline \end{gathered}$	※~X377
Output Y	$\begin{gathered} \mathrm{YO} \sim \mathrm{Y7} \\ \text { (8 points) } \end{gathered}$	$\begin{aligned} & \text { Y0 ~ Y7 } \\ & \text { (8 points) } \end{aligned}$	$Y 0 ~ Y 17$ (16 points)	$\begin{aligned} & \mathrm{YO} \sim \mathrm{Y} 17 \\ & \text { (16 points) } \end{aligned}$	$\begin{aligned} & \text { YO ~ Y27 } \\ & (24 \text { points }) \end{aligned}$	$Y 0 \sim Y 37$ (32 points)	Y0 ~ Y47 (40 points)	Y※~Y377

Note 1: The output type of 20EHOOT2 and 32EH00T2 is transistor, among which Y0 and Y2 are high-speed transistor output $(200 \mathrm{kHz})$ and other outputs are normal transistor output (10 kHz). The output type of other MPUs with 16/48/64/80 points is transistor and all outputs are normal transistor output (10kHz).
Note 2: The output type of 40EH00T2 is transistor, among which CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4) and CH3 (Y6) are high-speed transistor output (200 kHz). The output type of other output points is normal transistor output (10 kHz). The high-speed inputs $\mathrm{CH} 0(\mathrm{X} 0, \mathrm{X} 1), \mathrm{CH} 1(\mathrm{X} 4, \mathrm{X} 5), \mathrm{CH} 2(\mathrm{X} 10, \mathrm{X} 11)$ and $\mathrm{CH} 3(\mathrm{X} 14, \mathrm{X} 15)$ are able to achieve max. frequency 200kHz.
Note 3: The I/O points on I/O extension units follow the I/O points on MPUs. The input points on DVP-16EH2 and DVP-20EH2 start from X20 and output points from Y20. The I/O points on I/O extension units are numbered in sequence. The maximal input number is X 377 , and the maximal output number is Y 377 .

- SVISV2 series MPU:

Model	DVP-28SV (Note 1)	I/O Extension Unit (Note 2)
Input X	X0 \sim X17 (16 points)	X20 \sim X377
Output Y	Y0 \sim Y13 (12 points)	Y20 \sim Y377

Note 1: The output type of 28SV11T is transistor output, among which CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4) and CH3

Note 2: The input points on I/O extension units start from X2O and output points start from Y20. The calculation on the No. of I/O points is the same as that in SS series.

- EH3 series MPU:

Model	DVP-16EH3	DVP-20EH3	DVP-32EH3 (Note 3)	DVP-40EH3	DVP-48EH3	DVP-64EH3	DVP-80EH3	I/O Extension Unit (Note 4)
Input X (Note 1)	$\begin{gathered} \text { X0~X7 } \\ \text { (8 points) } \end{gathered}$	$\begin{gathered} \text { X0~X13 } \\ \text { (12 points) } \end{gathered}$	$\begin{aligned} & \text { X0~X17 } \\ & \text { (16 points) } \end{aligned}$	$\begin{gathered} \text { X0~X27 } \\ \text { (24 points) } \end{gathered}$	$\begin{gathered} \text { X0~X27 } \\ \text { (24 points) } \end{gathered}$	$\begin{gathered} \text { X0~X37 } \\ \text { (32 points) } \end{gathered}$	$\begin{aligned} & \text { X0~X47 } \\ & \text { (40 points) } \end{aligned}$	X※~X377
Output Y (Note 2)	$\begin{gathered} \text { Y0~Y7 } \\ \text { (8 points) } \end{gathered}$	$\begin{gathered} \text { Y0~Y7 } \\ \text { (8 points) } \end{gathered}$	$\begin{aligned} & \text { Y0~Y17 } \\ & \text { (16 points) } \end{aligned}$	$\begin{aligned} & \text { Y0~Y17 } \\ & \text { (16 points) } \end{aligned}$	$\begin{aligned} & \text { Y0~Y27 } \\ & \text { (24 points) } \end{aligned}$	$\begin{gathered} \text { Y0~Y37 } \\ \text { (32 points) } \end{gathered}$	$\begin{gathered} \text { Y0~Y47 } \\ \text { (40 points) } \end{gathered}$	Y \% Y 377

Note 1: High-speed input points (X0~X17) on the MPU: The 200KHz input points on 16EH3 are Ch0(X0/X1) and Ch1(X4/X5); the 200KHz input points on 20EH3 are Ch0(X0/X1) and Ch1(X4/X5); the 20KHz input point on 20EH3 is Ch2(X10/X11); the 200KHz input points on other MPUs are Ch0(X0/X1), Ch1(X4/X5), Ch2(X10/X11) and Ch3(X14/X15). X2~X17 which are not listed above are 10 KHz input points.
Note 2: High-speed output points (Y0~Y17) on the MPU: The 200KHz output points on 16EH3, 20EH3 and 32EH3 are Ch0 (Y0) and Ch1 (Y2); the 200KHz output points on 40EH3, 48EH3, 64EH3, and 80EH3 are Ch0 (Y0/Y1), Ch1 (Y2/Y3), Ch2 (Y4), and CH3 (Y6). Other output points which are not listed are 10 KHz output points.
Note 2: The high-speed input points Ch0 (X0/X1) and Ch1 (X4/X5) on DVP32EH00M3 are 200KHz differential input points; Ch2 (X10/X11) and Ch3 (X14/X15) are 200KHz open collector input points; other input points are 10KHz open collector input points. The high-speed output points Ch0 $(\mathrm{YO} / \mathrm{Y} 1)$ and $\mathrm{Ch} 1(\mathrm{Y} 2 / \mathrm{Y} 3)$ are 200 KHz differential output points; other output points are 10 KHz open collector output points.
Note 4: The I/O points on I/O extension units follow the I/O points on MPUs. The input points on DVP-16EH3 and DVP-20EH3 start from X20 and output points from Y20. The I/O points on I/O extension units are numbered in sequence. The maximal input number is X 377 , and the maximal output number is Y 377 .

- Input relay X0 ~ X377

The numbering of input relays (or input terminals) is in octal form. EH series MPU can have up to 256 points and the range is: $\mathrm{X0} \sim \mathrm{X} 7, \mathrm{X} 10 \sim \mathrm{X} 17, \ldots, \mathrm{X} 370 \sim \mathrm{X} 377$.

- Output relay Y0 ~ Y377

The numbering of output relays (or output terminals) is also in octal form. EH2 series MPU can have up to 256 points and the range is: $\mathrm{Y} 0 \sim \mathrm{Y} 7, \mathrm{Y} 10 \sim \mathrm{Y} 17, \ldots, \mathrm{Y} 370 \sim \mathrm{Y} 377$.

- Functions of input contact X

The input contact X is connected to the input device and reads the input signals into the PLC. There is no limitation on the times of using contact A or B of input contact X in the program. On/Off of the input contact X only changes with On/Off of the input device. You cannot use the peripheral devices (HPP or WPLSoft) to force On/Off of the input contact X.
The special relay M1304 in SS/ES/EX/SA/SX/SC/EH2/SV/EH3/SV2 series MPU allows the peripheral devices HPP or WPLSoft to set up On/Off of the MPU input contact X, but the PLC will not be able to receive external input signals at this time.

- Functions of output contact Y

Output contact Y sends out On/Off signals to drive the load connected to output contact Y . There are two types of output contacts, relay and transistor. There is no limitation on the times of using contact A or B of output contact Y in the program, but the No. of output coil Y can only be used once in the program; otherwise according to the scan principle of the PLC program, the output status will be determined by the circuit of the last output Y in the program.

The output of Y 0 will be determined by circuit (2), i.e. On/Off of X 10 will determine the output status of YO .

- Regenerate input signal

1. Before the execution of the program, PLC reads the On/Off status of the external input signals into the input signal memory at a time.
2. The On/Off status of the input signal during the execution of the program will not change the signal status in the input signal memory. The new On/Off status will be read in the next scan.
3. There will be approximately a 10 ms delay from the On \rightarrow Off or Off \rightarrow On changes to the status being recognized by the contact in the program. The delay time may be affected by the scan time in the program.

- Program processing

After the PLC reads the On/Off status of every input signal in the input signal memory, it will start to execute every instruction in the program in order starting from address 0 . The execution result (On/Off of every output coil) will be stored in order into the device memory.

- Regenerate output

1. When the program executes to END instruction, it will send the On/Off status of Y in the device memory to the output latched memory. The output latched memory is the coil of the output relay.
2. There will be a 10 ms delay from $\mathrm{On} \rightarrow$ Off or $\mathrm{Off} \rightarrow \mathrm{On}$ of the relay coil to the On/Off status of the contact.
3. There will be a $10 \sim 20$ us delay from On \rightarrow Off or Off \rightarrow On of the transistor module to the On/Off status of the contact.

2.4 Numbering and Functions of Auxiliary Relays [M]

No. of auxiliary relays (in decimal)

- ESIEXISS series MPU:

Auxiliary relay M	General purpose	M0 \sim M511, M768 \sim M999, 744 points. Fixed to be non-latched.	Total 1,280
	patched	points	

- SAISXISC series MPU:

Auxiliary relay M	General purpose	M0 ~ M511, 512 points. Fixed to be non-latched.	Total 4,096 points
	Latched	M512 ~ M999, M2000 ~ M4095, 2,584 points. Can be modified to be non-latched by setting up parameters.	
	Special purpose	M1000 ~ M1999, 1000 points. Some are latched.	

- EH2/SV/EH3/SV2 series MPU:

Auxiliary relay M	General purpose	M0 ~ M499, 500 points. Can be modified to be latched by setting up parameters.	Total 4,096 points
	Latched	M500 ~ M999, M2000 ~ M4095, 2,596 points. Can be modified to be non-latched by setting up parameters.	
	Special purpose	M1000 ~M1999, 1,000 points. Some are latched.	

Functions of auxiliary relays:

Both auxiliary relay M and output relay Y have output coils and contact A, B, and there is no limitation on the times of using the contact. You can use auxiliary relay M to assemble a control loop, but it cannot directly drive the external load. There are three types of auxiliary relays:

1. General purpose auxiliary relay: If the relay encounters power cut during the operation of the PLC, its status will be reset to Off and stay Off when the power is on again.
2. Latched auxiliary relay: If the relay encounters power cut during the operation of the PLC, its status will be retained and stay at the status before the power cut when the power is on again.
3. Special purpose auxiliary relay: Every relay of this kind has its specific function. Do not use undefined special purpose auxiliary relay. See 2.10 for special purpose auxiliary relay of all series MPU and 2.11 for its functions.

2.5 Numbering and Functions of Step Relays [S]

No. of step relays (in decimal)

- ESIEXISS series MPU:

Step relay S	Initial latched	S0 \sim S9, 10 points. Fixed to be latched.	Zotal 128 Zero return points
	latched	S10 \sim S19, 10 points, used with IST instruction. Fixed to be latched.	

- SAISXISC series MPU:

Step relay S	Initial	S0 ~ S9, 10 points. Fixed to be non-latched.	Total 1,024 points
	Zero return	S10 ~ S19, 10 points, used with IST instruction. Fixed to be non-latched.	
Step relay S	General purpose	S20 ~ S511, 492 points. Fixed to be non-latched.	Total 1,024 points
	Latched	S512 ~ S895, 384 points. Can be modified to be non-latched by setting up parameters.	
	Alarm	S896 ~ S1023, 128 points. Fixed to be latched.	

- EH2/SVIEH3/SV2 series MPU:

Step relay S	Initial	S0 ~ S9, 10 points. Can be modified to be latched by setting up parameters.	Total 1,024 points
	Zero return	S10 ~ S19, 10 points, used with IST instruction. Can be modified to be latched by setting up parameters.	
	General purpose	S20 ~ S499, 480 points. Can be modified to be latched by setting up parameters.	
	Latched	S500 ~ S899, 400 points. Can be modified to be non-latched by setting up parameters.	
	Alarm	S900 ~ S1023, 124 points. Can be modified to be latched by setting up parameters.	

Functions of step relays:

The step relay S can easily set up the procedure in the industrial automation, which is the most basic device in the sequential function chart (SFC) and has to be used with STL, RET instructions.

The device No. of S is S0 ~ S1023 (total 1,024 points) and both step relay S and output relay Y have output coils and contact A, B, and there is no limitation on the times of using the contact. S cannot directly drive the external load. When the step relay is not used in SFC, it can be used as a normal auxiliary relay. There are four types of step relays:

1. Initial step relay: $\mathrm{SO} \sim \mathrm{S} 9$, total 10 points, used for initial steps.
2. Zero return step relay: $\mathrm{S} 10 \sim \mathrm{~S} 19$, total 10 points. $\mathrm{S} 10 \sim \mathrm{~S} 19$ are planned for zero return when used with API 60 IST instruction in the program. If they are not used with IST, they will become normal step relays.
3. General purpose step relay: S20 ~ S511, total 492 points (for SA/SX/SC series MPU); S20~S499, total 480 points (for EH2/SV/EH3/SV2 series MPU). Used for general purposes in SFC and their status will all be cleared when the operation of the PLC encounters power cut.
4. Latched step relay: S512 ~ S895, total 384 points (for SA/SX/SC series MPU); S20~S127, total 108 points (for ES/EX/SS series MPU); S500 ~ S899, total 400 points (for EH2/SV/EH3/SV2 series MPU). Used for latched function in SFC and their status will all be retained when the operation of the PLC encounters power cut. They will remain at the status before the power cut when the PLC is powered again.
5. Alarm step relay: S896 ~ S1023, total 128 points (for SA/SX/SC series MPU); S900 ~ S1023, total 124 points (for EH2/SV/EH3/SV2 series MPU). Used with alarm driving instruction API 46 ANS as an alarm contact for recording the alarm messages or eliminating external malfunctions.

2.6 Numbering and Functions of Timers [T]

No. of timers (in decimal)

- ESIEXISS series MPU:

Timer T	100ms general purpose	$\mathrm{T} 0 \sim \mathrm{~T} 63,64$ points	Total
	10 ms general purpose	$\mathrm{T} 64 \sim \mathrm{~T} 126,63$ points $(\mathrm{M} 1028=\mathrm{On}: 10 \mathrm{~ms} ; \mathrm{M} 1028=$ Off:100ms)	
	1 ms general purpose	$\mathrm{T} 127,1$ point	

- SAISXISC series MPU:

Time T	100ms general purpose	T0 ~ T199, 200 points. T192 ~ T199 are the timers for subroutine. Fixed to be non-latched	Total 256 points
	100ms accumulative	T250 ~ T255, 6 points. Fixed to be latched.	
	10ms general purpose	T200 ~ T239, 40 points. Fixed to be non-latched	
	10 ms accumulative	T240 ~ T245, 6 points. Fixed to be latched.	
	1ms accumulative	T246 ~ T249, 4 points. Fixed to be latched.	

- EH2/SV/EH3/SV2 series MPU:

Timer T	100ms general purpose	T0 ~ T199, 200 points. Can be latched by setting up parameters. T192 ~ T199 are the timers for subroutine.	Total 256 points
	100ms accumulative	T250 ~ T255, 6 points. Fixed to be latched.	
	10ms general purpose	T200 ~ T239, 40 points. Can be latched by setting up parameters.	
	10ms accumulative	T240 ~ T245, 6 points. Fixed to be latched.	
	1 ms accumulative	T246 ~ T249, 4 points. Fixed to be latched.	

Functions of timers:

The units of the timer are $1 \mathrm{~ms}, 10 \mathrm{~ms}$ and 100 ms and the counting method is counting up. When the present value in the timer equals the set value, the output coil will be On. The set value should be a K value in decimal and the data register D can also be a set value.

The actual set time in the timer $=$ timing unit \times set value

There are three types of timers:

1. General purpose timer:

For ES/SA series MPU: The timer executes once when the program reaches END instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

For EH2/SV/EH3/SV2 series MPU: The timer executes once when the program reaches TMR instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

- When X0 = On, The PV in timer T0 will count up by 100 ms . When the PV $=$ SV K100, the output coil T0 will be On.

- When X0 = Off or the power is off, the PV in timer T0 will be cleared as 0 , and the output coil T 0 will be Off.

2. Accumulative type timer:

For ES/SA series MPU: The timer executes once when the program reaches END instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.
For EH2/SV/EH3/SV2 series MPU: The timer executes once when the program reaches TMR instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

- When X0 = On, The PV in timer T250 will count up by 100 ms . When the PV $=$ SV K100, the output coil TO will be On.
- When X0 = Off or the power is off, timer T250 will temporarily stop the timing and the PV remain unchanged. When XO is On again, the timing will resume and the PV will count up and when the $P V=$ SV K100, the output coil T0 will be On.

3. Subroutine timer:

Timer T192 ~ T199 are used in subroutines or interruption subroutines.
For SA series MPU: The timer executes once when the program reaches END instruction. When END instruction is executed, the output coil will be On when the timing reaches its target.

For EH2/SV/EH3/SV2 series MPU: The timer executes once when the program reaches TMR or END instruction. When TMR or END instruction is executed, the output coil will be On when the PV equals SV.

If the general purpose timer is used in a subroutine or interruption subroutine but the subroutine is not being executed, the timer will not be able to time correctly.

How to designate SV: The actual set time in the timer $=$ timing unit \times set value
a) Designating constant K : SV is a constant K
b) Indirectly designating $\mathrm{D}: ~ \mathrm{SV}$ is data register D

2.7 Numbering and Functions of Counters [C]

No. of counters (in decimal)

- ESIEXISS series MPU:

Counter C	16-bit counting up, for general purpose	$\mathrm{C} 0 \sim \mathrm{C} 111,112$ points. Fixed to be non-latched.
	16-bit counting up, for latched	$\mathrm{C} 112 \sim \mathrm{C} 127,16$ points. Fixed to be latched.
	1-phase 1 input	$\mathrm{C} 235 \sim \mathrm{C} 238, \mathrm{C} 241, \mathrm{C} 242, \mathrm{C} 244,7$ points. Fixed to be latched.
	1-phase 2 inputs	$\mathrm{C} 246, \mathrm{C} 247, \mathrm{C} 249,3$ points. Fixed to be latched.
	2-phase 2 inputs	$\mathrm{C} 251, \mathrm{C} 252, \mathrm{C} 254,3$ points. Fixed to be latched.

- SAISXISC series MPU:

Counter C	16-bit counting up, for general purpose	C0 ~ C95, 96 points. Fixed to be non-latched.		Total 235 points
	16-bit counting up, for latched	C96 ~ C199, 104 points. Can be modified to be non-latched by setting up parameters.		
	32-bit counting up/down, for general purpose	C200 ~ C215, 16 points. Fixed to be non-latched.		
	32-bit counting up/down, for latched	C216 ~ C234, 19 points. Can be modified to be non-latched by setting up parameters.		
(SA/SX) 32-bit counting up/down high-speed counter C	1-phase 1 input, for latched	C235 ~ C242, C244, 9 points	Can be modified to be non-latched by setting up parameters.	
	1-phase 2 inputs, for latched	C246, C247, C249, 3 points		Total 16 points
	2-phase 2 inputs, for latched	C251 ~ C254, 4 points		
(SC) 32-bit counting up/down high-speed counter C	1-phase 1 input, for latched	C235 ~ C245, 11 points		Total 19 points
	1-phase 2 inputs, for latched	C246 ~ C250, 4 points		
	2-phase 2 inputs, for latched	C251 ~ C255, 4 points		

- EH2/SV/EH3/SV2 series MPU:

Counter C	16-bit counting up, for general purpose	C0 ~ C99, 100 points. Can be modified to be latched by setting up parameters.		Total 253 points
	16-bit counting up, for latched	C100 ~ C199, 100 points. Can be modified to be non-latched area by setting up parameters.		
	32-bit counting up/down, for general purpose	C200 ~ C219, 20 points. Can be modified to be latched by setting up parameters.		
	32-bit counting up/down, for latched	C220 ~ C234, 15 points. Can be modified to be non-latched by setting up parameters.		
32-bit counting up/down high-speed counter C	Software 1-phase 1 input	C235 ~ C240, 6 points	Can be modified to be non-latched by setting up parameters.	
	Hardware 1-phase 1 input	C241 ~ C244, 4 points		
	Hardware 1-phase 2 inputs	C246 ~ C249, 4 points		
	Hardware 2-phase 2 inputs	C251 ~ C254, 4 points		

- Features of counter:

	16 bits counters	32 bits counters	
Type	General purpose	General purpose	High speed
Counting direction	Counting up	Counting up, counting down	
Set value	0 ~ 32,767	-2,147,483,648 ~+2,147,483,647	
SV designation	Constant K or data register D	Constant K or data register D (designating 2 values)	
Present value	Counting will stop when the SV is reached.	Counter will continue when the SV is reached.	
Output contact	On and being retained when the counting reaches SV.	On and keeps being On when counting up reaches SV. Reset to Off when counting down reaches SV.	
Reset	PV will be return to 0 when RST instruction is executed and the contact will be reset to Off.		
Contact action	Acts when the scanning is completed.	Acts when the scanning is completed.	Acts immediately when the counting reaches its target, has nothing to do with the scan period.

Functions of counters:

When the pulse input signals of the counter go from Off to On and the present value in the counter equals the set value, the output coil will be On. The set value should be a K value in decimal and the data register D can also be a set value.

16-bit counters C0 ~ C199:

1. The setup range of 16 -bit counter: $\mathrm{K} 0 \sim \mathrm{~K} 32,767$. KO is the same as K 1 . The output contact will be On immediately when the first counting starts.
2. PV in the general purpose counter will be cleared when the power of the PLC is switched off. If the counter is a latched type, the counter will retain the PV and contact status before the power is off and resume the counting after the power is on again.
3. If you use MOV instruction, WPLSoft or HPP to send a value bigger than the SV to the present value register of C0, next time when X 1 goes from Off to On, the contact of counter C 0 will be On and its PV will equal SV .
4. The SV in the counter can be constant K (set up directly) or the values in register D (set up indirectly, excluding special data registers D1000~ D1999).
5. If you set up a constant K as the SV , it should be a positive value. Data register D as SV can be positive or negative. When the PV reaches up to 32,767 , the next PV will turn to $-32,768$.

Example:

LD	X0	
RST	C0	
LD	X1	
CNT	C0	K5
LD	C0	
OUT	Y0	

a) When $\mathrm{XO}=\mathrm{On}, \mathrm{RST}$ instruction will be executed, PV in C0 will be "0" and the output contact will be reset to Off.
b) When X 1 goes from Off to On, the PV in the counter will count up (plus 1).
c) When the counting of CO reaches SV K5, the contact of CO will be On and PV of CO $=\mathrm{SV}=\mathrm{K} 5$. The X1 trigger signal comes afterwards will not be accepted by CO and the PV of C 0 will stay at K5.

32-bit general purpose addition/subtraction counters C200~C234:

1. The setup range of 32 -bit counter: $\mathrm{K}-2,147,483,648 \sim \mathrm{~K} 2,147,483,647$ (not available for ES/EXISS series MPU).
2. Addition or subtraction of the counters is designated by On/Off status of special auxiliary relays M1200~M1234. For example, when M1200 = Off, C200 will be an addition counter; when M1200 $=\mathrm{On}, \mathrm{C} 200$ will be a subtraction counter.
3. The SV can be constant K or data register D (excluding special data registers D1000 ~ D1999). Data register D as SV can be a positive or negative value and an SV will occupy two consecutive data registers.
4. PV in the general purpose counter will be cleared when the power of the PLC is switched off. If the counter is a latched type, the counter will retain the PV and contact status before the power is off and resume the counting
after the power is on again.
5. When the PV reaches up to $2,147,483,647$, the next PV will turn to $-2,147,483,648$. When the PV reaches down to $-2,147,483,648$, the next PV will turn to $2,147,483,647$.
Example:

LD	X10	
OUT	M1200	
LD	X11	
RST	C200	
LD	X12	
CNT	C200	K-5
LD	C200	
OUT	Y0	

a) X10 drives M1200 to determine whether C200 is an addition or subtraction counter.
b) When X11 goes from Off to On, RST instruction will be executed and the PV in C200 will be cleared to " 0 " and the contact will be Off.
c) When X12 goes from Off to On, the PV in the counter will count up (plus 1) or count down (minus 1).
d) When the PV in C200 changes from $\mathrm{K}-6$ to $\mathrm{K}-5$, the contact of C 200 will go from Off to On. When the PV in C200 changes from K-5 to K-6, the contact of C200 will go from On to Off.
e) If you use MOV instruction, WPLSoft or HPP to send a value bigger than the
 SV to the present value register of C 0 , next time when X1 goes from Off to On, the contact of counter CO will be On and its PV will equal SV .

32-bit high-speed addition/subtraction counters C235 ~ C255:

1. The setup range of 32 -bit counter: K-2,147,483,648 ~ K2,147,483,647
2. Addition or subtraction of $\mathrm{C} 235 \sim \mathrm{C} 244$ is designated by On/Off status of special auxiliary relays M1235 ~ M1244. For example, when M1235 = Off, C235 will be an addition counter; when M1235 = On, C235 will be a subtraction counter.
3. Addition or subtraction of C246 ~ C255 is designated by On/Off status of special auxiliary relays M1246 ~ M1255.

For example, when M1246 = Off, C246 will be an addition counter; when M1246 $=$ On, C 246 will be a subtraction counter.
4. The SV can be constant K or data register D (excluding special data registers D1000 ~ D1999). Data register D as SV can be a positive or negative value and an SV will occupy two consecutive data registers.
5. If using DMOV instruction, WPLSoft or HPP to send a value which is large than the setting to any high-speed counter, next time when the input point X of the counter goes from Off to On, this contact will remain unchanged and it will perform addition and subtraction with the present value.
6. When the PV reaches up to $2,147,483,647$, the next PV will turn to $-2,147,483,648$. When the PV reaches down to $-2,147,483,648$, the next PV will turn to $2,147,483,647$.

- High-speed counters for ESIEXISS series MPU, total bandwidth: 20kHz

Type	1-phase input							1-phase 2 inputs			2-phase 2 inputs		
	C235	C236	C237	C238	C241	C242	C244	C246	C247	C249	C251	C252	C254
X0	U/D				U/D		U/D	U	U	U	A	A	A
X1		U/D			R		R	D	D	D	B	B	B
X2			U/D			U/D			R	R		R	R
X3				U/D		R	S			S			S

U: Progressively increasing input
A: A phase input
S: Input started
D: Progressively decreasing input
B: B phase input
R: Input cleared

1. Input points $\mathrm{X0}$ and X 1 can be planned as counters of higher speed with 1-phase 1 input reaching 20kHz. But the two counting frequencies added together have to be smaller or equal 20 kHz . If the input is a 2-phase 2 input signal, the counting frequency will be approximately 4 kHz . The 1-phase input of high-speed counters X 2 and X3 and reach 10 kHz .
2. The use of DHSCS instruction together with DHSCR instruction in ES series MPU cannot exceed 4 times.

- High-speed counters for SAISX series MPU, total bandwidth: 40kHz

$\begin{gathered} \text { Type } \\ \text { Input } \end{gathered}$	1-phase input									1-phase 2 inputs			2-phase 2 inputs			
	C235	C236	C237	C238	C239	C240	C241	C242	C244	C246	C247	C249	C251	C252	C253	C254
X0	U/D						U/D		U/D	U	U	U	A	A	B	A
X1		U/D					R		R	D	D	D	B	B	A	B
X2			U/D					U/D			R	R		R		R
X3				U/D				R	S			S				S
X4					U/D											
X5						U/D										

U: Progressively increasing input
A: A phase input
S: Input started
D: Progressively decreasing input
B: B phase input
R: Input cleared

1. The frequency of input points $X 0$ and $X 1$ of 1-phase input can reach up to $20 \mathrm{kHz}, X 2 \sim X 5$ can reach 10 kHz . The frequency of C251, C252 and C254 of 2-phase input (X0, X1) can reach up to 4 kHz . The maximum frequency of C 253 is 4 kHz (only supports 4 times frequency counting).
2. Input point X 5 has two functions:
a) When M1260 = Off, C240 will be normal U/D high-speed counter.
b) When M1260 = On and DCNT instruction enables C240, X5 will be the shared reset signal for C235 ~ C239

Counter C240 will continue to receive the input signals from X5.

- High-speed counters for SC series MPU, total bandwidth: 130kHz

$\begin{array}{r} \text { Type } \\ \text { Input } \end{array}$	1-phase input											1-phase 2 inputs				2-phase 2 inputs			
	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C245	C246	C247	C249	C250	C251	C252	C254	C255
X0	U/D						U/D			U/D		U	U	U		A	A	A	
X1		U/D					R			R		D	D	D		B	B	B	
X2			U/D					U/D					R	R			R	R	
X3				U/D				R		S				S				S	
X4					U/D														
X5						U/D													
X10									U/D						U				A
X11											U/D				D				B

U: Progressively increasing input
A: A phase input
S: Input started
D: Progressively decreasing input
B: B phase input
R: Input cleared

1. The functions of high-speed counters of input points $X 0 \sim X 5$ are the same of those in SA/SX series MPU.
2. The maximum frequency of the input points $X 10(C 243), X 11(C 245)$ and ($\mathrm{X} 10, \mathrm{X} 11$) (C250) of 1-phase input is 100 kHz . The total bandwidth of $\mathrm{X} 10 \sim \mathrm{X} 11$ high-speed counting is 130 kHz . The maximum input frequency of C255 (2-phase input X10, X11) is 35 kHz .
3. The use of DHSCS instruction together with DHSCR instruction in SA/SXISC series MPU cannot exceed 6 times. The use of DHSZ instruction cannot exceed 6 times as well. When DHSCS instruction designates I interruption, the designated high-speed counter cannot be used in DHSCS, DHSCR and DHSZ instruction.
4. Functions of high-speed counters X10 ~ X11 in SC series MPU:
a) When X 10 and X 11 are set to be 1-phase 1 input or 1-phase 2 outputs, the maximum frequency can reach 100 kHz . When set to be 2-phase 2 inputs, the maximum frequency can reach 35 kHz .
b) X 10 and X 11 can be set to be rising-edge or falling-edge counting. X 10 is set by D1166 and X 11 by D1167. K0: rising-edge counting; K1: falling-edge counting; K2: rising-/falling-edge counting (only available in X10).
c) Counting up or down of C243 is determined by On/Off status of M1243 and that of C245 is determined by On/Off of M1245. Rising-edge and falling-edge counting cannot be performed at the same time. Rising edge or falling edge of C250 is determined by the content (K0 or K1) in D1166. C255 can only be used in 4 times frequency counting and rising-edge and falling-edge triggers are not available for C255.
d) When you use C243 or C245, you will not be able to use C250 or C255, and vice versa.
e) High-speed counter and high-speed comparator:

f) Explanations on high-speed counter and high-speed comparator:
(i) When DHSCS and DHSCR instructions use new added high-speed counters, they can only use two groups of SVs in high speed comparison instruction. Assume you have used the comparison instruction DHSCS D0 C243 Y10, you can only set another group of instruction DHSCR D2 C243 Y10 or DHSCS D4 C245 Y10.
(ii) When DHSZ instruction uses new added high-speed counters, it can only use one group of SV in the comparator.
(iii) The number of SVs in high speed comparison instructions offered by SA/SX series MPU will not decrease owing to the increasing of high-speed counters.
(iv) If the output device of the high-speed comparison instruction DHSCS requires high-speed output, it is recommended you use Y10 or Y11 for the output. If you use other general devices, the output will delay for 1 scan period for its setup or clearing. For example, if I0x0 interruption is set, C243 will correspond to 1020, C245 to I040, and C250 and C255 to 1060.
(v) The high speed comparison instruction DHSCR is able to clear the counter, but only the counters used in the same instruction, e.g. DHSCR K10 C243 C243. This function only applies to 4 special high-speed counters C243, C245, C250 and C255.
5. Counting modes:
a) The 2-phase 2 inputs counting mode of the high speed counters in ES/EXISS (V5.5 and versions above) and SA/SXISC series MPU is set by special D1022 with normal frequency, double frequency and 4 times frequency modes. The contents in D1022 will be loaded in the first scan when PLC is switched from STOP to RUN.

Device No.	Function
D1022	Setting up the multiplied frequency of the counter
D1022 $=$ K1	Normal frequency mode selected
D1022 $=$ K2 or 0	Double frequency mode selected (default)
D1022 $=$ K4	4 times frequency mode selected

b) Multiplied frequency mode ($\uparrow \downarrow$ indicates the occurrence of counting)

Counting mode		Counting wave pattern
słndu! 乙 əseyd-乙		

EH2/SV series MPU supports high speed counters. C235 ~ C240 are program-interruption 1-phase high speed counter with a total bandwidth of 20 kHz , can be used alone with a counting frequency of up to 10 kHz . EH3/SV2 series MPU supports high speed counters. C235~C240 are program-interruption 1-phase high speed counter, and can be used with a counting frequency of up to 10 kHz . C241 ~ C254 are hardware high speed counter (HHSC). There are four HHSC in EH2/SV/EH3/SV2 series MPU, HHSC0 ~ 3. The pulse input frequency of HHSC0 and HHSC1 can reach 200 kHz , and that of HHSC2 and HHSC3 can reach 20 kHz (1 phase or A-B phase). The pulse input frequency of HHSC0 ~ 3 of 40EH2/40EH3 series MPU can reach 200kHz, among which:

- C241, C246 and C251 share HHSC0
- C242, C247 and C252 share HHSC1
- C243, C248 and C253 share HHSC2
- C244, C249 and C254 share HHSC3

1. Every HHSC can only be designated to one counter by DCNT instruction.
2. There are three counting modes in every HHSC (see the table below):
a) 1-phase 1 input refers to "pulse/direction" mode.
b) 1-phase 2 inputs refers to "clockwise/counterclockwise (CW/CCW)" mode.
c) 2-phase 2 inputs refers to "A-B phase" mode.

Counter type	Program-interruption high speed counter						Hardware high speed counter											
	1-phase 1 input						1-phase 1 input				1-phase 2 inputs				2-phase 2 inputs			
	C235	C236	C237	C238	C239	C240	C241	C242	C243	C244	C246	C247	C248	C249	C251	C252	C253	C254
X0	U/D						U/D				U				A			
X1		U/D									D				B			
X2			U/D				R				R				R			
X3				U/D			S				S				S			
X4					U/D			U/D				U				A		
X5						U/D						D				B		
X6								R				R				R		
X7								S				S				S		
X10									U/D				U				A	
X11													D				B	
X12									R				R				R	
X13									S				S				S	
X14										U/D				U				A
X15														D				B
X16										R				R				R
X17										S				S				S
U: Progressively increasing input B: Progressively decreasing input							A: A phase input B: B phase input				S: Input started R: Input cleared							

3. System structure of the hardware high speed counters:
a) HHSCO ~ 3 have reset signals and start signals from external inputs. Settings in M1272, M1274, M1276 and M1278 are reset signals of HHSCO, HHSC1, HHSC2 and HHSC3. Settings in M1273, M1275, M1277 and

M1279 are start signals of HHSC0, HHSC1, HHSC2 and HHSC3.
b) If the external control signal inputs of R and S are not in use, you can set M1264/M1266/M1268/M1270 and M1265/M1267/M1269/M1271 as True and disable the input signals. The corresponding external inputs can be used again as general input points (see the figure below).
c) When special M is used as a high speed counter, the inputs controlled by START and RESET will be affected by the scan time.

4. Counting modes:

The counting modes of the hardware high-speed counters in EH2/SV/EH3/SV2 series MPU can be set in D1225 ~ D1228.

Counting modes		Wave pattern	
Type	Set value in special D	Counting up(+1)	Counting down(-1)
1-phase 1 input	1 (Normal frequency)	U/D U/D FLAG \qquad	
	2 (Double frequency)	U/D \qquad U/D FLAG \qquad	$\approx \square$
1-phase 2 inputs	1 (Normal frequency)	$\begin{aligned} & \cup \sim \sim \\ & \mathrm{D} \longrightarrow \end{aligned}$	
	2 (Double frequency)	U \qquad D \qquad	F

5. Special registers for relevant flags and settings of high speed counters:

Flag	Function
M1150	DHSZ instruction in multiple set values comparison mode
M1151	The execution of DHSZ multiple set values comparison mode is completed.
M1152	Set DHSZ instruction as frequency control mode
M1153	DHSZ frequency control mode has been executed.
M1235 ~ M1244	Designating the counting direction of high speed counters C235 ~ C245 When M12 \square = Off, C2 \square will perform a counting up. When M12 \square = On, C2 \square will perform a counting down.
M1245~ M1255	Designating the counting direction of high speed counters C246 ~ C255 When M12 \square = Off, C2 \square will perform a counting up. When M12 \square = On, C2 \square will perform a counting down.
M1160	X5 as the reset input signal of all high speed counters
M1261	High-speed comparison flag for DHSCR instruction
M1264	Disable the external control signal input point of HHSC0 reset signal point (R)
M1265	Disable the external control signal input point of HHSC0 start signal point (S)
M1266	Disable the external control signal input point of HHSC1 reset signal point (R)
M1267	Disable the external control signal input point of HHSC1 start signal point (S)
M1268	Disable the external control signal input point of HHSC2 reset signal point (R)
M1269	Disable the external control signal input point of HHSC2 start signal point (S)
M1270	Disable the external control signal input point of HHSC3 reset signal point (R)
M1271	Disable the external control signal input point of HHSC3 start signal point (S)
M1272	Internal control signal input point of HHSCO reset signal point (R)
M1273	Internal control signal input point of HHSC0 start signal point (S)
M1274	Internal control signal input point of HHSC1 reset signal point (R)
M1275	Internal control signal input point of HHSC1 start signal point (S)
M1276	Internal control signal input point of HHSC2 reset signal point (R)
M1277	Internal control signal input point of HHSC2 start signal point (S)
M1278	Internal control signal input point of HHSC3 reset signal point (R)

Flag	Function
M1279	Internal control signal input point of HHSC3 start signal point (S)
M1289	High speed counter 1010 interruption forbidden
M1290	High speed counter 1020 interruption forbidden
M1291	High speed counter 1030 interruption forbidden
M1292	High speed counter 1040 interruption forbidden
M1293	High speed counter 1050 interruption forbidden
M1294	High speed counter 1060 interruption forbidden
M1312	C235 Start input point control (not supported by EH3/SV2)
M1313	C236 Start input point control (not supported by EH3/SV2)
M1314	C237 Start input point control (not supported by EH3/SV2)
M1315	C238 Start input point control (not supported by EH3/SV2)
M1316	C239 Start input point control (not supported by EH3/SV2)
M1317	C240 Start input point control (not supported by EH3/SV2)
M1320	C235 Reset input point control (not supported by EH3/SV2)
M1321	C236 Reset input point control (not supported by EH3/SV2)
M1322	C237 Reset input point control (not supported by EH3/SV2)
M1323	C238 Reset input point control (not supported by EH3/SV2)
M1324	C239 Reset input point control (not supported by EH3/SV2)
M1325	C240 Reset input point control (not supported by EH3/SV2)
M1328	Enable Start/Reset of C235 (not supported by EH3/SV2)
M1329	Enable Start/Reset of C236 (not supported by EH3/SV2)
M1330	Enable Start/Reset of C237 (not supported by EH3/SV2)
M1331	Enable Start/Reset of C238 (not supported by EH3/SV2)
M1332	Enable Start/Reset of C239 (not supported by EH3/SV2)
M1333	Enable Start/Reset of C240 (not supported by EH3/SV2)
D1022	Multiplied frequency of $A-B$ phase counters for ES/EX/SS and SA/SX/SC series MPU
D1150	Table counting register for DHSZ multiple set values comparison mode
D1151	Register for DHSZ instruction frequency control mode (counting by table)
$\begin{aligned} & \hline \text { D1152 (low word) } \\ & \text { D1153 (high word) } \end{aligned}$	In frequency control mode, DHSZ reads the upper and lower limits in the table counting register D1153 and D1152.
D1166	Switching between rising/falling edge counting modes of X 10 (for SC_V1.4 series MPU only)
D1167	Switching between rising/falling edge counting modes of X11 (for SC_V1.4 series MPU only)
D1225	The counting mode of the ${ }^{\text {st }}$ group counters (C241, C246, C251)
D1226	The counting mode of the $2^{\text {nd }}$ group counters (C242, C247, C252)
D1227	The counting mode of the $3^{\text {rd }}$ group counters (C243, C248, C253)
D1228	The counting mode of the $4^{\text {th }}$ group counters (C244, C249, C254)

Flag	Function
	Counting modes of HHSCO ~ HHSC3 in EH2/SV/EH3/SV2 series MPU (default = 2)
D1225 ~ D1228	1: Normal frequency counting mode 2: Double frequency counting mode 3: Triple frequency counting mode $4: 4$ times frequency counting mode

1-phase 1 input high-speed counter
Example:

LD	X10	
RST	C241	
LD	X11	
OUT	M1241	
LD	X12	
DCNT	C241	K5
LD	C241	
OUT	Y0	

1. X 11 drives M 1241 to determine whether C 241 is an addition or subtraction counter.
2. When X 10 is On , RST instruction will be executed and the $P V$ in C 241 will be cleared to " 0 " and the contact will be Off.
3. In C241, when X12 is On and C241 receives the signals from X0, the PV in the counter will count up (plus 1) or count down (minus 1).
4. When the counting of C 241 reaches SV K 5 , the contact of C 241 will be On . If there are still input signals from X 0 , the counting will continue.
5. C 241 in ES/EX/SS and SA/SX/SC series MPU has external input signals to reset X 1 .
6. C241 in EH2/SV/EH3/SV2 series MPU has external input signals to reset X 2 and start X 3 .
7. The external input contact of reset signal of C241 (HHSC0) in EH2/SV/EH3/SV2 series MPU is disabled by M1264. The external input contact of start signal is disabled by M1265.
8. The internal input contact of reset signal of C 241 (HHSCO) in EH2/SV/EH3/SV2 series MPU is disabled by M1272. The internal input contact of start signal is disabled by M1273.
9. The counting modes (normal frequency or double frequency) of C246 (HHSC0) in EH2/SV/EH3/SV2 series MPU can be set up by D1225. The default setting is double frequency mode.

1-phase 2 inputs high-speed counter
Example:

LD	X10
RST	C246
LD	X11
DCNT	C246 K5
LD	C246
OUT	Y0

1. When X 10 is On, RST instruction will be executed. The PV in C246 will be cleared to " 0 " and the output contact will be reset to be Off.
2. In C246, when X11 is On and C246 receives the signals from XO , the PV in the counter will count up (plus 1) or count down (minus 1).
3. When the counting of C246 reaches SV K5, the contact of C 246 will be On. If there are still input signals from XO , the counting will continue.
4. C 246 in EH2/SV/EH3/SV2 series MPU has external input signals to reset X 2 and start

X3.
5. The counting modes (normal frequency or double frequency) of C 246 (HHSC0) in $\mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2$ series MPU can be set up by D1225. The default setting is double frequency mode.
6. The external input contact of reset signal of C 246 (HHSC0) in EH2/SV/EH3/SV2 series MPU is disabled by M1264. The external input contact of start signal is disabled by M1265.
7. The internal input contact of reset signal of C246 (HHSCO) in EH2/SV/EH3/SV2 series MPU is disabled by M 1272 . The internal input contact of start signal is disabled by M 1273 .

2-phase $A B$ input high-speed counter
Example:

LD	X10
RST	C251
LD	X11
DCNT	C251 K5
LD	C251
OUT	Y0

1. When X 10 is On, RST instruction will be executed. The PV in C251 will be cleared to " 0 " and the output contact will be reset to be Off.
2. In C251, when $X 11$ is On and C251 receives the A-phase signals from $X 0$ and B-phase signals from $X 1$, the $P V$ in the counter will count up (plus 1) or count down (minus 1). You can select different counting modes if you use EH2/SV/EH3/SV2 series MPU.
3. When the counting of C 251 reaches SV K5, the contact of C 251 will be On. If there are still input signals coming in, the counting will continue.
4. The counting modes (normal frequency, double frequency or 4 times frequency) of C251 (HHSCO) in ES/SA series MPU can be set up by D1022. The default setting is double frequency mode.
5. C 251 in EH2/SV/EH3/SV2 series MPU has external input signals to reset X 2 and start X 3 .
6. The counting modes (normal frequency, double frequency, triple frequency or 4 times frequency) of C251 (HHSC0) in EH2/SV/EH3/SV2 series MPU can be set up by D1225. The default setting is double frequency mode.
7. The external input contact of reset signal of C 246 (HHSCO) in EH2/SV/EH3/SV2 series MPU is disabled by M1264. The external input contact of start signal is disabled by M1265.
8. The internal input contact of reset signal of C 246 (HHSCO) in EH2/SV/EH3/SV2 series MPU is disabled by M1272. The internal input contact of start signal is disabled by M1273.

ES/EX/SS and SA/SX/SC series MPU (double frequency)

EH2/SV/EH3/SV2 series MPU (double frequency)

Contact Y0, C251

2.8 Numbering and Functions of Registers [D], [E], [F]

2.8.1 Data register [D]

A data register is for storing a 16 -bit datum of values between $-32,768$ to $+32,767$. The highest bit is " + " or "-" sign.
Two 16 -bit registers can be combined into a 32-bit register ($D+1$; D of smaller No. is for lower 16 bits). The highest b it is " + " or "-" sign and it can store a 32-bit datum of values between $-2,147,483,648$ to $+2,147,483,647$.

- ESIEXISS series MPU:

Data register D	General purpose	D0 \sim D407, 408 points
	Latched	D408 \sim D599, 192 points. Fixed to be latched.
	Special purpose	D1000 \sim D1143, 144 points. Some are latched.
	Index register E, F	E, F, 2 points

- SAISXISC series MPU:

Data register D	General purpose	D0 ~ D199, 200 points. Fixed to be non-latched.	Total5,000points(SX v.3.0andabove:10,000points)
	Latched	D200 ~ D999, D2000 ~ D4999, 3,800 points. Can be modified to be non-latched by setting up parameter.	
	Special purpose	D1000 ~ D1999, 1000 points. Some are latched.	
	General purpose	D5000~D9999, 5000 points (Only supported by SX v.3.0 and above) Fixed to be non-latched.	
	Index register E, F	E0 ~ E3, F0 ~ F3, 8 points	
File register		K0 ~ K1,599, MPU 1,600 points. Fixed to be latched.	$1,600$ points

- EH2/SVIEH3/SV2 series MPU:

Data register D	General purpose	$\begin{array}{l}\text { D0 ~ D199, 200 points. Can be modified to be latched by setting up } \\ \text { parameters. }\end{array}$	$\begin{array}{c}\text { Total }\end{array}$
	Latched	$\begin{array}{l}\text { D200 } \sim \text { D999, D2000 } \sim \text { D9999, 8,800 points. } \\ \text { EH3/SV2: D200 } \sim \text { D999, D2000 } \sim \text { D11999, 10,800 points. } \\ \text { Can be modified to be non-latched by setting up parameters. }\end{array}$	

There are five types of registers:

1. General purpose register: When PLC goes from RUN to STOP or the power of the PLC is switched off, the data in the register will be cleared to " 0 ". When M1033 $=$ On and PLC goes from RUN to STOP, the data will not be cleared, but will still be cleared to " 0 " when the power is off.
2. Latched register: When the power of PLC is switched off, the data in the register will not be cleared but will retain at the value before the power is off. You can use RST or ZRST instruction to clear the data in the latched register.
3. Special purpose register: Every register of this kind has its special definition and purpose, mainly for storing the system status, error messages and monitored status. See 2.10 and 2.11 for more details.
4. Index register E, F: The index register is a 16-bit register. There are 2 points of E, F in ES/EX/SS series MPU; 8 points (E0 ~ E3, F0 ~ F3) in SA/SX/SC series MPU; 16 points (E0 ~E7, F0~F7) in EH2/SV/EH3/SV2 series MPU. If the index register is to be used as a 32-bit register, please designate E. When E is already designated in a 32-bit instruction, using also F will not be allowed.
5. File register: There are 1,600 file registers $(K 0 \sim K 1,599)$ in SA/SX/SC series MPU and 10,000 file registers (K0 ~K9,999) in EH2/SV/EH3/SV2 series MPU. The file register does not have an exact device No.; therefore the read/write function of file registers has to be executed by instruction API 148 MEMR, API 149 MEMW or through peripheral devices HPP and WPLSoft.

2.8.2 Index Register [E], [F]

32 bits

Higher 16 bits Lower 16 bits

Index registers E, F are 16-bit data registers and can be written and read.

If you need to use a 32-bit register, you have to designate E. In this case, F will be covered by E and cannot be used anymore; otherwise, the content in E (32-bit) will be incorrect. We suggest you use DMOVP K0 E instruction, the content in E (including F) will be cleared to " 0 " when the power of PLC is switched on.

The combination of E, F when you use a 32-bit index register:
(F0, E0), (F1, E1), (F2, E2), ...(F7, E7)
When $\mathrm{XO}=\mathrm{On}, \mathrm{E} 0=8, \mathrm{FO}=14, \mathrm{D} 5 \mathrm{E} 0=\mathrm{D}(5+8)=\mathrm{D} 13, \mathrm{D} 10 \mathrm{~F} 0=\mathrm{D}$ $(10+14)=$ D24. At this moment, the content in D13 will be moved to D24.

The index register is the same as normal operands, can be used for moving or comparison on word devices (KnX, KnY, KnM, KnS, T, C, D) and bit devices (X, Y, M, S). ES/SA series MPU does not support constant (K, H) index register, but EH2/SV/EH3/SV2 series MPU supports constant (K, H) index register.

ES/EX/SS series MPU has 2 points of index registers E0, F0

SA/SX/SC series MPU has 8 points of index registers E0 ~ E3, F0 ~ F3
EH2/SV/EH3/SV2 series MPU has 16 points of index registers E0 ~E7, F0 ~F7

- Some instructions do not support index registers. For how to use index register E, F to modify the operands, see Chapter 5.4 for more details.
- When you use the instruction mode in WPLSoft to generate constant (K, H) index register function, please use symbol "@". For example, "MOV K10@E0 D0F0"
- When you use index register E, F to modify the operands, the modification range CANNOT exceed the range of special purpose registers D1000 ~ D1999 and special auxiliary registers M1000 ~ M1999 in case errors may occur.

2.8.3 Functions and Features of File Registers

When the power of PLC is switched on, SA/SX/SC and EH2/SV/EH3/SV2 series MPU will check the following devices:

1. M1101 (whether the file register is enabled)
2. D1101 (No. of file registers in SA/SX/SC series MPU: K0 ~ K1,599; No. of file registers in EH2/SV/EH3/SV2 series MPU: K0 ~ K9,999)
3. D1102 (Number of file registers to be read in SA/SXISC series MPU: K0~K1,600; number of file registers to be read in EH2/SV/EH3/SV2 series MPU: K0 ~ K8,000)
4. D1103 (devices for storing the data read from file registers; the No. of designated data register D starts from K2,000 ~ K9,999; determining whether to automatically send the content in the file register to the designated data
register.)

Note:

1. When D1101 of SA/SX/SC series MPU is bigger than 1,600, D1101 of EH2/SV/EH3/SV2 series MPU is bigger than 8,000 and D1103 is smaller than 2,000 or bigger than 9,999 , the data read from file registers will not be sent to data register D .
2. When the program starts to send the data read from the file register to data register D and the address of the file register or the data register D exceed their ranges, PLC will stop the reading.
3. There are 1,600 file registers in SA/SX/SC series MPU and 10,000 in EH2/SV/EH3/SV2 series MPU. The file register does not have an exact device No.; therefore the read/write function of file registers has to be executed by instruction API 148 MEMR, API 149 MEMW or through peripheral devices HPP and WPLSoft.
4. If you tend to read a file register with an address that is not within the range, the read value will be " 0 ".

2.9 Pointer [N], Pointer [P], Interruption Pointer [I]

- ES/EXISS series MPU:

Pointer	N	For master control loop		N0 ~ N7, 8 points	Control point of master control loop
	P	For CJ, CALL instructions		P0 ~ P63, 64 points	Position pointer of CJ, CALL
	1	Interruption	External interruption	I001, I101, I201, I301, 4 points	Position pointer of interruption subroutine
			Timed interruption	I6 $\square \square$, 1 point ($\square \square=10 \sim 99$, time base $=1 \mathrm{~ms})$ (for V5.7)	
			Communication interrupt	I150, 1 point	

- SAISXISC series MPU:

Pointer	N	Master control loop		NO ~ N7, 8 points	Control point of master control loop
		For CJ, CALL instructions		P0 ~ P255, 256 points	Position pointer of CJ, CALL
	1	Interruption	External interruption	I001, I101, I201, I301, I401, I501, 6 points	Position pointer of interruption subroutine
			Timer interruption	I6 $\square \square$, $17 \square \square$, 2 points ($\square \square=1 \sim 99$, time base $=1 \mathrm{~ms}$)	
			High-speed counter interruption	IO10, I020, I030, I040, I050, I060, 6 points	
			Communication interruption	I150, 1 point	

Note: Among the 6 pairs of interruption No. (I001, IO10), (I101, IO20), (I201, IO30), (I301, IO40), (I401, I050), (I501, I060), only 1 No. in the pair is allowed to be used in the program. If you use both No. in the pair and write them into the program, there may be syntax errors occurring.

- EH2ISV series MPU:

	N	Master contr	ol loop	N0 ~ N7, 8 points	Control point of master control loop
	P	For CJ, CAL	L instructions	P0 ~ P255, 256 points	Position pointer of CJ, CALL
			External interruption	```\(\mathrm{I} 00 \square(\mathrm{XO})\), \(\mathrm{I} 10 \square\) (X1), \(\mathrm{I} 20 \square\) (X2), I30 \(\square\) (X3), I40 \(\square(\mathrm{X} 4), \quad 150 \square(\mathrm{X} 5), 6\) points \(\square\) \(=1\), rising-edge trigger \(\uparrow, \square=0\), falling-edge trigger \(\downarrow\))```	
Pointer	1	Interruption	Timed interruption	```I6\square\square\square, I7\square\square, 2 points (}\square\square=01~99, tim base = 1ms) 18\square\square,1 point (}\square\square=05~99\mathrm{ , time base = 0.1ms)```	Position pointer of
			High-speed counter interruption	1010, 1020, 1030, 1040, 1050, 1060, 6 points	
			Pulse interruption	I110, I120, I130, I140, 4 points	
			Communication interruption	I150, I160, I170, 3 points	
			Frequency measurement card triggered interruption	I180, 1 point	

- EH3/SV2 series MPU:

Note 1: Input point X as a high-speed counter cannot be used as an external interruption signal. For example, if C 251 occupies $\mathrm{X0}$, X1, X2 and X3, the external input interruption No. $100 \square(X 0), I 10 \square(X 1), I 20 \square(X 2)$, and $I 30 \square(X 3)$ cannot be used.
Note 2: If an interrupt subroutine is executed, the next interrupt subroutine will not be executed until the execution of the interrupt is complete.
Note 3: The time it takes for an interrupt subroutine in a PLC to be executed affects the efficiency of the PLC. It is suggested that the size of an interrupt subroutine not be large.

Pointer N: Used with MC and MCR instructions. MC is the master control start instruction. When MC instruction is executer, the instructions between MC and MCR will still be executed normally. See Chapter 3 explanations on MC and MCR instructions for more details.

Pointer P: Used with API 00 CJ, API 01 CALL and API 02 SRET. See Chapter 6 explanations on CJ, CALL and SRET instructions for more details.

CJ Conditional Jump:

- When X0 = On, the program will jump from address 0 to N (designated label P1) and keep on the execution. The addresses in the middle will be ignored.
- When X0 = Off, the program will execute from address 0 and keep on executing. At this time, CJ instruction will not be executed.

CALL Call Subroutine, SRET Subroutine Return:

Abstract

- When XO = On, CALL instruction will be executed and the program will jump to P2 and executed the designated subroutine. When SRET instruction is executed, the program will return to address 24 and keep on the execution.

Interruption Pointer I: Used with API 04 EI, API 05 DI, API 03 IRET. See Chapter 5.5 for more details. There are 6 types of interruption pointer. To insert an interruption, you have to combine the action with EI (enable interruption), DI (disable interruption), IRET (interruption return) instructions.

1. External interruption: Due to the special hardware design inside the MPU, the input signals coming in at input terminals X0 ~ X5 (EH3/SV2: X0~X17) when rising-edge or falling-edge triggers will not be affected by the scan cycle. The currently executed program will be interrupted immediately and the execution will jump to the designated interruption subroutine pointer $100 \square(X 0), I 10 \square(X 1), I 20 \square$ (X2), $130 \square$ (X3), $140 \square$ (X4), $150 \square$ (X5). Till the execution reaches IRET instruction, the program will return to the original position and keep on its execution. In SA/SX series MPU, X0 (pulse input point) works with X4 (external interruption point), corresponding to C235, C251 and C253 work with I401, which will be able to interrupt and intercept the present value in the high-speed counter. D1181 is the device to store the 32-bit value. X1 (pulse input point) works with X5 (external interruption point), corresponding to C 236 works with I501, which will be able to interrupt and intercept the present value in the high-speed counter. D1198 and D1199 are the devices to store the 32-bit value.

In SC series MPU, X10 (pulse input point) works with X4 (external interruption point), corresponding to C243 and C255 work with I401, which will be able to interrupt and intercept the present value in the high-speed counter. D1180 and D1181 are the devices to store the 32-bit value. X11 works with X5, corresponding to C245 works with I501, which will be able to interrupt and intercept the present value in the high-speed counter. D1198 and D1199
are the devices to store the 32-bit value.
2. Timed interruption: PLC automatically interrupts the currently executed program every a fixed period of time and jumps to the execution of a designated interruption subroutine.
3. Interruption when the counting reaches the target: The high-speed counter comparison instruction API 53 DHSCS can designates that when the comparison reaches the target, the currently executed program will be interrupted and jump to the designated interruption subroutine executing the interruption pointers IO10, IO20, IO30, 1040, 1050 and 1060.
4. Pulse interruption: The pulse output instruction API 57 PLSY can be set up that the interruption signal is sent out synchronously when the first pulse is sent out by enabling flags M1342 and M1343. The corresponding interruptions are I130 and I140. You can also set up that the interruption signal is sent out after the last pulse is sent out by enabling flags M1340 and M1341. The corresponding interruptions are I110 and I120.
5. Communication interruption:

I150: After COM2 receives a specific character by means of the communication instruction RS, 1150 will be enabled. The specific character is set in the low byte in D1168. If a PLC is connected to a communication device, and the length of the data that the PLC receives is not the same, this function can be used.
I160: After COM2 receives a certain number of data by means of the communication instruction RS, 1160 will be enabled. The number of data can be set in the low byte in D1169. If $\mathrm{D} 1169=0, \mathrm{I} 160$ will not be triggered.
I170: After the slave station COM2 finishes receiving data, I170 will be enabled. Normally when the communication terminal of the PLC is in Slave mode, PLC will not immediately process the communication data entered but process it after the END is executed. Therefore, when the scan time is very long and you need the communication data to be processed immediately, you can use interruption I170 for this matter.
I151, I161, I153, and I163 are only applicable to EH3/EH3-L/SV2 version 2.00 and above.
I151: After COM1 receives a specific character by means of the communication instruction $\mathrm{RS}, \mathrm{I} 151$ will be enabled. The specific character is set in the low byte in D1397. If a PLC is connected to a communication device, and the length of the data that the PLC receives is not the same, this function can be used. If D1397 = 0, I151 will not be triggered.
I161: After COM1 receives a certain number of data by means of the communication instruction RS, I161 will be enabled. The number of data can be set in the low byte in D1398. If D1398 $=0, \mathrm{I} 161$ will not be triggered.

I153: After COM3 receives a specific character by means of the communication instruction RS, I153 will be enabled. The specific character is set in the low byte in D1242. If a PLC is connected to a communication device, and the length of the data that the PLC receives is not the same, this function can be used. If D1242 $=0, \mathrm{I} 153$ will not be triggered.

I163: After COM3 receives a certain number of data by means of the communication instruction RS, I163 will be enabled. The number of data can be set in the low byte in D1243. If D1243 $=0, I 163$ will not be triggered.
In the program in a EH3/SV2 series PLC, three communication interrupts at most can be enabled. Please see the table below for more information. (SV2 series PLCs do not support COM3.)

Communication interrupt number	1	2	3
COM1 communication interrupt	I 161	I 151	
COM2 communication interrupt	I 150	I 160	I 170
COM3 communication interrupt	I 163		I 153

Example: If the COM1 communication interrupt I161 has been selected, the communication interrupts I150 and I163 can not be used. Although there is no such warning during the writing of a program, a warning message will appear after the program is downloaded to a PLC.
6. Frequency measurement card triggered interruption:

I180: When the PLC sets up the frequency measurement card in mode 1 (pulse cycle measurement) and mode 3 (pulse number counting) by M1019 and D1034, I180 will be supported as well.

2.10 Special Auxiliary Relays and Special Data Registers

The types and functions of special auxiliary relays (special M) and special data registers (special D) are listed in the table below. Please be noted that some devices of the same No. may bear different meanings in different series MPUs. Special M and special D marked with "*" will be further illustrated in the 2.11. Columns marked with "R" refers to "read only", "R/W" refers to "read and write", "-" refers to the status remains unchanged and "\#" refers to the system will set it up according to the status of the PLC.

$\begin{gathered} \text { Special } \\ \text { M } \end{gathered}$	Function	$\begin{aligned} & \hline \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|c\|c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{gathered} \hline \mathrm{Off} \\ n \\ \mathrm{On} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \mathrm{RUN} \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
M1000*	Monitoring normally open contact (A)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	On	Off	R	NO	Off
M1001*	Monitoring normally closed contact (B)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	On	Off	On	R	NO	On
M1002*	Enabling positive pulses (On when RUN)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	On	Off	R	NO	Off
M1003*	Enabling negative pulses (Off when RUN)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	On	Off	On	R	NO	On
M1004*	On when syntax errors occur	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1005*	Password of data backup memory card and password of MPU do not match	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1006*	Data backup memory card has not been initialized	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1007*	Data do not exist in the program area of data backup memory card	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1008*	Scanning watchdog timer (WDT) On	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1009	Insufficient 24V DC supply, LV signal has been occurred.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1010	ES/SA: PLSY YO mode selection, continuous output when On EH2/SV/EH3/SV2: Pulse output when reaching END instruction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1011*	$10 \mathrm{~ms} \mathrm{clock} \mathrm{pulse} ,5 \mathrm{~ms} \mathrm{On/5ms} \mathrm{Off}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1012*	$100 \mathrm{~ms} \mathrm{clock} \mathrm{pulse}$,50 ms On / 50ms Off	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1013*	1 s clock pulse, 0.5 s On $/ 0.5 \mathrm{~s}$ Off	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1014*	1 min clock pulse, 30s On / 30s Off	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1015*	Enabling high-speed counter	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1016*	Displaying real time clock in A.D.	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1017*	± 30 seconds correction on real time clock	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1018	Flag for radian/degree, On: for degree	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1019	Enabling frequency measurement card	X	X	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1020	Zero flag	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1021	Borrow flag	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1022	Carry flag	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1023	PLSY Y1 mode selection, continuous output when On	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1024	Requesting COM1 monitoring	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1025*	There is incorrect request for communication.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1026	Enabling RAMP module	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1027	Number of PR outputs	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1028	10 ms time switching flag. Off: time base of T64 ~T126 $=100 \mathrm{~ms}$ On: time base of T64~T126 $=10 \mathrm{~ms}$	\bigcirc	X	X	X	Off	-	-	R/W	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \hline \text { SC } \\ \hline \end{array}$	$\left\|\begin{array}{c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}\right\|$	$\begin{array}{\|l\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{c\|} \hline \text { Off } \\ n \\ \text { On } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { RUN } \\ \boxed{\Omega} \\ \text { STOP } \\ \hline \end{array}$	Attribute	Latched	Default
M1029*	ES/SA: YO pulse output of PLSY, PLSR instructions is completed, or other relevant instructions complete their executions. EH2/SV/EH3/SV2: the $1^{\text {st }}$ group pulse output CHO (YO, Y1) is completed, or other relevant instructions complete their executions.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1030*	ES/SA: Y1 pulse output of PLSY, PLSR instructions is completed, or other relevant instructions complete their executions. $E H 2 / S V / E H 3 / S V 2$: the $2^{\text {nd }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$ is completed, or other relevant instructions complete their executions.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1031*	Clear all non-latched areas	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1032*	Clear all latched areas	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1033*	Memory latched when STOP	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1034*	Disabling all Y outputs	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1035*	Enabling input point X as the RUN/STOP switch, corresponding to D1035 (SA designates X7 only; SX designates X3 only; SC designates X5 only)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	Off
M1036*	EH2/SV/EH3/SV2: the $3^{\text {rd }}$ group pulse output $\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)$ is completed. (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
	SPD instruction is able to use $X 0 \sim X 5$ to detect the flag (only available in SC_V1.4 and versions above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
M1037	EH2/SV/EH3/SV2: the $4^{\text {th }}$ group pulse output CH3 (Y6, Y7) is completed. (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1038	Off: The time base of T0~T99 is 100 ms . On: The time base of T0~T99 is 1 ms .	X	X	X	\bigcirc	Off	-	-	R/W	NO	Off
M1039*	Fixing time scan mode	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1040	Disabling step	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1041	Starting step	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	Off	R/W	NO	Off
M1042	Enabling pulses	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1043	Zero return completed	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	Off	R/W	NO	Off
M1044	Zero point condition	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	Off	R/W	NO	Off
M1045	Disabling all output reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1046	Setting STL status as On	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1047	Enabling STL monitoring	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1048	Alarm status	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1049	Setting up alarm monitoring	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1050	Inhibiting 1001	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1051	Inhibiting I101	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1052	Inhibiting I201	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1053	Inhibiting I301	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
	Enabling X4 speed detection	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1054	Inhibiting 1401	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
	Enabling X10 speed detection	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1055	Inhibiting I501	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
	Enabling X14 speed detection	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1056	Inhibiting I6 $\square \square$	\bigcirc	\bigcirc	\times	X	Off	-	-	R/W	NO	Off
	Enabling X1 interrupt to get the counting value of C241	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off
M1057	Inhibiting 17 $\square \square$	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
	Enabling X2 interrupt to get the counting value of C241	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off
M1058	COM3 monitoring request	X	X	X	\bigcirc	Off	-	-	R/W	NO	Off
M1059	Inhibiting 1010 ~ 1060	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
	Enabling X3 interrupt to get the counting value of C241	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off

Special M	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{array}{\|l\|l} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{c\|} \text { Off } \\ \sqrt{n} \\ \text { On } \end{array}$	$\begin{gathered} \mathrm{STOP} \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \text { s } \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
M1060	System error message 1: The peripheral circuit of the CPU breaks down.	\bigcirc	\bigcirc	\bigcirc	X	Off	-	-	R	NO	Off
M1061	System error message 2: The CPU flag register breaks down.	X	\bigcirc	\bigcirc	X	Off	-	-	R	NO	Off
	System error message 2: An error occurs when the data in the latched area is read.	\bigcirc	X	X	X	Off	-	-	R	NO	Off
M1062	System error message 3: The CPU BIOS ROM breaks down.	\bigcirc	\bigcirc	\bigcirc	X	Off	-	-	R	NO	Off
M1063	System error message 4: The RAM in the CPU breaks down.	\bigcirc	\bigcirc	\bigcirc	X	Off	-	-	R	NO	Off
M1064	Incorrect use of operands	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1065	Syntax error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1066	Loop error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1067*	Calculation error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1068*	Calculation error locked (D1068)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1070	ES/SA: Y1 time base switching for PWM instruction (On: 100us; Off: 1ms) EH3/SV2: YO time base switching for PWM instruction (On: 100us; Off: 1ms) EH2/SV/EH3/SV2: when On, D1371 will decide the time base)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1071	Y2 time base switching for PWM instruction (On: 100us; Off: 1ms) EH2/SV/EH3/SV2: when On, D1372 will decide the time base)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1072	Executing PLC RUN instruction	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	On	Off	R/W	NO	Off
M1074	SRAM access error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1075	Error occurring when writing FLASH card or Flash ROM	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1076*	Real time clock malfunction	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1077	Battery in low voltage, malfunction or no battery	\times	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1078	Immediately stopping YO pulse output for PLSY instruction	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1079	Immediately stopping Y1 pulse output for PLSY instruction	\bigcirc	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1080	Requesting COM2 monitoring	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1081	Changing direction for FLT instruction	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1082	Real time clock has been changed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1083	Allowing interruption subroutine in FROM/TO instructions (Not available in SX V3.0 and above)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1084*	Detecting bandwidth (only available in ES/EX/SS_V6.4, SA/SX_V1.6, SC_V1.4 and versions above)	\bigcirc	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1085	Selecting DVP-PCC01 duplicating function	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1086	Setting up the switch for enabling password function of DVP-PCC01	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1087*	Enabling LV signal	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1088	Matrix comparison. Comparing between equivalent values (M1088 $=1$) or different values $($ M1088 $=0)$.	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1089	Matrix search end flag. When the comparison reaches the last bit, M1089 $=1$.	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1090	Matrix search start flag. Comparing from bit 0 (M1090 = 1).	\times	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1091	Matrix bit search flag. When the comparison is completed, the comparison will stop immediately (M1091=1).	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1092	Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 $=1$.	\times	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1093	Matrix pointer increasing flag. Adding 1 to the current value of the Pr.	\times	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off

Special M	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { SX } \\ & \text { SC } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \text { SV } \end{array}$	$\begin{array}{\|l\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{c\|} \hline \text { Off } \\ 3 \\ \text { On } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \\ \hline \end{array}$	Attribute	Latched	Default
M1094	Matrix pointer clear flag. Clearing the current value of the Pr to 0.	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1095	Matrix rotation/displacement/output carry flag	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1096	Matrix displacement/input complement flag	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1097	Matrix rotation/displacement direction flag	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1098	Matrix counting the number of bits which are " 1 " or " 0 "	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1099	On when the matrix counting result is " 0 "	X	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1100	SPD instruction sampling once	X	\times	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1101*	Whether to enable file registers	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	Yes	Off
M1102*	Y10 pulse output ends (For SC)	X	\bigcirc	\times	X	Off	-	-	R/W	NO	Off
M1103*	Y11 pulse output ends (For SC)	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1104*	Status of SW1 on digital switch card/AX0 input point on 4DI card (photocoupler isolation)	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1105*	Status of SW2 on digital switch card/AX1 input point on 4DI card (photocoupler isolation)	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1106*	Status of SW3 on digital switch card/AX2 input point on 4DI card (photocoupler isolation)	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1107*	Status of SW4 on digital switch card/AX3 input point on 4DI card (photocoupler isolation)	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1108*	Status of SW5 on digital switch card	X	\times	\bigcirc	X	Off	Off	-	R	NO	Off
M1109*	Status of SW6 on digital switch card	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1110*	Status of SW7 on digital switch card	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1111*	Status of SW8 on digital switch card	X	X	\bigcirc	X	Off	Off	-	R	NO	Off
M1112*	AY0 output point on 2DO card (transistor)	X	X	\bigcirc	X	Off	-	Off	R/W	NO	Off
M1113*	AY1 output point on 2DO card (transistor)	X	X	\bigcirc	X	Off	-	Off	R/W	NO	Off
M1115*	Switch for enabling pulse accelerating/decelerating output (not available in SC V1.4 and versions above)	\bigcirc	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1116*	Pulse output is accelerating (not available in SC_V1.4 and versions above)	\bigcirc	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1117*	Accelerating/decelerating pulse output reaches its target (not available in SC_V1.4 and versions above)	\bigcirc	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1118*	Pulse output is decelerating (not available in SC_V1.4 and versions above)	\bigcirc	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1119*	Accelerating/decelerating pulse output is completed (not available in SC_V1.4 and versions above)	\bigcirc	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
	Using the instruction DDRVI/DDRVA to enable two target frequencies.	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1120*	Retaining the communication setting of COM2 (RS-485), modifying D1120 will be invalid when M1120 is set.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1121	Waiting for the sending of COM2 (RS-485) communication data	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	On	-	R	NO	Off
M1122	COM2 (RS-485) sending request	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1123	Receiving through COM2 (RS-485) is completed	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1124	Waiting for receiving through COM2 (RS-485)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1125	COM2 (RS-485) communication reset	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1126	Selecting COM2 (RS-485) STX/ETX user defined or system defined	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1127	Sending/receiving data of COM2 (RS-485) communication instruction is completed (RS instruction not included)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1128	Sending COM2 (RS-485)/receiving COM2 (RS-485) indication	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1129	COM2 (RS-485) receiving time-out	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1130	Selecting COM2 (RS-485) STX/ETX user defined or system defined	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off

Special M	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{Off} \\ \sqrt[3]{n} \\ \text { On } \end{gathered}\right.$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
M1131	On during COM2 (RS-485) MODRD/RDST/MODRW data are converted to hex data	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1132	On when there are no communication related instructions in the program	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	On
M1133*	Enabling special high-speed pulse output YO (50 kHz) SC_V1.4 and versions above: 2-axis synchronous control, enabling Y10 output (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1134*	Special high-speed pulse output Y0 (50kHz) On: continuous output (Not available in SC V1.4 and above, and SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
M1135*	Special high-speed pulse output $\mathrm{Y} 0(50 \mathrm{kHz})$ reaches the target number of pulses. SC_V1.4 and versions above: 2-axis synchronous control, enabling Y11 output (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1136*	Retaining the communication setting of COM3	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1137	DNET mapping data are retained in STOP status.	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1138*	Retaining the communication setting of COM1 (RS-232), modifying D1036 will be invalid when M1138 is set.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1139*	Selecting ASCII or RTU mode of COM1 (RS-232) when in Slave mode Off: ASCII; On: RTU	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1140	MODRD/MODWR/MODRW data receiving error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1141	MODRD/MODWR/MODRW parameter error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1142	Data receiving of VFD-A commands error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	Off	-	R	NO	Off
M1143*	Selecting ASCII or RTU mode of COM2 (RS-485) when in Slave mode Off: ASCII; On: RTU Selecting ASCII or RTU mode of COM2 (RS-485) when in Master mode (used together with MODRD/ MODWR/MODRW instructions) Off: ASCII; On: RTU	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1144*	Switch for enabling adjustable pulse accelerating/decelerating output Y0 (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1145*	Adjustable pulse output YO is accelerating (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
M1146*	Adjustable pulse output Y 0 reaches the target frequency (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
M1147*	Adjustable pulse output YO is decelerating (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R	NO	Off
M1148*	Adjustable pulse output YO is completed (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
	The delay unit for the instruction Delay is 5 us.	X	X	X	V1.62	Off	Off	Off	R/W	NO	Off
M1149*	Adjustable pulse output Y 0 temporarily stops counting the number of pulses. (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
M1150	DHSZ instruction in multiple set values comparison mode	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1151	The execution of DHSZ multiple set values comparison mode is completed.	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1152	Setting up DHSZ instruction as frequency control mode	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1153	DHSZ frequency control mode has been executed.	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { EH2 } \\ \text { SV } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{gathered} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{n} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
M1154*	Enabling the deceleration function of adjustable pulse output YO	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
	PWD bandwidth detection duty-off/duty-on	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1155	The instruction DCIMA or DCIMR enables the automatic acceleration/deceleration.	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1156*	Enabling X0 interruption, immediate deceleration and stopping CHO high-speed output (When M1156 is enabled and M1538 = On, clear M1156 to send the remaining output pulses.)	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1157*	Enabling X1 interruption, immediate deceleration and stopping CH 1 high-speed output	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1158*	Enabling X2 interruption, immediate deceleration and stopping CH 2 high-speed output	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1159*	Enabling X3 interruption, immediate deceleration and stopping CH3 high-speed output	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1160	SA/SX: X4, X5 bandwidth detection flag (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1161	8-bit mode On: in 8-bit mode	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1162	Switching between decimal integer and binary floating point for SCLP instruction On: binary floating point; Off: decimal integer	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1163	Read/write memory card according to value in D1063 (automatically Off once the execution is completed)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1164	Read/write internal Flash ROM according to value in D1064 (automatically Off once the execution is completed)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1165	When On, the program and password on flash will be copied to the PLC when PLC is powered. (Not available in EH2)	X	X	\bigcirc	X	-	-	-	R/W	YES	Off
M1166	When On, the recipe on flash will be copied to the PLC when PLC is powered. (Not available in EH2)	X	X	\bigcirc	X	-	-	-	R/W	YES	Off
M1167	16-bit mode for HKY input	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1168	Designating work mode of SMOV	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1169	Selecting PWD modes	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1170*	Enabling single step execution	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1171*	Single step execution	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1172*	Switch for 2-phase pulse output On: switch on (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	Off	R/W	NO	Off
M1173*	On: continuous output (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1174*	The number of output pulses reaches the target (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
M1175	Losing PLC parameter data (not available in EH2)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	Off
M1176	Losing the data in PLC program (not available in EH2)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	Off
M1177	The instruction DABSR is used with a servo drive.	X	X	X	\bigcirc	Off	-	-	R/W	NO	Off
M1178*	Enabling VR0 rotary switch	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1179*	Enabling VR1 rotary switch	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off

$\begin{aligned} & \text { Special } \\ & \text { M } \end{aligned}$	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\begin{gathered} \mathrm{EH} 2 \\ \mathrm{SV} \end{gathered}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{aligned} & \mathrm{Off} \\ & n \\ & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$$	$\left\lvert\, \begin{gathered} \text { RUN } \\ \sqrt{3} \\ \text { STOP } \end{gathered}\right.$	Attribute	Latched	Default
M1181	Enabling X2 interruption (1201) followed by immediately clearing XO high-speed counting input value. PS1: Only supports SA/SX_V1.8 and versions above. PS2: After the high-speed counting value is obtained, the high-speed counting present value will be cleared immediately.	\times	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
	Enabling X3 interruption (1301) followed by immediately clearing X1 high-speed counting input value. PS1: Only supports SA/SX_V1.8 and versions above. PS2: After the high-speed counting value is obtained, the high-speed counting present value will be cleared immediately.	\times	\bigcirc	X	x	Off	Off	-	R/W	NO	Off
M1182	The default value of M1182 is Off. When M1182 is On, the auto-mapping function is disabled. The analog-to-digital values/digital-to-analog values correspond to D9800~. If the first left-side module connected to EH3-L/SV2 is a communication module, the analog-to-digital values/digital-to-analog values correspond to D9810~. For example, if the modules connected to EH3-L/SV2 from left to right are 04DA-SL and ENO1-SL, and M1182 is Off, D9810~D9813 will be assigned to CH1~CH4 in 04DA-SL.	\times	X	X	\bigcirc	On	-	-	R/W	NO	On
M1183	On: The auto-mapping function of the special module is disabled. PS1: Mapping onto D9900~ PS2: The right side module should support this function.	\times	X	X	\bigcirc	\#	-	-	R/W	NO	\#
M1184*	Enabling modem function (not available in SV)	\times	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1185*	Enabling initialization of modem (not available in SV)	X	\times	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1186*	Initialization of modem fails (not available in SV)	\times	\times	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1187*	Initialization of modem is completed (not available in SV)	\times	\times	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1188*	Displaying whether modem is connecting currently (not available in SV)	\times	\times	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1189	Read/write of Memory card/Flash ROM completed flag (Automatically reset to Off every time when enabled)	\times	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1190	Enabling PLSY for YO high-speed output of $0.01 \sim 500 \mathrm{~Hz}$	\times	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1191	Enabling PLSY for Y2 high-speed output of $0.01 \sim 500 \mathrm{~Hz}$	X	\times	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1192	Enabling PLSY for Y4 high-speed output of $0.01 ~ 500 \mathrm{~Hz}$	\times	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1193	Enabling PLSY for Y6 high-speed output of 0.01 ~ 500Hz	\times	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1194	140X, 150X interruptions is able to immediately update the present pulse output value at CHO . Available in EH2_V1.4 and versions above, EH2-L, EH3, and SV2	\times	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1195	140X, I50X interruptions is able to immediately update the present pulse output value at CH 1 . Available in EH2_V1.4 and versions above, EH2-LEH3, and S̄V2	\times	\times	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1196	Setting up the content type in the display (for SX) On: hex; Off: decimal	\times	\bigcirc	\times	X	Off	-	-	R/W	NO	Off
M1197	Setting up the display of the 100ths digit (for SX)	X	\bigcirc	×	X	Off		-	R/W	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\left.\begin{gathered} \mathrm{EH} 2 \\ \mathrm{SV} \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{gathered} \hline \mathrm{Off} \\ \sqrt[n]{n} \\ \mathrm{On} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { STOP } \\ & \sqrt{3} \\ & \text { RUN } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { RUN } \\ \sqrt{n} \\ \text { STOP } \\ \hline \end{array}$	Attribute	Latched	Default
M1198	Setting up the display of the 10ths digit (for SX)	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1200	Counting mode of C200 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1201	Counting mode of C201 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1202	Counting mode of C202 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1203	Counting mode of C203 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-		R/W	NO	Off
M1204	Counting mode of C204 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1205	Counting mode of C205 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1206	Counting mode of C206 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1207	Counting mode of C207 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1208	Counting mode of C208 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1209	Counting mode of C209 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1210	Counting mode of C210 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1211	Counting mode of C211 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1212	Counting mode of C212 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1213	Counting mode of C213 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1214	Counting mode of C214 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1215	Counting mode of C215 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1216	Counting mode of C216 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1217	Counting mode of C217 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1218	Counting mode of C218 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1219	Counting mode of C219 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1220	Counting mode of C220 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1221	Counting mode of C221 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1222	Counting mode of C222 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1223	Counting mode of C223 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1224	Counting mode of C224 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1225	Counting mode of C225 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1226	Counting mode of C226 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1227	Counting mode of C227 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1228	Counting mode of C228 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1229	Counting mode of C229 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1230	Counting mode of C230 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1231	Counting mode of C231 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1232	Counting mode of C232 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1233	Counting mode of C233 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1234	Counting mode of C234 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1235	Counting mode of C235 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1236	Counting mode of C236 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1237	Counting mode of C237 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1238	Counting mode of C238 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1239	Counting mode of C239 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1240	Counting mode of C240 (On: counting down)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1241	Counting mode of C241 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1242	Counting mode of C242 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1243	Counting mode of C243 (On: counting down) (Not available in SXV3.0 and above)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1244	Counting mode of C244 (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1245	Counting mode of C245 (On: counting down) (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1246	C246 counter monitoring (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1247	C247 counter monitoring (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1248	C248 counter monitoring (On: counting down)	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1249	C249 counter monitoring (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1250	C250 counter monitoring (On: counting down)	X	\bigcirc	X	X	Off	-	-	R	NO	Off
M1251	C251 counter monitoring (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1252	C252 counter monitoring (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1253	C253 counter monitoring (On: counting down)	\times	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\begin{gathered} \mathrm{EH} 2 \\ \mathrm{SV} \end{gathered}$	$\begin{array}{\|l} \text { EH3 } \\ \text { SV2 } \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{Off} \\ \sqrt[3]{2} \\ \text { On } \end{gathered}\right.$	$\begin{gathered} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{array}{c\|} \hline \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{array}$	Attribute	Latched	Default
M1254	C254 counter monitoring (On: counting down)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1255	C255 counter monitoring (On: counting down)	X	\bigcirc	\times	X	Off	-	-	R	NO	Off
M1257	The acceleration/deceleration slope of the high-speed pulse output is an S curve.	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1258	YO pulse output signal reversing for PWM instruction	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1259	Y2 pulse output signal reversing for PWM instruction	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1260	X5 as the reset input signal for all high-speed counters	X	\bigcirc	X	X	Off	-	-	R/W	NO	Off
M1261	High-speed comparator comparison flag for DHSCR instruction	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1262	Enabling the instruction DPTPO to output the circulatory pulse output.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1264	Enabling reset function of HHSCO	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1265	Enabling start function of HHSC0	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1266	Enabling reset function of HHSC1	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1267	Enabling start function of HHSC1	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1268	Enabling reset function of HHSC2	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1269	Enabling start function of HHSC2	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1270	Enabling reset function of HHSC3	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1271	Enabling start function of HHSC3	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1272	Reset control of HHSC0	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1273	Start control of HHSC0	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1274	Reset control of HHSC1	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1275	Start control of HHSC1	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1276	Reset control of HHSC2	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1277	Start control of HHSC2	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1278	Reset control of HHSC3	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1279	Start control of HHSC3	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1280	Inhibiting 100 \square	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1281	Inhibiting I10 \square	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1282	Inhibiting 120 \square	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1283	Inhibiting I30 \square	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1284	Inhibiting 140 \square	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1285	Inhibiting 150 \square	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1286	Inhibiting 16 $\square \square$	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1287	Inhibiting 17 $\square \square$	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1288	Inhibiting 18 $\square \square$	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1289	Inhibiting 1010	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1290	Inhibiting 1020	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1291	Inhibiting 1030	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1292	Inhibiting 1040	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1293	Inhibiting 1050	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1294	Inhibiting 1060	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1295	Inhibiting I110	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1296	Inhibiting 1120	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1297	Inhibiting I130	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1298	Inhibiting I140	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1299	Inhibiting 1150 (Not available in SX series PLCs)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1300	Inhibiting I160	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1301	Inhibiting I170	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1302	Inhibiting I180	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1303	High/low bits exchange for XCH instruction	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1304*	Enabling set On/Off of MPU input point X	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \hline \text { SS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \hline \text { SC } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{c\|} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { STOP } \\ \Omega \\ \text { RUN } \\ \hline \end{array}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[\Omega]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
M1305	Reverse operation of the $1^{\text {st }}$ group pulse CHO (Y0, Y1) for PLSV/DPLSV/DRVI/DDRVI/DRVA/DDRVA instruction	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1306	Reverse operation of the $2^{\text {nd }}$ group pulse CH 1 (Y2, Y3) for PLSV/DPLSV/DRVI/DDRVI/DRVA/DDRVA instruction	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1308	Off->On: The $1^{\text {st }}$ pulse group CH0 (Y0, Y1) high-speed output immediately stops. On->Off: Completing remaining number of output pulses	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1309	Off->On: The $1^{\text {st }}$ pulse group CH1 $(\mathrm{Y} 2, \mathrm{Y} 3)$ high-speed output immediately stops. On->Off: Completing remaining number of output pulses	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1310*	Disabling Y10 pulse output (for SC V1.4 and above) (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
	Off->On: The $1^{\text {st }}$ pulse group CH2 (Y4, Y5) high-speed output immediately stops. On->Off: Completing remaining numbe of output pulses	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1311*	Disabling Y11 pulse output (for SC V1.4 and above) (Not available in SX V3.0 and above)	X	\bigcirc	X	X	Off	Off	-	R/W	NO	Off
	Off->On: The $1^{\text {st }}$ pulse group CH3 $(\mathrm{Y} 6, \mathrm{Y} 7)$ high-speed output immediately stops. On->Off: Completing remaining number of output pulses	X	X	\bigcirc	\bigcirc	Off	Off	Off	R/W	NO	Off
M1312	Controlling start input point of C235	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
	Sending request of COM1 (RS-232) communication instruction (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1313	Controlling start input point of C236	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
	Waiting to receive the data of COM1 (RS-232) communication instruction is completed (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R	NO	Off
M1314	Controlling start input point of C237	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
	Receiving the data of COM1 (RS-232) communication instruction is completed (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1315	Controlling start input point of C238	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
	An error occurs when receiving the data of COM1 (RS-232) communication instruction (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1316	Controlling start input point of C239	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
	Sending request of COM3 (RS-485) communication instruction (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1317	Controlling start input point of C240	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
	Waiting to receive the data of COM3 (RS-485) communication instruction is completed (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R	NO	Off
M1318	Receiving data of COM3 (RS-485) communication instruction is completed (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1319	An error occurs when receiving the data of COM3 (RS-485) communication instruction (only available in the instructions MODRW and RS)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \hline \text { SS } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{c\|} \hline \mathrm{Off} \\ \sqrt{n} \\ \text { On } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { RUN } \\ \sqrt[3]{n} \\ \text { STOP } \\ \hline \end{array}$	Attribute	Latched	Default
	Controlling reset input point of C235	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1320	Slave mode: COM3 (RS-485) is in the ASCII/RTU mode. (Off: ASCII mode; On: RTU mode) Master mode: COM3 (RS-485) is in the ASCII/RTU mode. (Off: Off: ASCII mode; On: RTU mode) M1320 is used with the instruction MODRW/FWD.	X	X	X	\bigcirc	Off	-	-	R/W	NO	Off
M1321	Controlling reset input point of C236	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1322	Controlling reset input point of C237	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1323	Controlling reset input point of C238	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1324	Controlling reset input point of C239	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1325	Controlling reset input point of C240	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1328	Enabling start/reset of C235	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1329	Enabling start/reset of C236	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1330	Enabling start/reset of C237	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1331	Enabling start/reset of C238	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1332	Enabling start/reset of C239	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1333	Enabling start/reset of C240	X	X	\bigcirc	X	Off	-	-	R/W	NO	Off
M1334*	EH2/SV/EH3/SV2: stopping the $1^{\text {st }}$ group pulse output CHO (Y0, Y1) SC V1.4 and above: selecting Y10 pulse output stop modes (Not available in SXV3.0 and above)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1335*	EH2/SV/EH3/SV2: stopping the $2^{\text {nd }}$ group pulse output CH1 (Y2, Y3) SC V1.4 and above: selecting Y11 pulse output stop modes (Not available in SX V3.0 and above)	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1336	Sending out the $1^{\text {st }}$ group pulse output CH 0 $(Y 0, Y 1)$	X	X	\bigcirc	\bigcirc	Off	Off	Off	R	NO	Off
M1337	Sending out the $2^{\text {nd }}$ group pulse output CH 1 (Y2, Y3)	X	X	\bigcirc	\bigcirc	Off	Off	Off	R	NO	Off
M1338	Enabling offset pulses of the $1^{\text {st }}$ group pulse output CH0 (Y0, Y1)	\times	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1339	Enabling offset pulses of the $2^{\text {nd }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1340	Generating interruption I110 after the $1^{\text {st }}$ group pulse output $\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)$ is sent out	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1341	Generating interruption I120 after the $2^{\text {nd }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$ is sent out	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1342	Generating interruption $I 130$ when the $1^{\text {st }}$ group pulse output $\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)$ is sent out	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1343	Generating interruption 1140 when the $2^{\text {n }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$ is sent out	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1344	Enabling the offset of the $1^{\text {st }}$ group pulse output $\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1)$	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1345	Enabling the offset of the $2^{\text {nd }}$ group pulse output CH1 (Y2, Y3)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1346	Enabling ZRN CLEAR output signal	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1347	EH2/SV/EH3/SV2: Reset after the $1^{\text {st }}$ group pulse output $\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1)$ is completed. SA/SXISC: Automatic zero return after YO high-speed pulse output is completed.	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1348	EH2/SV/EH3/SV2: Reset after the $2^{\text {nd }}$ group pulse output CH1 (Y2, Y3) is completed. SA/SXISC: Automatic zero return after Y1 high-speed pulse output is completed.	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1350*	Enabling PLC LINK	X	\bigcirc	\bigcirc	\bigcirc	Off	-	Off	R/W	NO	Off
M1351*	Enabling auto mode on PLC LINK	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1352*	Enabling manual mode on PLC LINK	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off

Special M	Function		ES EX SS	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \text { SV } \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{gathered} \text { Off } \\ \sqrt{n} \\ \text { On } \end{gathered}$	$\begin{array}{c\|} \hline \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{array}$	$$	Attribute	Latched	Default
M1353*	Enable 32 slave unit linkage and up to 100 data length of data exchange on PLC LINK	EH3 V1.2/SV2 V1.0	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	Off
		Others					Off	-	-	R/W	NO	Off
M1354*	Enable simultaneous data read/write in a polling of PLC LINK	EH3 V1.2/SV2 V1.0	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	Off
		Others					Off	-	-	R/W	NO	Off
M1355	When M1355 = Off, enable PLC LINK for slave connection detection. When M1355 = On, M1360 ~ M1375 (M1440 ~ M1455) will be the flag designating connection, not for slave connection detection.		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	YES	Off
M1356	When the PLC link is enabled and M1356 is ON, the values in D1900~D1931 are taken as the station address. The default station address in D1399 is not used.		X	X	X	\bigcirc	-	-	-	R/W	YES	Off
M1360*	Slave ID\#1 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1361*	Slave ID\#2 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1362*	Slave ID\#3 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1363*	Slave ID\#4 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-		R	YES	Off
M1364*	Slave ID\#5 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1365*	Slave ID\#6 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1366*	Slave ID\#7 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1367*	Slave ID\#8 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1368*	Slave ID\#9 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1369*	Slave ID\#10 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1370*	Slave ID\#11 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1371*	Slave ID\#12 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1372*	Slave ID\#13 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1373*	Slave ID\#14 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1374*	Slave ID\#15 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1375*	Slave ID\#16 status on PLC LINK network		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	YES	Off
M1376*	Indicating Slave ID\#1 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1377*	Indicating Slave ID\#2 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1378*	Indicating Slave ID\#3 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1379*	Indicating Slave ID\#4 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1380*	Indicating Slave ID\#5 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1381*	Indicating Slave ID\#6 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1382*	Indicating Slave ID\#7 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1383*	Indicating Slave ID\#8 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1384*	Indicating Slave ID\#9 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1385*	Indicating Slave ID\#10 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1386*	Indicating Slave ID\#11 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1387*	Indicating Slave ID\#12 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1388*	Indicating Slave ID\#13 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1389*	Indicating Slave ID\#14 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1390*	Indicating Slave ID\#15 data transaction status on PLC LINK		X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off

Special M	Function	$\begin{aligned} & \hline \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \mathrm{EH} 2 \\ & \mathrm{SV} \end{aligned}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{c\|} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \end{array}$	$\begin{gathered} \text { STOP } \\ n \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
M1391*	Indicating Slave ID\#16 data transaction status on PLC LINK	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1392*	Slave ID\#1 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1393*	Slave ID\#2 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1394*	Slave ID\#3 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1395*	Slave ID\#4 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1396*	Slave ID\#5 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1397*	Slave ID\#6 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1398*	Slave ID\#7 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1399*	Slave ID\#8 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1400*	Slave ID\#9 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1401*	Slave ID\#10 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1402*	Slave ID\#11 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1403*	Slave ID\#12 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1404*	Slave ID\#13 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1405*	Slave ID\#14 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1406*	Slave ID\#15 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1407*	Slave ID\#16 linking error	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1408*	Indicating reading from Salve ID\#1 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1409*	Indicating reading from Salve ID\#2 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1410*	Indicating reading from Salve ID\#3 is completed	\times	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1411*	Indicating reading from Salve ID\#4 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1412*	Indicating reading from Salve ID\#5 is completed	\times	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1413*	Indicating reading from Salve ID\#6 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1414*	Indicating reading from Salve ID\#7 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1415*	Indicating reading from Salve ID\#8 is completed	\times	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1416*	Indicating reading from Salve ID\#9 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1417*	Indicating reading from Salve ID\#10 is completed	\times	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1418*	Indicating reading from Salve ID\#11 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1419*	Indicating reading from Salve ID\#12 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1420*	Indicating reading from Salve ID\#13 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1421*	Indicating reading from Salve ID\#14 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1422*	Indicating reading from Salve ID\#15 is completed	\times	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1423*	Indicating reading from Salve ID\#16 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1424*	Indicating writing to Salve ID\#1 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1425*	Indicating writing to Salve ID\#2 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1426*	Indicating writing to Salve ID\#3 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1427*	Indicating writing to Salve ID\#4 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1428*	Indicating writing to Salve ID\#5 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1429*	Indicating writing to Salve ID\#6 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1430*	Indicating writing to Salve ID\#7 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1431*	Indicating writing to Salve ID\#8 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1432*	Indicating writing to Salve ID\#9 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1433*	Indicating writing to Salve ID\#10 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1434*	Indicating writing to Salve ID\#11 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \hline \text { SC } \\ \hline \end{array}$	$\left\|\begin{array}{c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}\right\|$	$\begin{array}{\|l\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{c\|} \hline \text { Off } \\ n \\ \text { On } \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \\ \hline \end{array}$	$$	Attribute	Latched	Default
M1435*	Indicating writing to Salve ID\#12 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1436*	Indicating writing to Salve ID\#13 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1437*	Indicating writing to Salve ID\#14 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1438*	Indicating writing to Salve ID\#15 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1439*	Indicating writing to Salve ID\#16 is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1440*	Slave ID\#17 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1441*	Slave ID\#18 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1442*	Slave ID\#19 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1443*	Slave ID\#20 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1444*	Slave ID\#21 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1445*	Slave ID\#22 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1446*	Slave ID\#23 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1447*	Slave ID\#24 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1448*	Slave ID\#25 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1449*	Slave ID\#26 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1450*	Slave ID\#27 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1451*	Slave ID\#28 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1452	Slave ID\#29 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1453*	Slave ID\#30 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1454*	Slave ID\#31 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1455*	Slave ID\#32 status on PLC LINK network	X	X	\bigcirc	X	Off	-	-	R	NO	Off
		X	X	X	\bigcirc	-	-	-	R	Yes	Off
M1456*	Indicating Slave ID\#17 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1457*	Indicating Slave ID\#18 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1458*	Indicating Slave ID\#19 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1459*	Indicating Slave ID\#20 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1460*	Indicating Slave ID\#21 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1461*	Indicating Slave ID\#22 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1462*	Indicating Slave ID\#23 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1463*	Indicating Slave ID\#24 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1464*	Indicating Slave ID\#25 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1465*	Indicating Slave ID\#26 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1466*	Indicating Slave ID\#27 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off

Special M	Function	$\begin{aligned} & \hline \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{aligned} & \mathrm{EH} 2 \\ & \mathrm{SV} \end{aligned}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{c\|} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \end{array}$	$\begin{gathered} \text { STOP } \\ n \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
M1467*	Indicating Slave ID\#28 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1468*	Indicating Slave ID\#29 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1469*	Indicating Slave ID\#30 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1470*	Indicating Slave ID\#31 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1471*	Indicating Slave ID\#32 data transaction status on PLC LINK	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1472*	Slave ID\#17 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1473*	Slave ID\#18 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1474*	Slave ID\#19 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1475*	Slave ID\#20 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1476*	Slave ID\#21 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1477*	Slave ID\#22 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1478*	Slave ID\#23 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1479*	Slave ID\#24 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1480*	Slave ID\#25 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1481*	Slave ID\#26 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1482*	Slave ID\#27 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1483*	Slave ID\#28 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1484*	Slave ID\#29 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1485*	Slave ID\#30 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1486*	Slave ID\#31 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1487*	Slave ID\#32 linking error	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1488*	Indicating reading from Salve ID\#17 is completed	\times	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1489*	Indicating reading from Salve ID\#18 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1490*	Indicating reading from Salve ID\#19 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1491*	Indicating reading from Salve ID\#20 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1492*	Indicating reading from Salve ID\#21 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1493*	Indicating reading from Salve ID\#22 is completed	\times	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1494*	Indicating reading from Salve ID\#23 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1495*	Indicating reading from Salve ID\#24 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1496*	Indicating reading from Salve ID\#25 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1497*	Indicating reading from Salve ID\#26 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1498*	Indicating reading from Salve ID\#27 is completed	\times	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1499*	Indicating reading from Salve ID\#28 is completed	\times	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1500*	Indicating reading from Salve ID\#29 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1501*	Indicating reading from Salve ID\#30 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1502*	Indicating reading from Salve ID\#31 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1503*	Indicating reading from Salve ID\#32 is completed	\times	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1504*	Indicating writing to Salve ID\#17 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1505*	Indicating writing to Salve ID\#18 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1506*	Indicating writing to Salve ID\#19 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1507*	Indicating writing to Salve ID\#20 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \text { SV } \end{array}$	$\begin{array}{\|l\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$$	$\begin{gathered} \mathrm{STOP} \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
M1508*	Indicating writing to Salve ID\#21 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1509*	Indicating writing to Salve ID\#22 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1510*	Indicating writing to Salve ID\#23 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1511*	Indicating writing to Salve ID\#24 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1512*	Indicating writing to Salve ID\#25 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1513*	Indicating writing to Salve ID\#26 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1514*	Indicating writing to Salve ID\#27 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1515*	Indicating writing to Salve ID\#28 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1516*	Indicating writing to Salve ID\#29 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1517*	Indicating writing to Salve ID\#30 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1518*	Indicating writing to Salve ID\#31 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1519*	Indicating writing to Salve ID\#32 is completed	X	X	\bigcirc	\bigcirc	Off	-	-	R	NO	Off
M1520	EH2/SV/EH3/SV2: stopping the $3^{\text {rd }}$ group pulse output $\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)$ (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1521	EH2/SV/EH3/SV2: stopping the $4^{\text {th }}$ group pulse output CH3 (Y6, Y7) (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1522	EH2/SV/EH3/SV2: sending out the $3^{\text {rd }}$ group pulse output $\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)$ (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	Off	R	NO	Off
M1523	EH2/SV/EH3/SV2: sending out the $4^{\text {th }}$ group pulse output CH3 (Y6, Y7) (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	Off	R	NO	Off
M1524	EH2/SV/EH3/SV2: reset after the $3^{\text {rd }}$ group pulse output CH2 (Y4, Y5) is completed (Not available in EH) SC: reset after Y10 high-speed pulse output is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1525	EH2/SV/EH3/SV2: reset after the $4^{\text {th }}$ group pulse output CH3 (Y6, Y7) is completed (Not available in EH) SC: reset after Y11 high-speed pulse output is completed	X	\bigcirc	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1526	EH2/SV/EH3/SV2: reversing Y4 pulse output signal for PWM instruction (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1527	EH2/SV/EH3/SV2: reversing Y6 pulse output signal for PWM instruction (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1528*	Enabling the instruction DICF to execute the constant speed output section	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off
M1529*	Enabling the instruction DICF to execute the final output section	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off
M1530	EH2/SV/EH3/SV2: switching time base unit of Y4 output for PWM instruction On: 100us; Off: 1 ms (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1531	EH2/SV/EH3/SV2: switching time base unit of Y6 output for PWM instruction On: 100us; Off: 1ms (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1532	$\mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2$: reverse operation of the $3^{\text {rd }}$ group pulse CH2 (Y4, Y5) for PLSV/DPLSV/DRVI/DDRVI/DRVA /DDRVA instruction (Not available in EH)	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1533	EH2/SV/EH3/SV2: reverse operation of the $4^{\text {th }}$ group pulse CH3 (Y6, Y7) for PLSV/DPLSV/DRVI/DDRVI/DRVA /DDRVA instruction	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1534	EH2/SV/EH3/SV2: CH0 being able to designate deceleration time. Has to be used with D1348.	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1535	EH2/SV/EH3/SV2: CH1 being able to designate deceleration time. Has to be used with D1349.	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Off } \\ \sqrt[3]{2} \\ \text { On } \end{gathered}\right.$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
M1536	EH2/SV/EH3/SV2: CH2 being able to designate deceleration time. Has to be used with D1350.	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1537	EH2/SV/EH3/SV2: CH3 being able to designate deceleration time. Has to be used with D1351.	X	X	\bigcirc	\bigcirc	Off	-	-	R/W	NO	Off
M1538*	Displaying CHO high-speed output paused flag	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1539*	Displaying CH1high-speed output paused flag	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1540*	Displaying CH 2 high-speed output paused flag	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1541*	Displaying CH3 high-speed output paused flag	X	X	\bigcirc	\bigcirc	Off	Off	-	R/W	NO	Off
M1542	CHO executes the function that the constant speed output section reaches the target frequency.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1543	CHO executed the function that the constant speed output section reaches the target number.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1544	CH 1 executes the function that the constant speed output section reaches the target frequency.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1545	CH 1 executed the function that the constant speed output section reaches the target number.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1546	CH 2 executes the function that the constant speed output section reaches the target frequency.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1547	CH 2 executed the function that the constant speed output section reaches the target number.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1548	CH 3 executes the function that the constant speed output section reaches the target frequency.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1549	CH 3 executed the function that the constant speed output section reaches the target number.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1550	Used with the instruction DCIF to clear the high-speed output counting number	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1560	Inhibiting 1900 and 1901	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1561	Inhibiting 1910 and 1911	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1562	Inhibiting 1920 and 1921	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1563	Inhibiting 1930 and 1931	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1564	Inhibiting 1940 and 1941	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1565	Inhibiting 1950 and 1951	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1566	Inhibiting 1960 and 1961	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1567	Inhibiting 1970 and 1971	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1570	Enabling the negative limit function of the high-speed output CHO	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1571	Enabling the negative limit function of the high-speed output CH1	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1572	Enabling the negative limit function of the high-speed output CH2	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1573	Enabling the negative limit function of the high-speed output CH3	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1574	The DOG of CHO in the instruction ZRN is positive stop function.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1575	The DOG of CH 1 in the instruction ZRN is positive stop function.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1576	The DOG of CH 2 in the instruction ZRN is positive stop function.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1577	The DOG of CH 3 in the instruction ZRN is positive stop function.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1578	Off: Number of times the instruction ZRN search for the Z phase On: The output designates the displacement. The flag is used with D1312.	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off

Special M	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \hline \text { SS } \\ \hline \end{array}$	$\begin{aligned} & \text { SA } \\ & \text { SX } \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \text { SV } \end{array}$	$\begin{array}{\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{gathered} \mathrm{Off} \\ 3 \\ \text { On } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{array}$	$\begin{array}{\|c\|} \hline \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{array}$	Attribute	Latched	Default
M1580	The absolute position of Delta ASDA-A2 servo is read successfully by means of the instruction DABSR.	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off
M1581	The absolute position of Delta ASDA-A2 servo is not read successfully by means of the instruction DABSR.	X	X	X	\bigcirc	Off	Off	Off	R/W	NO	Off
M1584	If the left limit switch of CHO is enabled by means of the instruction ZRN, it can be triggered either by a rising-edge signal or by a falling-edge signal. (OFF: Rising-edge signal; ON: Falling-edge signal)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1585	If the left limit switch of CH 1 is enabled by means of the instruction ZRN, it can be triggered either by a rising-edge signal or by a falling-edge signal. (OFF: Rising-edge signal; ON: Falling-edge signal)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1586	If the left limit switch of CH 2 is enabled by means of the instruction ZRN, it can be triggered either by a rising-edge signal or by a falling-edge signal. (OFF: Rising-edge signal; ON: Falling-edge signal)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1587	If the left limit switch of CH 3 is enabled by means of the instruction ZRN, it can be triggered either by a rising-edge signal or by a falling-edge signal. (OFF: Rising-edge signal; ON: Falling-edge signal)	X	X	X	\bigcirc	Off	Off	-	R/W	NO	Off
M1590	The speed at which data is exchanged by means of Ethernet increases. (ON: Enabled; OFF: Disabled)	X	X	X	V1.62	Off	Off	-	R/W	NO	Off

Special D	Function		$\left\lvert\, \begin{aligned} & E S \\ & E X \\ & \text { SS } \end{aligned}\right.$	$\begin{aligned} & \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Off } \\ 3 \\ \text { On } \end{array}$	$\begin{array}{c\|} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{array}$	$\begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
D1000*	Scanning watchdog timer (WDT) (Unit: ms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	200	-	-	R/W	NO	200
D1001	Displaying the program version of $\mathrm{EH} 2 / \mathrm{EH} 3$	$\begin{aligned} & 2 / \mathrm{EH} 3 \\ & \hline \text { ers } \\ & \hline \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\#	\#	\#	R	YES	\#
D1002*	Program capacity\#-> EH2:15,872; SA: 7,920; ES: 3,792;EH3/SV2: 30000		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R	NO	\#
D1003	Sum of program memory \# -> EH2: -15,873; SA: -7,920; ES: -3,792; EH3/SV2: -30000		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	\#
D1004*	Syntax check error code		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	-	R	NO	0
D1007	Number of times the low voltage of the battery is recorded (EH2 and V1.8 above)		X	X	\bigcirc	\bigcirc	-	-	-	R	Yes	0
D1008*	STSC address when WDT is On		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1009	ES/SA: recording number of occurrences of LV signals EH2/SV/EH3/SV2: register for SRAM lost data error code		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1010*	Current scan time (Unit: 0.1 ms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1011*	Minimum scan time (Unit: 0.1 ms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1012*	Maximum scan time (Unit: 0.1ms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1015*	$0 \sim 32,767$ (unit: 0.1 ms) accumulative high-speed timer		X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1016	After a PLC is powered, it will delay detecting the extension modules connected to it for a certain amount of time. (Time unit: 100 ms) The setting range is $\mathrm{K} 20 \sim \mathrm{~K} 50$.		X	X	X	V1.62	-	-	-	R/W	YES	K25
D1018*	$\pi \mathrm{Pl}$ (low byte)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'OFDB	H'OFDB	H'OFDB	R/W	NO	H'OFDB
D1019*	$\pi \mathrm{PI}$ (high byte)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'4049	H'4049	H'4049	R/W	NO	H'4049
D1020*	X0 ~ X7 input filter (Unit: ms); modulation range: $2 \sim 20 \mathrm{~ms}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	10	-	-	R/W	NO	10
D1021*	ES/EH/EH2/SV: X10 ~ X17 input filter (Unit: ms) SC: X10 ~ X17 input filter (time base: scan cycle), range: $0 \sim 1,000$ (Unit: times)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	10	-	-	R/W	NO	10
D1022	Multiplied frequency of A-B phase counters for ES/SA		\bigcirc	\bigcirc	X	X	0	-	-	R/W	NO	0
D1023*	Register for detected pulse width, Unit: 0.1ms (Available in ES/EX/SS_V6.4, SA/SX_V1.6, SC_V1.4 and versions above)		\bigcirc	\bigcirc	X	X	0	-	-	R/W	NO	0
D1025*	Code for communication request error		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1026*	When M1156 is On, the (32-bit) pulse number for masking Y0 is set. If the value is less than or equal to 0 , the function will not be enabled. (Default value: 0)	Low word	X	\bigcirc	X	\bigcirc	0	0	--	R/W	NO	0
D1027*		High word	X	\bigcirc	X	\bigcirc	0	0	--	R/W	NO	0
D1028	Index register E0		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1029	Index register F0		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1030*	Number of Y0 output pulses (low word)		\bigcirc	\bigcirc	X	X	0	-	-	R	NO	0
D1031*	Number of Y0 output pulses (high word)		\bigcirc	\bigcirc	X	X	0	-	-	R	NO	0
D1032	Number of Y1 output pulses (low word)		\bigcirc	\bigcirc	X	X	0	-	-	R/W	NO	0
D1033	Number of Y0 output pulses (high word)		\bigcirc	\bigcirc	X	X	0	-	-	R/W	NO	0
D1034	Work mode of frequency measurement card		\times	\times	\bigcirc	\bigcirc	-	-	-	R	YES	1
D1035*	No. of input point X as RUN/STOP		\times	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1036*	COM1 communication protocol		\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'86	-	-	R/W	NO	H'86
D1037	Repetition time of HKY key		X	X	\bigcirc	\bigcirc	-	-	-	R/W	NO	0
D1038*	Delay time of data response when PLC MPU as slave in RS-485 communication, range: 0 ~ 10,000 (unit: 0.1 ms) SA: delay time for sending the next communication data in PLC LINK (unit for SA/SX/SC: 1 scan cycle; EH2/SV/EH3/SV2: 0.1 ms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1039*	Fixed scan time (ms)		\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0

Special D	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Off } \\ 3 \\ \text { On } \\ \hline \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
D1040	On status of step No. 1	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1041	On status of step No. 2	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1042	On status of step No. 3	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1043	On status of step No. 4	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1044	On status of step No. 5	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1045	On status of step No. 6	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1046	On status of step No. 7	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1047	On status of step No. 8	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1049	No. of alarm On	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
$\begin{gathered} \text { D1050 } \\ \downarrow \\ \text { D1055 } \end{gathered}$	MODRD is used to read data. The PLC system automatically converts the characters in D1070 ~ D1085 to hexadecimal values in the ASCII mode, or combine the low eight bits in D1070 ~ D1085 into eight 16-bit values in the RTU mode.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1056*	Present value at analog input channel CHO in SX/EX or at CH0 on AD card in EH2/EH3/SV2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1057*	Present value at analog input channel CH 1 in SX/EX or at CH1 on AD card in EH2/EH3/SV2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1058*	Present value at analog input channel CH 2 in EX	\bigcirc	X	X	X	0	-	-	R	NO	0
	Enabling X1 interrupt to get the counting value of C241 (M1056 is On)-Low word	X	X	X	\bigcirc	0	0	-	R	NO	0
D1059*	Present value at analog input channel CH 3 in EX	\bigcirc	\times	X	X	0	-	-	R	NO	0
	Enabling X1 interrupt to get the counting value of C241 (M1056 is On)-High word	X	X	X	\bigcirc	0	0	-	R	NO	0
D1061	System error message: number of errors recorded in latched area	\bigcirc	X	X	X	-	-	-	R	YES	0
D1062	Average times of AD0, AD1 in SX (2 ~ 10 times)	\times	\bigcirc	\times	X	2	-	-	R/W	NO	2
D1063*	PLC reads/writes all programs (and password) and all latched data in the memory card. PLC reads all programs (and password) in the memory card: H55AA PLC writes all programs (and password) in the memory card: HAA55 PLC reads all latched data in the memory card: H55A9 PLC writes all latched data in the memory card: HA955	X	\times	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1064*	PLC reads/writes all programs (and password) and recipe in the internal FLASH ROM. PLC reads FLASH: H55AA; PLC writes FLASH: HAA55 H55A9/ H99AB/ HA955/ HAB55/ H8888 are added in EH3/SV2.	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1067*	Error code for operational error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	-	R	NO	0
D1068*	Locking the address of operational error	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
$\begin{gathered} \text { D1070 } \\ \downarrow \\ \text { D1085 } \end{gathered}$	Process of data for Modbus communication instruction. When the RS-485 communication instruction built-in the PLC sent out is received, the response messages will be stored in D1070 ~ D1085. You can view the response messages by checking these registers.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1086	High word of the set password in DVP-PCC01 (displayed in hex corresponded by its ASCII characters)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1087	Low word of the set password in DVP-PCC01 (displayed in hex corresponded by its ASCII characters)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0

Special D	Function	$\begin{aligned} & \mathrm{ES} \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{array}{\|l} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{l\|} \hline \text { Off } \\ \sqrt[3]{3} \\ \text { On } \end{array}$	$\begin{array}{c\|} \hline \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{array}$	$\begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
$\begin{gathered} \text { D1089 } \\ \downarrow \\ \text { D1099 } \end{gathered}$	Process of data for Modbus communication instruction. When the RS-485 communication instruction built-in the PLC is executed, the words of the instruction will be stored in D1089 ~D1099. You can check whether the instruction is correct by the contents in these registers.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1100	Corresponding status after LV signal is enabled	\times	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1101*	Start address of file registers	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1102*	Number of data copied in file register	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	1,600
D1103*	Start No. of file register D for storing data (has to be bigger than 2,000)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	2,000
D1104*	Start No. of register D for YO acceleration/ deceleration pulse output (Not available in SC V1.4 and versions above)	\bigcirc	\bigcirc	X	X	0	-	-	R/W	NO	0
D1109*	COM3 communication protocol setting (for EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	H86	-	-	R/W	NO	H86
D1110*	Average value at analog input channel CHO in SX/EX or at CH0 on AD card in EH2/EH3/SV2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1111*	Average value at analog input channel CH 1 in SX/EX or at CH1 on AD card in EH2/EH3/SV2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1112*	Average value at analog input channel CH 2 in EX	\bigcirc	X	X	X	0	-	-	R	NO	0
	The low word of the frequency on which CH 3 (Y6/Y7) outputs pulses (EH3/SV2 V1.86 and above)	X	X	X	V1.86	0	-	-	R/W	NO	0
D1113*	Average value at analog input channel CH 3 in EX	\bigcirc	X	X	X	0	-	-	R	NO	0
	The high word of the frequency on which CH3 (Y6/Y7) outputs pulses (EH3/SV2 V1.86 and above)	X	X	X	V1.86	0	-	-	R/W	NO	0
D1116*	CHO of analog output in SX/EX CHO of DA card in EH2/EH3/SV2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	R/W	NO	0
D1117*	CH 1 of analog output in SX/EX CH1 of DA card in EH2/EH3/SV2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	R/W	NO	0
D1118*	Sampling time of analog/digital conversion in SX/EX/EH2/EH3/SV2 (ms) PS1: Only when the AD/DA card is in $E H 2 / E H 3 / S V 2$ is the function supported.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	5	-	-	R/W	NO	5
D1120*	COM2 (RS-485) communication protocol	\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'86	-	-	R/W	NO	H'86
D1121	PLC communication address (latched)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	1
D1122	Remaining number of words of sent data	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	-	R	NO	0
D1123	Remaining number of words of received data	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	-	R	NO	0
D1124	Definition of start word (STX)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'3A	-	-	R/W	NO	H'3A
D1125	Definition of the first end word	\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'OD	-	-	R/W	NO	H'OD
D1126	Definition of the second end word	\bigcirc	\bigcirc	\bigcirc	\bigcirc	H'OA	-	-	R/W	NO	H'OA
D1127	Interruption request for receiving specific word in RS instruction (I150)	\bigcirc	X	X	X	0	-	-	R/W	NO	0
	Number of pulses in the acceleration area of the positioning instruction (Low word)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1128	Number of pulses in the acceleration area of the positioning instruction (High word)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1129	Abnormal communication time-out (time: ms)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1130	Error code returning from Modbus	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1131*	Low 16 bytes of high-speed counter value extracted by interruption I501 (Not available in SX series PLCs)	X	\bigcirc	X	X	0	-	-	R	NO	0
	Output/input ratio of CHO close-loop control (for EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	100	-	-	R/W	NO	100
D1132*	High 16 bytes of high-speed counter value extracted by interruption I501 (Not available in SX series PLCs)	X	\bigcirc	X	X	0	-	-	R	NO	0
	Output/input ratio of CH1 close-loop control (for in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	100	-	-	R/W	NO	100

Special D	Function	$\begin{aligned} & \hline \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \text { SV } \end{array}$	$\begin{array}{\|l\|} \mathrm{EH} 3 \\ \text { SV2 } \end{array}$	$\begin{gathered} \hline \text { Off } \\ \sqrt{n} \\ \text { On } \\ \hline \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
D1133*	SA/SX: start No. of register D for Y0 special high-speed pulse output (50 kHz) (Not available in SX V3.0 and above) SC_V1.4 and versions above: start No. of register D for Y10 2-axis synchronous control output	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	Number of pulses in the deceleration area of the positioning instruction (Low word)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1134*	Number of sections in Y10 output for 2-axis synchronous control (available in SC_V1.4 and versions above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	Number of pulses in the deceleration area of the positioning instruction (High word)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1135*	SC_V1.4 and versions above: start No. of register D for Y11 2-axis synchronous control output	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	Pulse number for masking Y2 (Low word) When M1158 = ON and the pulse number for masking Y 2 is not 0 , enabling Y 2 in the instruction DDRVI/DPLSR and masking X6 interrupt.	X	X	X	\bigcirc	0	-	-	R/W	NO	0
D1136*	Number of sections in Y11 output for 2-axis synchronous control (available in SC_V1.4 and versions above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	Pulse number for masking Y2 (High word) When M1158 = ON and the pulse number for masking Y 2 is not 0 , enabling Y 2 in the instruction DDRVI/DPLSR and masking X6 interrupt	X	X	X	\bigcirc	0	-	-	R/W	NO	0
D1137*	Address where incorrect use of operand occurs	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	-	R	NO	0
D1140*	Number of right-side special extension modules (max. 8)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1142*	Number of points X in digital extension unit	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1143*	Number of points Y in digital extension unit	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1144*	SA: Start No. of register D for YO adjustable acceleration/deceleration pulse output (Not available in SX V3.0 and above) EH2/SV: The instruction DRVI calculates in advance the value in the data register for Y 0 .	X	\bigcirc	X	X	0	-	-	R/W	NO	0
D1145*	Number of left-side special extension modules (max. 8) (only available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1147	$\begin{aligned} & \text { Type of memory card } \\ & \text { b0 }=0 \text { : no card existing (H0000) } \\ & \text { b0 }=1 \text { : with memory card } \\ & \text { b8 = 0: memory card Off (HFFFF) } \\ & \text { b8 }=1: \text { memory card On (H0101) } \end{aligned}$	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1149	Type of function extension card 0 : no card 1: RS-232 card (DVP-F232), Digital Setup Display (DVPDU-01) 2: RS-422 card (DVP-F422) 3: COM3 card (DVP-F232S/DVP-F485S) 4: analog rotary switch card (DVP-F6VR) 5: digital switch card (DVP-F81D), Digital input extension card (DVP-F41P) 6: transistor output card (DVP-F2OT) 8: Analog input card (DVP-F2AD) 9: Analog input card (DVP-F2DA) 10: frequency measurement card (DVP-F2FR) 11: Ethernet communication function extension card (DVP-FENO1) 12: CANopen communication function extension card (DVP-FCOPM) 13: RS-485 card (DVP-F485)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1150	Table count register in multi-group setting comparison mode of DHSZ command	X	X	\bigcirc	\bigcirc	0	0	0	R	NO	0

Special D	Function	$\begin{aligned} & \mathrm{ES} \\ & \mathrm{EX} \\ & \mathrm{SS} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \text { SV } \end{array}$	$\begin{aligned} & \mathrm{EH} 3 \\ & \mathrm{SV} 2 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Off } \\ \sqrt[3]{n} \\ \text { On } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{array}$	$\begin{gathered} \mathrm{RUN} \\ \sqrt{3} \\ \mathrm{STOP} \end{gathered}$	Attribute	Latched	Default
D1151	Table counting register for DHSZ multiple set values comparison mode	X	X	\bigcirc	\bigcirc	0	0	0	R	NO	0
D1152	High word of changed D value for DHSZ instruction	X	X	\bigcirc	\bigcirc	0	0	0	R	NO	0
D1153	Low word of changed D value for DHSZ instruction	\times	X	\bigcirc	\bigcirc	0	0	0	R	NO	0
D1154*	Suggested deceleration time interval (10 ~ $32,767 \mathrm{~ms}$) for adjustable acceleration/deceleration pulse output YO (Not available in SX V3.0 and above)	X	\bigcirc	X	X	200	-	-	R/W	NO	200
	Pulse number for masking Y4 (Low word)	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1155*	Suggested deceleration frequency (-1 ~ $-32,700 \mathrm{~Hz}$) for adjustable acceleration/deceleration pulse output $Y 0$ (Not available in SX V3.0 and above)	X	\bigcirc	X	X	-1,000	-	-	R/W	NO	-1,000
	Pulse number for masking Y4 (High word)	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
$\begin{gathered} \hline \text { D1156 } \\ \downarrow \\ \text { D1159 } \\ \hline \end{gathered}$	Designated special D for RTMU, RTMD instructions (KO~K3)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1160	Designated special D for RTMU, RTMD instructions (K4)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
	Low word of the present output pulse frequency of CHO (Y0/Y1)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1161	Designated special D for RTMU, RTMD instructions (K5)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
	High word of the present output pulse frequency of CHO (YO/Y1)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1162	Designated special D for RTMU, RTMD instructions (K6)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
	Low word of the present output pulse frequency of CH1 (Y2/Y3)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1163	Designated special D for RTMU, RTMD instructions (K7)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
	High word of the present output pulse frequency of CH1 (Y2/Y3)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1164	Designated special D for RTMU, RTMD instructions (K8)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
	Low word of the present output pulse frequency of CH2 (Y4/Y5)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1165	Designated special D for RTMU, RTMD instructions (K9)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
	High word of the present output pulse frequency of $\mathrm{CH} 2(\mathrm{Y} 4 / \mathrm{Y} 5$)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1166*	Switching rising-/falling-edge counting mode of X10 (available in SC_V1.4 and versions above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	Low word of the present output pulse frequency of CH3 (Y6/Y7) (EH3/SV2 V1.62 ~ V1.84)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1167*	Switching rising-/falling-edge counting mode of X11 (available in SC_V1.4 and versions above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	High word of the present output pulse frequency of CH3 (Y6/Y7) (EH3/SV2 V1.62 ~ V1.84)	X	X	X	V1.62	0	-	-	R/W	NO	0
D1168	Interruption request for receiving specific word in RS instruction (I150)	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1169	Interruption request for receiving specific word in RS instruction (I160)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1170*	PC value when executing single step	X	X	\bigcirc	\bigcirc	0	0	0	R	NO	0
D1172*	Frequency of 2-phase pulse output (12 Hz ~ 20 kHz) (Not available in SX V3.0 and above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
D1173*	Modes of 2-phase pulse output (K1 and K2) (Not available in SX V3.0 and above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	X4 speed detecting value	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1174*	Low 16 bits of target numbers of 2-phase output pulses (Not available in SX V3.0 and above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	X10 speed detecting time	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0

Special D	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{array}{\|l\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{\|c\|} \hline \text { Off } \\ n \\ \text { On } \\ \hline \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
D1175*	High 16 bits of target numbers of 2-phase output pulses (Not available in SX V3.0 and above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	X10 speed detecting value	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1176*	Low 16 bits of current numbers of 2-phase output pulses (Not available in SX V3.0 and above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	X14 speed detecting time	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1177*	High 16 bits of current numbers of 2-phase output pulses (Not available in SX V3.0 and above)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
	X14 speed detecting value	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1178*	VR0 value	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1179*	VR1 value	\times	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1180*	SA/SX: When X2 interruption (I201) occurs, immediately extracting the low 16 bytes from X0 high-speed counting value. (Only supports V1.8 and above versions.) SC: When X4 interruption (1401) occurs, extracting the low 16 bytes from high-speed counting value. (Only supports V1.8 and above versions.)	X	\bigcirc	X	X	0	0	-	R/W	NO	0
	Enabling X2 to get the counting value of the high-speed counter C241 (M1057 is On)(Low word)	X	X	X	\bigcirc	0	0	-	R	NO	0
D1181*	SA/SX: When X2 interruption (I201) occurs, immediately extracting the high 16 bytes from X0 high-speed counting value. SC: When X4 interruption (1401) occurs, extracting the high 16 bytes from high-speed counting value.	X	\bigcirc	X	X	0	0	-	R/W	NO	0
	Enabling X2 to get the counting value of the high-speed counter C241 (M1057 is On)(High word)	X	X	X	\bigcirc	0	0	-	R	NO	0
D1182	Index register E1	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1183	Index register F1	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1184	Index register E2	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1185	Index register F2	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1186	Index register E3	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1187	Index register F3	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1188	Index register E4	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1189	Index register F4	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1190	Index register E5	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1191	Index register F5	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1192	Index register E6	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1193	Index register F6	\times	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1194	Index register E7	\times	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1195	Index register F7	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1196	Content in the display (available in SX)	X	\bigcirc	X	X	0	-	-	R/W	NO	0
D1197	Refreshing the display (unit: 100 ms) (for SX)	X	\bigcirc	X	X	5	-	-	R/W	NO	5
D1198*	SA/SX: When X3 interruption (I301) occurs, immediately extracting the low 16 byte from X1 high-speed counting value. (Only supports V1.8 and above versions.) SC: When X5 interruption (1501) occurs, extracting the low 16 byte from high-speed counting value. (Only supports V1.8 and above versions.) EH3/SV2: Enabling X3 to get the counting value of the high-speed counter C241 (M1058 is On) (Low word)	X	\bigcirc	X	\bigcirc	0	0	-	R	NO	0

Special D	Function	$\begin{array}{\|l\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{EH} 3 \\ & \mathrm{SV} 2 \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \mathrm{Off} \\ \sqrt[3]{3} \\ \text { On } \end{array}$	$\begin{gathered} \hline \text { STOP } \\ \sqrt{3} \\ \text { RUN } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}\right.$	Attribute	Latched	Default
D1199*	SA/SX: When X3 interruption (I301) occurs, immediately extracting the high 16 byte from X1 high-speed counting value. (Only supports V1.8 and above versions.) SC: When X5 interruption (1501) occurs, extracting the high 16 byte from high-speed counting value. (Only supports V1.8 and above versions.) EH3/SV2: Enabling X3 to get the counting value of the high-speed counter C241 (M1058 is On) (High word)	X	\bigcirc	X	\bigcirc	0	0	-	R	NO	0
D1200*	Start latched address for auxiliary relays M0 ~ M999 \# -> EH2/EH3/SV2: 500; SA/SX/SC: 512	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	\#
D1201*	End latched address for auxiliary relays M0 ~ M999	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	999
D1202*	Start latched address for auxiliary relays M2000 ~M4095	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	2,000
D1203*	End latched address for auxiliary relays M2000 ~M4095	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	4,095
D1204*	Start latched address for 100 ms timers T0 ~ T199	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'FFFF
D1205*	End latched address for 100 ms timers T0 ~ T199	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'FFFF
D1206*	Start latched address for 10 ms timers T200 ~ T2	\times	\times	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'FFFF
D1207*	End latched address for 10ms timers T200 ~ T239	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'FFFF
D1208*	```Start latched address for16-bit counters C0 ~ C199 # -> EH2/EH3/SV2: 100; SA/SX/SC: }9```	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	\#
D1209*	End latched address for 16-bit counters C0~ C199	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	199
D1210*	```Start latched address for 32-bit counters C200 ~ C234 \# -> EH2/EH3/SV2: 220; SA/SXISC: 216```	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	\#
D1211*	End latched address for 32-bit counters C200~ C234	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	234
D1212*	Start latched address for 32-bit high-speed counters C235 ~ C255	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	235
D1213*	End latched address for 32-bit high-speed counters C235 ~ C255	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	255
D1214*	Start latched address for steps S0 ~ S899 \# -> EH2/EH3/SV2: 500; SA/SX/SC: 512	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	\#
D1215*	End latched address for steps S0 ~ S899 \# -> EH2/EH3/SV2: 899; SA/SXISC: 895	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	\#
D1216*	Start latched address for registers D0 ~ D999	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	200
D1217*	End latched address for registers D0 ~ D999	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	999
D1218*	Start latched address for registers D2000 ~ D9999	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	2,000
D1219*	End latched address for registers D2000~ D9999(\# -> EH2/EH3/SV2: 11999; EH2: 9999; SA/SXISC: 4999)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	\#
D1220	Phase of the $1^{\text {st }}$ group pulse output $\mathrm{CHO}(\mathrm{YO}$, Y1)	X	$\begin{array}{\|c\|} \hline \text { SX } \\ \text { V3.0 } \end{array}$	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1221	Phase of the $2^{\text {nd }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2$, Y3)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1222	Time difference between direction signal and pulse output for the $1^{\text {st }}$ group pulse CHO (YO , Y1) in DRVI, DDRVI, DRVA, DDRVA, PLSV, DPLSV	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1223	Time difference between direction signal and pulse output for the $2^{\text {nd }}$ group pulse CH 1 (Y 2 , Y3) in DRVI, DDRVI, DRVA, DDRVA, PLSV, DPLSV	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1225	Counting mode of the counter HHSCO	X	X	\bigcirc	\bigcirc	2	-	-	R/W	NO	2

Special D	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{gathered} \hline \text { Off } \\ \sqrt{3} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \text { RUN } \\ \text { STOP } \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
D1226	Counting mode of the counter HHSC1	X	X	\bigcirc	\bigcirc	2	-	-	R/W	NO	2
D1227	Counting mode of the counter HHSC2	X	X	\bigcirc	\bigcirc	2	-	-	R/W	NO	2
D1228	Counting mode of the counter HHSC3	X	X	\bigcirc	\bigcirc	2	-	-	R/W	NO	2
D1229	Phase of the $3^{\text {rd }}$ group pulse output $\mathrm{CH} 2(\mathrm{Y} 4$, Y5) (available in EH2/SV/EH3/SV2)	\times	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1230	Phase of the $4^{\text {th }}$ group pulse output CH 3 (Y6, Y7) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1232*	Designating number of output pulses for CHO deceleration and stop (low 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1233*	Designating number of output pulses for CHO deceleration and stop (high 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1234*	Designating number of output pulses for CH 1 deceleration and stop (low 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1235*	Designating number of output pulses for CH 1 deceleration and stop (high 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1236*	Designating number of output pulses for CH 2 deceleration and stop (low 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1237*	Designating number of output pulses for CH 2 deceleration and stop (high 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1238*	Designating number of output pulses for CH 3 deceleration and stop (low 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1239*	Designating number of output pulses for CH 3 deceleration and stop (high 16 bits)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1240	The low 16 bits of the end frequency of CHO (available when the acceleration and the deceleration are separate)	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1241	The high 16 bits of the end frequency of CHO (available when the acceleration and the deceleration are separate)	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1244	Number of idle speed output from CHO in the instruction DCLLM	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1245	Number of idle speed output from CH 1 in the instruction DCLLM	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1246	Number of idle speed output from CH 2 in the instruction DCLLM	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1247	Number of idle speed output from CH 3 in the instruction DCLLM	X	X	\bigcirc	\bigcirc	0	0	-	R/W	NO	0
D1249	Communication timeout of COM1 instruction (unit: 1 ms ; the maximum value is 50 ms ; the value less than 50 ms is count as 50 ms .) (Only the instruction MODRW and RS are supported.) RS: 0 indicates that the timeout is not set.	X	X	X	\bigcirc	0	-	-	R/W	NO	0
D1250	Communication error in COM1 instruction (Only the instruction MODRW and RS are supported.)	X	X	X	\bigcirc	0	-	-	R/W	NO	0
D1252	Communication timeout of COM3 instruction (unit: 1 ms ; the maximum value is 50 ms ; the value less than 50 ms is count as 50 ms .) (Only the instruction MODRW and RS are supported.) RS: 0 indicates that the timeout is not set.	X	X	X	\bigcirc	0	-	-	R/W	NO	0
D1253	Communication error in COM3 instruction (Only the instruction MODRW and RS are supported.)	X	X	X	\bigcirc	0	-	-	R/W	NO	0
D1255	COM3 station address	X	X	X	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1256 } \\ \downarrow \\ \text { D1295 } \end{gathered}$	When the RS-485 communication instruction MODRW built-in the PLC is executed, the words of sent out by the instruction will be stored in D1256 ~ D1259. You can check whether the instruction is correct by the contents in these registers.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0

Special D	Function	$\begin{aligned} & \mathrm{ES} \\ & \mathrm{EX} \\ & \mathrm{SS} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\left\|\begin{array}{l} \text { EH3 } \\ \text { SV2 } \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { Off } \\ \sqrt[3]{2} \\ \text { On } \\ \hline \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt{3} \\ \text { RUN } \end{gathered}$	$\begin{gathered} \mathrm{RUN} \\ \sqrt{n} \\ \mathrm{STOP} \end{gathered}$	Attribute	Latched	Default
$\begin{gathered} \text { D1296 } \\ \downarrow \\ \text { D1311 } \end{gathered}$	The RS-485 communication instruction MODRW built in the PLC automatically converts the ASCII data received in the designated register into hex and store the hex data into D1296 ~ D1311.	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1312	Number of times the instruction ZRN searches for Z phase and the number of displacement	X	X	X	\bigcirc	0	0	-	R/W	NO	0
D1313*	Second in RTC: $00 \sim 59$ \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	0
D1314*	Minute in RTC: $00 \sim 59$ \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	0
D1315*	Hour in RTC: $00 \sim 23$ \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	0
D1316*	Day in RTC: 01 ~ 31 \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	1
D1317*	Month in RTC: $01 \sim 12$ \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	1
D1318*	Week in RTC: $1 \sim 7$ \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	6
D1319*	Year in RTC: 00 ~ 99 (A.D.) \#: read RTC and write	X	\bigcirc	\bigcirc	\bigcirc	\#	-	-	R/W	NO	0
D1320*	ID of the $1^{\text {st }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1321*	ID of the $2^{\text {nd }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1322*	ID of the $3^{\text {rd }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1323*	ID of the $4^{\text {th }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1324*	ID of the $5^{\text {th }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1325*	ID of the $6^{\text {th }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1326*	ID of the $7^{\text {th }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1327*	ID of the $8^{\text {th }}$ right-side extension module (available in EH2/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1328	Low word of offset pulse the $1^{\text {st }}$ group pulses CHO (YO, Y1)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1329	High word of offset pulse the $1^{\text {st }}$ group pulses CHO (YO, Y1)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1330	Low word of offset pulse the $2^{\text {nd }}$ group pulses CH1 (Y2, Y3)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1331	High word of offset pulse the $2^{\text {nd }}$ group pulses CH1 (Y2, Y3)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1332	Low word of the remaining number of pulses of the $1^{\text {st }}$ group pulses $\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1)$	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1333	High word of the remaining number of pulses of the $1^{\text {st }}$ group pulses $\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1)$	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1334	Low word of the remaining number of pulses of the $2^{\text {nd }}$ group pulses $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1335	High word of the remaining number of pulses of the $2^{\text {nd }}$ group pulses CH1 (Y2, Y3)	X	X	\bigcirc	\bigcirc	0	-	-	R	NO	0
D1336	Low word of the present value of the $1^{\text {st }}$ group pulses CHO (YO, Y1) (EH2/SV/EH3/SV2 are latched)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1337	High word of the present value of the $1^{\text {st }}$ group pulses CH0 (Y0, Y1) (EH2/SV/EH3/SV2 are latched)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1338	Low word of the present value of the $2^{\text {nd }}$ group pulses CH1 (Y2, Y3) (EH2/SV/EH3/SV2 are latched)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1339	High word of the present value of the $2^{\text {nd }}$ group pulses CH1 (Y2, Y3) (EH2/SV/EH3/SV2 are latched)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0

Special D	Function	ES	SA SX SC	$\left.\begin{array}{\|c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array} \right\rvert\,$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Off } \\ \text { ת } \\ \text { On } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { STOP } \\ 3 \\ \text { RUN } \\ \hline \end{array}$	$$	Attribute	Latched	Default
D1340	EH2/SV/EH3/SV2: start/end frequency of the $1^{\text {st }}$ group pulse output CHO (YO, Y1)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	200
	SC: start/end frequency of Y10 output				X	200				NO	
D1341	Low word of max. output frequency $\begin{array}{l}\text { Fixed } \\ \text { as }\end{array}$	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	H'04D0
D1342	High word of max. output frequency $\begin{aligned} & \text { 200k } \\ & \mathrm{Hz}\end{aligned}$	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	3
D1343*	EH2/SV/EH3/SV2: acceleration/deceleration time for the $1^{\text {st }}$ group pulse output $\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)$	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
	SC: acceleration/deceleration time of Y10 output				X	200				NO	200
D1344	Low word of the number of compensation pulses of the $1^{\text {st }}$ group pulses $\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)$	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1345	High word of the number of compensation pulses of the $1^{\text {st }}$ group pulses $\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)$	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1346	Low word of the number of compensation pulses of the $2^{\text {nd }}$ group pulses $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1347	High word of the number of compensation pulses of the $2^{\text {nd }}$ group pulses $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1348	SC: low word of present value of Y10 pulse output	X	\bigcirc	X	X	0	-	-	R	NO	0
	EH2/SV/EH3/SV2: CH0 pulse output. When M1534 = On, it refers to the deceleration time	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1349	SC: high word of present value of Y10 pulse output	X	\bigcirc	X	X	0	-	-	R	NO	0
	EH2/SV/EH3/SV2: CH1 pulse output. When M1535 = On, it refers to the deceleration time	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1350	SC: low word of present value of Y11 pulse output	X	\bigcirc	X	X	0	-	-	R	NO	0
	EH2/SV/EH3/SV2: CH2 pulse output. When M1536 = On, it refers to the deceleration time	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1351	SC: high word of present value of Y11 pulse output	X	\bigcirc	X	X	0	-	-	R	NO	0
	EH2/SV/EH3/SV2: CH3 pulse output. When M1537 = On, it refers to the deceleration time	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1352	SC: start/end frequency of Y11 output	X	\bigcirc	X	X	200	-	-	R/W	NO	200
	EH2/SV/EH3/SV2: start/end frequency of the $2^{\text {nd }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	200
D1353*	SC: acceleration/deceleration time of Y11 output	X	\bigcirc	X	X	200	-	-	R/W	NO	200
	EH2/SV/EH3/SV2: acceleration/deceleration time of the $2^{\text {nd }}$ group pulse output $\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)$	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1354	Scan cycle for the PLC link (unit: 1ms) PS1: The maximum value is K32000 PS2: K0: The PLC link stops or the first detection is complete.	X	X	X	\bigcirc	0	0	0	R	NO	0
D1355*	Starting reference for Master to read from Salve ID\#1	X	\bigcirc	\bigcirc	\bigcirc		-	-	R/W	YES	H'1064
D1356*	Starting reference for Master to read from Salve ID\#2	X	\bigcirc	\bigcirc	\bigcirc		-	-	R/W	YES	H'1064
D1357*	Starting reference for Master to read from Salve ID\#3	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1358*	Starting reference for Master to read from Salve ID\#4	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1359*	Starting reference for Master to read from Salve ID\#5	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1360*	Starting reference for Master to read from Salve ID\#6	X	\bigcirc	\bigcirc	\bigcirc		-	-	R/W	YES	H'1064
D1361*	Starting reference for Master to read from Salve ID\#7	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1362*	Starting reference for Master to read from Salve ID\#8	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1363*	Starting reference for Master to read from Salve ID\#9	X	\bigcirc	\bigcirc	\bigcirc		-		R/W	YES	H'1064

Special D	Function	$\left\lvert\, \begin{aligned} & E S \\ & E X \\ & \text { SS } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{array}{\|l\|} \text { EH3 } \\ \text { SV2 } \end{array}$	$\begin{array}{\|l\|} \hline \text { Off } \\ \sqrt[3]{n} \\ \text { On } \end{array}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { RUN } \\ \sqrt[3]{3} \\ \text { STOP } \end{gathered}\right.$	Attribute	Latched	Default
D1364*	Starting reference for Master to read from Salve ID\#10	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1365*	Starting reference for Master to read from Salve ID\#11	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1366*	Starting reference for Master to read from Salve ID\#12	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1367*	Starting reference for Master to read from Salve ID\#13	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1368*	Starting reference for Master to read from Salve ID\#14	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1369*	Starting reference for Master to read from Salve ID\#15	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1370*	Starting reference for Master to read from Salve ID\#16	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'1064
D1371	Time unit of PWM YO pulse output when M1070=On	X	X	\bigcirc	\bigcirc	1	-	-	R/W	NO	1
D1372	Time unit of PWM Y2 pulse output when M1071=On	X	X	\bigcirc	\bigcirc	1	-	-	R/W	NO	1
D1373	Time unit of PWM Y4 pulse output when M1530=On (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	1	-	-	R/W	NO	1
D1374	Time unit of PWM Y6 pulse output when M1531=On (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	1	-	-	R/W	NO	1
D1375	Low word of the present value of the $3^{\text {rd }}$ group pulses CH2 (Y4, Y5) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1376	High word of the present value of the $3^{\text {rd }}$ group pulses CH2 (Y4, Y5) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1377	Low word of the present value of the $4^{\text {th }}$ group pulses CH3 (Y6, Y7) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1378	High word of the present value of the $4^{\text {th }}$ group pulses CH3 (Y6, Y7) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1379	Start frequency of the $1^{\text {st }}$ section and end frequency of the last section for the $3^{\text {rd }}$ group pulse output CH2 (Y4, Y5) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	200
D1380	Start frequency of the $1^{\text {st }}$ section and end frequency of the last section for the $4^{\text {th }}$ group pulse output CH3 (Y6, Y7) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	200
D1381	Acceleration/deceleration time for the $3^{\text {rd }}$ pulse output CH2 (Y4, Y5) (available in EH2/SV/EH3/SV2)	\times	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1382	Acceleration/deceleration time for the $4^{\text {th }}$ pulse output CH3 (Y6, Y7) (available in EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	-	-	-	R/W	YES	100
D1383*	Setting up the time difference between direction signal and pulse output point for the $1^{\text {st }}$ set of pulses CH2 (Y4, Y5) for DRVI, DDRVI, DRVA, DDRVA, PLSV, DPLSV instructions. (for EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1384*	Setting up the time difference between direction signal and pulse output point for the $1^{\text {st }}$ set of pulses CH3 (Y6, Y7) for DRVI, DDRVI, DRVA, DDRVA, PLSV, DPLSV instructions. (for EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1386*	ID of the $1^{\text {st }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1387*	ID of the $2^{\text {nd }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1388*	ID of the $3^{\text {rd }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0

Special D	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{EH} 3 \\ & \mathrm{SV} 2 \end{aligned}\right.$	$\begin{aligned} & \text { Off } \\ & \sqrt[n]{2} \\ & \text { On } \end{aligned}$	$\begin{gathered} \hline \text { STOP } \\ \Omega \Omega \\ \text { RUN } \\ \hline \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \text { STOP } \\ & \text { STO } \end{aligned}$	Attribute	Latched	Default
D1389*	ID of the $4^{\text {th }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1390*	ID of the $5^{\text {th }}$ left-side extension module (available in SV)	X	\times	\bigcirc	X	0	-	-	R	NO	0
D1391*	ID of the $6^{\text {th }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1392*	ID of the $7^{\text {th }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1393*	ID of the $8^{\text {th }}$ left-side extension module (available in SV)	X	X	\bigcirc	X	0	-	-	R	NO	0
D1399*	Starting Salve ID designated by PLC LINK	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	1
D1415*	Starting reference for Master to write in Salve ID\#1	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1416*	Starting reference for Master to write in Salve ID\#2	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1417*	Starting reference for Master to write in Salve ID\#3	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1418*	Starting reference for Master to write in Salve ID\#4	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1419*	Starting reference for Master to write in Salve ID\#5	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1420*	Starting reference for Master to write in Salve ID\#6	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1421*	Starting reference for Master to write in Salve ID\#7	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1422*	Starting reference for Master to write in Salve ID\#8	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1423*	Starting reference for Master to write in Salve ID\#9	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1424*	Starting reference for Master to write in Salve ID\#10	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1425*	Starting reference for Master to write in Salve ID\#11	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1426*	Starting reference for Master to write in Salve ID\#12	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1427*	Starting reference for Master to write in Salve ID\#13	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1428*	Starting reference for Master to write in Salve ID\#14	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1429*	Starting reference for Master to write in Salve ID\#15	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1430*	Starting reference for Master to write in Salve ID\#16	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	H'10C8
D1431*	Times of PLC LINK polling cycle	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1432*	Current times of PLC LINK polling cycle	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1433*	Number of salve units linked to PLC LINK	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1434*	Data length to be read on Salve ID\#1	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1435*	Data length to be read on Salve ID\#2	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1436*	Data length to be read on Salve ID\#3	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1437*	Data length to be read on Salve ID\#4	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1438*	Data length to be read on Salve ID\#5	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1439*	Data length to be read on Salve ID\#6	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1440*	Data length to be read on Salve ID\#7	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1441*	Data length to be read on Salve ID\#8	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1442*	Data length to be read on Salve ID\#9	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1443*	Data length to be read on Salve ID\#10	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1444*	Data length to be read on Salve ID\#11	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1445*	Data length to be read on Salve ID\#12	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1446*	Data length to be read on Salve ID\#13	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1447*	Data length to be read on Salve ID\#14	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1448*	Data length to be read on Salve ID\#15	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1449*	Data length to be read on Salve ID\#16	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16

Special D	Function	$\begin{array}{\|c\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \text { SC } \end{array}$	$\left.\begin{array}{\|c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array} \right\rvert\,$	$\left\|\begin{array}{l} \mathrm{EH} 3 \\ \mathrm{SV} 2 \end{array}\right\|$	$\begin{aligned} & \text { Off } \\ & \sqrt[3]{n} \\ & \text { On } \end{aligned}$	$\begin{array}{c\|} \hline \text { STOP } \\ \sqrt[3]{2} \\ \text { RUN } \end{array}$	$\left\lvert\, \begin{gathered} \text { RUN } \\ \sqrt{n} \\ \text { STOP } \end{gathered}\right.$	Attribute	Latched	Default
D1450*	Data length to be written on Slave ID\#1	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1451*	Data length to be written on Slave ID\#2	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1452*	Data length to be written on Slave ID\#3	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1453*	Data length to be written on Slave ID\#4	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1454*	Data length to be written on Slave ID\#5	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1455*	Data length to be written on Slave ID\#6	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1456*	Data length to be written on Slave ID\#7	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1457*	Data length to be written on Slave ID\#8	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1458*	Data length to be written on Slave ID\#9	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1459*	Data length to be written on Slave ID\#10	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1460*	Data length to be written on Slave ID\#11	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1461*	Data length to be written on Slave ID\#12	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1462*	Data length to be written on Slave ID\#13	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1463*	Data length to be written on Slave ID\#14	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1464*	Data length to be written on Slave ID\#15	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1465*	Data length to be written on Slave ID\#16	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	16
D1466	Number of pulses required per revolution of motor at CHO (low word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	2,000
D1467	Number of pulses required per revolution of motor at CHO (high word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1468	Number of pulses required per revolution of motor at CH 1 (low word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	2,000
D1469	Number of pulses required per revolution of motor at CH1 (high word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1470	Distance created for 1 revolution of motor at CHO (low word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	1,000
D1471	Distance created for 1 revolution of motor at CHO (high word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1472	Distance created for 1 revolution of motor at CH1 (low word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	1,000
D1473	Distance created for 1 revolution of motor at CH1 (high word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1474	Machine unit of CH0 movement (low word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1475	Machine unit of CHO movement (high word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1476	Machine unit of CH1 movement (low word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1477	Machine unit of CH 1 movement (high word)	X	X	\bigcirc	\bigcirc	-	-	-	R	YES	0
D1478	Output/input ratio of CH2 close-loop control (for EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	100	-	-	R/W	NO	100
D1479	Output/input ratio of CH3 close-loop control (for EH2/SV/EH3/SV2)	X	X	\bigcirc	\bigcirc	100	-	-	R/W	NO	100
$\begin{gathered} \text { D1480* } \\ \downarrow \\ \text { D1495* } \end{gathered}$	Data which is read from slave ID\#1 in the PLC LINK at the time when M1353 is OFF Initial data register where the data read from slave ID\#1~ID\#16 in the PLC LINK is stored at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1496* } \\ \downarrow \\ \text { D1511* } \end{gathered}$	Data which is written into slave ID\#1 in the PLC LINK at the time when M1353 is OFF Initial data register where the data written into slave ID\#1~ID\#16 in the PLC LINK is stored at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1512* } \\ \downarrow \\ \text { D1527* } \end{gathered}$	Data which is read from slave ID\#2 in the PLC LINK at the time when M1353 is OFF Initial communication address where the data read from slave ID\#17~ID\#32 in the PLC LINK is stored at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0

Special D	Function	$\begin{aligned} & \text { ES } \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|c\|c\|} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{aligned} & \hline \text { Off } \\ & \Omega \\ & \text { On } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { STOP } \\ \Omega \Omega \\ \text { RUN } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{RUN} \\ \Omega \\ \mathrm{STOP} \\ \hline \end{gathered}$	Attribute	Latched	Default
$\begin{gathered} \text { D1528* } \\ \downarrow \\ \text { D1543* } \end{gathered}$	Data which is written into slave ID\#2 in the PLC LINK at the time when M1353 is OFF Initial communication address where the data written into slave ID\#17~ID\#32 in the PLC LINK is stored at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SXV3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1544* } \\ \downarrow \\ \text { D1559* } \end{gathered}$	Data which is read from slave ID\#3 in the PLC LINK at the time when M1353 is OFF Number of data read from slave ID\#17~ID\#32 in the PLC LINK at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1560* } \\ \downarrow \\ \text { D1575* } \end{gathered}$	Data which is written into slave ID\#3 in the PLC LINK at the time when M1353 is OFF Number of data written into slave ID\#17~ID\#32 in the PLC LINK at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1576* } \\ \downarrow \\ \text { D1591* } \end{gathered}$	Data which is read from slave ID\#4 in the PLC LINK at the time when M1353 is OFF Initial data register where the data read from slave ID\#17~ID\#32 in the PLC LINK is stored at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1592* } \\ \downarrow \\ \text { D1607* } \end{gathered}$	Data which is written into slave ID\#4 in the PLC LINK at the time when M1353 is OFF Initial data register where the data written into slave ID\#17~ID\#32 in the PLC LINK is stored at the time when M1353 is ON (For EH2/SV/EH3/SV2) (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \hline \text { D1608* } \\ \downarrow \\ \text { D1623* } \\ \hline \end{gathered}$	Data which is read from slave ID\#5 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \hline \text { D1624* } \\ \downarrow \\ \text { D1639* } \end{gathered}$	Data which is written into slave ID\#5 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \hline \text { D1640* } \\ \downarrow \\ \text { D1655* } \\ \hline \end{gathered}$	Data which is read from slave ID\#6 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1656* } \\ \downarrow \\ \text { D1671* } \\ \hline \end{gathered}$	Data which is written into slave ID\#6 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \hline \text { D1672* } \\ \downarrow \\ \text { D1687* } \end{gathered}$	Data which is read from slave ID\#7 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \hline \text { D1688* } \\ \downarrow \\ \text { D1703* } \\ \hline \end{gathered}$	Data which is written into slave ID\#7 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1704* } \\ \downarrow \\ \text { D1719* } \end{gathered}$	Data which is read from slave ID\#8 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1720* } \\ \downarrow \\ \text { D1735* } \end{gathered}$	Data which is written into slave ID\#8 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1736* } \\ \downarrow \\ \text { D1751* } \end{gathered}$	Data which is read from slave ID\#9 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \hline \text { D1752* } \\ \downarrow \\ \text { D1767* } \\ \hline \end{gathered}$	Data which is written into slave ID\#9 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	\times	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0

Special D	Function	$\begin{array}{\|c\|} \hline \text { ES } \\ \text { EX } \\ \text { SS } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { SA } \\ \text { SX } \\ \hline \text { SC } \\ \hline \end{array}$	$\begin{array}{\|l\|l} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{EH} 3 \\ & \mathrm{SV} 2 \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \text { Off } \\ 3 \\ \text { On } \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { STOP } \\ \sqrt[3]{3} \\ \text { RUN } \end{array}$	$\begin{gathered} \text { RUN } \\ 3 \\ \text { STOP } \end{gathered}$	Attribute	Latched	Default
$\begin{gathered} \hline \text { D1768* } \\ \downarrow \\ \text { D1783* } \\ \hline \end{gathered}$	Data which is read from slave ID\#10 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1784* } \\ \downarrow \\ \text { D1799* } \\ \hline \end{gathered}$	Data which is written into slave ID\#10 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1800* } \\ \downarrow \\ \text { D1815* } \end{gathered}$	Data which is read from slave ID\#11 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \hline \text { D1816* } \\ \downarrow \\ \text { D1831* } \end{gathered}$	Data which is written into slave ID\#11 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1832* } \\ \downarrow \\ \text { D1847* } \\ \hline \end{gathered}$	Data which is read from slave ID\#12 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1848* } \\ \downarrow \\ \text { D1863* } \\ \hline \end{gathered}$	Data which is written into slave ID\#12 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1864* } \\ \downarrow \\ \text { D1879* } \\ \hline \end{gathered}$	Data which is read from slave ID\#13 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \hline \text { D1880* } \\ \downarrow \\ \text { D1895* } \end{gathered}$	Data which is written into slave ID\#13 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1896* } \\ \downarrow \\ \text { D1911* } \end{gathered}$	Data which is read from slave ID\#14 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1900 } \\ \downarrow \\ \text { D1915 } \end{gathered}$	When M1356 is ON, the values in these registers are defined as the station address (ID1~ID16). The default station address in D1399 is not used. Only when M1356 is ON is the latched function available.	X	X	X	\bigcirc	1~16	-	-	R/W	NO	1~16
$\begin{gathered} \text { D1916 } \\ \downarrow \\ \text { D1931 } \end{gathered}$	When M1356 is ON, the values in these registers are defined as the station address (ID17~ID32). The default station address in D1399 is not used. Only when M1356 is ON is the latched function available.	X	X	X	\bigcirc	17-32	-	-	R/W	NO	17~32
$\begin{gathered} \text { D1912* }^{\downarrow} \\ \downarrow \\ \text { D1927* } \\ \hline \end{gathered}$	Data which is written into slave ID\#14 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \hline \text { D1928* } \\ \downarrow \\ \text { D1943* } \\ \hline \end{gathered}$	Data which is read from slave ID\#15 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1944* } \\ \downarrow \\ \text { D1959* } \\ \hline \end{gathered}$	Data which is written into slave ID\#15 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D1960* } \\ \downarrow \\ \text { D1975* } \end{gathered}$	Data which is read from slave ID\#16 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R	YES	0
$\begin{gathered} \text { D1976* } \\ \downarrow \\ \text { D1991* } \end{gathered}$	Data which is written into slave ID\#16 in the PLC LINK (They are non-latched data registers in SX V3.0 and above.)	X	\bigcirc	\bigcirc	\bigcirc	-	-	-	R/W	YES	0
D1992	Code of the ninth right side extension module	X	X	X	EH3	0	-	-	R	NO	0
D1993	Code of the tenth right side extension module	X	X	X	EH3	0	-	-	R	NO	0
	Code of the eleventh right side extension module	X	X	X	EH3	0	-	-	R	NO	0
D1994	DVP-PCC01 records the number of times the PLC code can be entered.	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1995	Code of the twelfth right side extension module	X	X	X	EH3	0	-	-	R	NO	0
D1995	DVPPCC01 records the length of PLC ID.	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1996	The $1^{\text {st }}$ word of PLC ID in DVPPCC01 (indicated by the hex value corresponding to ASCII word)	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0

Special D	Function	$\begin{aligned} & \mathrm{ES} \\ & \text { EX } \\ & \text { SS } \end{aligned}$	$\begin{aligned} & \hline \text { SA } \\ & \text { SX } \\ & \text { SC } \end{aligned}$	$\begin{array}{\|c} \mathrm{EH} 2 \\ \mathrm{SV} \end{array}$	$\begin{aligned} & \text { EH3 } \\ & \text { SV2 } \end{aligned}$	$\begin{gathered} \hline \text { Off } \\ \sqrt[3]{4} \\ \text { On } \end{gathered}$	$\begin{gathered} \text { STOP } \\ \sqrt[3]{n} \\ \text { RUN } \end{gathered}$	$\begin{aligned} & \text { RUN } \\ & \sqrt[3]{3} \\ & \text { STOP } \end{aligned}$	Attribute	Latched	Default
D1997	The $2^{\text {nd }}$ word of PLC ID in DVPPCC01 (indicated by the hex value corresponding to ASCII word)	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1998	The $3^{\text {rd }}$ word of PLC ID in DVPPCC01 (indicated by the hex value corresponding to ASCII word)	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
D1999	The $4^{\text {th }}$ word of PLC ID in DVPPCC01 (indicated by the hex value corresponding to ASCII word)	X	\bigcirc	\bigcirc	\bigcirc	0	-	-	R/W	NO	0
$\begin{gathered} \hline \text { D9800* } \\ \downarrow \\ \text { D9879* } \end{gathered}$	They are for left-side special modules which are connected to an EH3/SV2 series MPU.	X	X	X	\bigcirc	-	-	-	R/W	YES	0
$\begin{gathered} \text { D9900* } \\ \downarrow \\ \text { D9979* } \end{gathered}$	They are for right-side special modules which are connected to an EH3/SV2 series MPU.	X	X	X	\bigcirc	-	-	-	R/W	YES	0

2.11 Functions of Special Auxiliary Relays and Special Registers

Function Group PLC Operation Flag

Number M1000 ~ M1003
M1000:
M1000 (A contact) is constantly "On" during operation and detection. When PLC is in RUN status, M1000 remains
"On".

M1001:

M1001 (B contact) is constantly "On" during operation and detection. When PLC is in RUN status, M1001 remains "On".

M1002:

M1002 is "On" during the first scan when PLC starts to RUN and remains "Off" afterward. The pulse width = 1 scan time. Use this contact for all kinds of initial settings.
M1003:
M1003 is "Off" during the first scan when PLC starts to RUN and remains "On" afterward. M1003 enables negative-direction ("Off" immediately when RUN) pulses.

Function Group Monitor Timer
 Number D1000
 Contents:

1. Monitor timer is used for monitoring PLC scan time. When the scan time exceeds the set time in the monitor timer, the red ERROR LED indicator remains beaconing and all outputs will be "Off".
2. The initial set value of the time in the monitor timer is 200 ms . If the program is long or the operation is too complicated, MOV instruction can be used for changing the set value. See the example below for SV = 300ms.

3. The maximum set value in the monitor timer is $32,767 \mathrm{~ms}$. Please be noted that if the SV is too big, the timing of detecting operational errors will be delayed. Therefore, it is suggested that you remain the scan time of shorter than 200ms.
4. Complicated instruction operations or too many extension modules being connected to the MPU will result in the scan time being too long. Check D1010 ~ D1012 to see if the scan time exceeds the SV in D1000. In this case, besides modifying the SV in D1000, you can also add WDT instruction (API 07) into the PLC program. When the CPU execution progresses to WDT instruction, the internal monitor timer will be cleared as " 0 " and the scan time will not exceed the set value in the monitor timer.

Function Group Program Capacity
Number D1002

Contents:

The program capacity differs in different series of MPUs.

1. ES/EXISS series MPU: 3,792 steps
2. SA/SC series MPU: 7,920 steps
3. SX series MPU: 7920 steps (There are 15872 steps in SX V3.0 or above.)
4. EH2/SV series MPU: 15,872 steps
5. EH3/SV2 series MPU: 30000 steps

Function Group	Syntax Check
Number	M1004, D1004, D1137
Contents:	

1. When errors occur in syntax check, ERROR LED indicator will flash and special relay M1004 = On.
2. Timings for PLC syntax check:
a) When the power goes from "Off" to "On".
b) When the program is written into PLC by means of WPLSoft, ISPSoft or HPP.
c) When on-line editing is being conducted.
3. The syntax check may start due to illegal use of instruction operands (devices) or incorrect program syntax loop. The error can be detected by the error code in D1004 and error table. The address where the error exists will be stored in D1137. (The address value in D1137 will be invalid if the error is a general loop error.)
4. See Chapter 2.13 for error codes for syntax check.

Function Group Data Backup Memory

Number M1005~M1007

Contents:

When the data backup memory card is installed in EH2 MPU, MPU will operate according to the On/Off of switch on the card. If the switch is "On", the following comparisons will be conducted and the card will be copied to MPU. If the switch is "Off", MPU will not perform any action.

1. M1005 = On: An error occurs in the comparison between the ciphers of MPU and the data backup memory card and MPU does not perform any action.
2. M1006 = On: The data backup memory card has not been initialized.
3. M1007 = On: Data in the program area of the data backup memory card do not exist, it means data doesn't exist in the program area of data backup memory card.

Function Group Scan Time-out Timer

Number M1008, D1008

Contents:

1. M1008 = On: Scan time-out occurs during the execution of the program, and PLC ERROR LED indicator remains beaconing.
2. Users can use WPLSoft, ISPSoft, or HPP to monitor the content (STEP address when WDT timer is "On").

Function Group Checking Lost PLC SRAM Data

Number D1009, M1175, M1176

Contents:

1. bit0 \sim bit7 record the types of data lost. bit $=1$ refers to losing data; bit $=0$ refers to correct data.
2. What are lost

bit8 ~ 15	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	PLC program	D register	T register	C register	File register	M relay	S step	password

3. After the PLC is powered, the data in SRAM will be verified. If the SRAM data are lost, the PLC will record the error in D1009 and set on M1175 or M1176 according to the content of the data.

Function Group Scan Time Monitor
Number D1010 ~ D1012

Contents:

The present value, minimum value and maximum value of scan time are stored in D1010 ~ D1012.

1. D1010: Present scan time value
2. D1011: Minimum scan time value
3. D1012: Maximum scan time value

Function Group Internal Clock Pulse
 Number M1011 ~ M1014
 Contents:

1. All PLC MPUs provide four different clock pulses. When PLC is powered, the four clock pulses will start automatically.

2. The clock pulses also start when PLC is in STOP status. The activation timing of clock pulses and that of RUN will not happen synchronously.

Function Group High-Speed Timer
Number M1015, D1015

Contents:

1. The steps for using special M and special D directly:
a) High-speed counter is valid only when PLC is in RUN status for EH2/SVEH3/SV2, but is valid when PLC is in RUN or STOP stauts for SA/SX/SC.
b) M1015 = On: High-speed counter D1015 is enabled only whtn PLC scans to END instruction. (Min. timing unit of D1015: 100us)
c) Timing range of D1015: 0~32,767. When the timing reaches 32,767 , the next timing restarts from 0 .
d) M1015 = Off: D1015 stops timing immediately.
2. EH2/SVEH3/SV2 series MPU offers high-speed timer instruction HST. See API 196 HST for more details.
3. Example:
a) When $\mathrm{X} 10=\mathrm{On}, \mathrm{M} 1015$ will be On. The high-speed timer will start to time and record the present value in D1015.
b) When $\mathrm{X} 10=$ Off, M1015 will be Off. The high-speed timer will be disabled.

Function Group Real Time Clock

Number M1016, M1017, M1076, D1313 ~ D1319

Contents:

1. Special M and special D relevant to RTC

No.	Name	Function
M1016	Year (in A.D.) in RTC	Off: display the last 2 digits of year in A.D. On: display the last 2 digits of year in A.D. plus 2,000
M1017	± 30 seconds correction	From "Off" to "On", the correction is enabled. $0 \sim 29$ second: minute intact; second reset to 0 $30 \sim 59$ second: minute + 1; second reset to 0
M1076	RTC malfunction	Set value exceeds the range; dead battery
M1082	Flag change on RTC	On: Modification on RTC
D1313	Second	$0 \sim 59$
D1314	Minute	$0 \sim 59$
D1315	Hour	$0 \sim 23$
D1316	Day	$1 \sim 31$
D1317	Month	$1 \sim 12$
D1318	Week	$1 \sim 7$
D1319	Year	$0 \sim 99$ (last 2 digits of Year in A.D.)

2. If the set value in RTC is incorrect, the time will be recovered as "Saturday, 00:00 Jan. 1, 2000" when PLC is powered and restarted.
3. D1313 ~ D1319 will immediately update the RTC only when in TRD instruction or WPLSoft monitoring mode.
4. How to make corrections on RTC:
a) Use TWR instruction fir SA/SX/SX/EH2/SVEH3/SV2 series MPU. See API 167 TWR for more details.
b) Use WPLSoft, ISPSoft, or digital display panel DU-01.

Function Group $\quad \pi(\mathrm{PI})$

Number D1018, D1019

Contents:

1. D1018 and D1019 are combined as 32-bit data register for storing the floating point value of $\pi(\mathrm{PI})$
2. Floating point value $=\mathrm{H} 40490$ FDB

Function Group Adjustment on Input Terminal Response Time

Number D1020, D1021

Contents:

1. D1020 can be used for setting up the response time of receiving pulses at $\mathrm{X0} \sim \mathrm{X7}$ for $\mathrm{SS} / \mathrm{ES} / \mathrm{EX} / \mathrm{SA} / \mathrm{SX} / \mathrm{SC}$ series MPU. (Setup range: 0 ~ 20; Unit: ms)
2. D1021 can be used for setting up the response time of receiving pulses at X10~X17 for ES series MPU. (Setup range: 0 ~ 20; Unit: ms)
3. D1021 can be used for setting up the response time of receiving pulses at X10~X11 for SC series MPU. (Setup
range: 0 ~ 1,000; Unit: time)
4. D1020 can be used for setting up the response time of receiving pulses at $\mathrm{XO} \sim \mathrm{X} 7$ for EH2/SVEH3/SV2 series MPU. (Setup range: 0 ~60; Unit: ms)
5. D1021 can be used for setting up the response time of receiving pulses at $\mathrm{X} 10 \sim \mathrm{X} 17$ for EH2/SVEH3/SV2 series MPU. (Setup range: 0 ~ 60; Unit: ms)
6. When the power of PLC goes from "Off" to "On", the content of D1020 and D1021 turn to 10 automatically.

7. If the following programs are executed during the program, the response time of $X 0 \sim X 7$ will be set to 0 ms . The fastest response time of input terminals is 50μ s due to that all terminals are connected with RC filter loop.

normally ON contact
8. There is no need to make adjustment on response time when using high-speed counters and interruptions during the program.
9. Using API 51 REFF instruction has the same effect as modifying D1020 and D1021.

Function Group Execution Completed Flag
Number M1029, M1030, M1036, M1037, M1102, M1103

Contents:

Using execution completed flag:

1. API 52 MTR, API 71 HKY, API 72 DSW, API 74 SEGL, API 77 PR: M1029 = On whenever the instruction completes one scan period.
2. API 57 PLSY, API 59 PLSR:
a) M1029 will be "On" after Y0 pulse output of SA/SXISC/ES/EX/SS is completed. M1030 will be "On" after Y1 pulse output is compeleted. When PLSY and PLSR instruction is "Off", M1029 and M1030 turn "Off". You have to reset M1029 and M1030 after the action is completed.
b) M1029 will be "On" after Y0 and Y1 pulse output of EH2/SVEH3/SV2 is completed. M1030 will be "On" after Y2 and Y3 pulse output is compeleted. M1036 will be "On" after Y4 and Y5 pulse output of EH2/SV is completed. M1037 will be "On" after Y6 and Y7 pulse output is completed.When PLSY and PLSR instruction is "Off", M1029, M1030, M1036 and M1037 turn "Off". When the instruction is re-executed for the
next time, M1029, M1030, M1036 and M1037 will turn "Off" and "On" again when the execution is completed.
3. API 63 INCD: M1029 will be "On" for a scan period when the assigned group numbers of data are compared.
4. API 67 RAMP, API 69 SORT:
a) When the execution of the instruction is completed, M1029= On. You have to reset M1029.
b) M1029 turns "Off" when the instruction is "Off".
5. API 155 DABSR, API 156 ZRN, API 158 DRVI, API 159 DRVA for EH2/SVEH3/SV2 series MPU:
a) M1029 = On when the $1^{\text {st }}$ output group Y 0 and Y 1 of $\mathrm{EH} 2 /$ SVEH3/SV2 is completed. $\mathrm{M} 1030=$ On when the $2^{\text {nd }}$ output group $Y 2$ and $Y 3$ is completed.
b) $\mathrm{M} 1036=$ On when the $3^{\text {rd }}$ output group Y 4 and Y 5 of EH2/SV is completed. $\mathrm{M} 1037=$ On when the $4^{\text {th }}$ output group Y 6 and Y 7 is completed.
c) When the instruction is re-executed for the next time, M1029 or M1030 will turn "Off" and "On" again when the execution is completed.
6. In API 57 PLSY, API 156 DZRN, API 158 DDRVI and API 159 DDRVA for SC series MPU: M1102 will be set On when Y10 pulse output is completed. M1103 will be set On when Y11 pulse output is completed. After PLSY instruction is disabled,M1102 and M1103 will be set Off. In DDRVA, DDRVI and DZRN, M1102 and M1103 will be set Off when next time these instructions are enabled.

Function Group Communication Error Code

Number M1025, D1025

Contents:

When HPP, PC or HMI is connected to the PLC and the PLC receives illegal communication request during the transmission of data, M1025 will be On and the error code will be written in D1025. See the error codes below.

01: Illegal instruction code
02: Illegal device address
03: Requested data exceed the range
07: Checksum error

Function Group Clear Instruction
Number M1031, M1032

Contents:

M1031 (clearing non-latched area), M1032 (clearing latched area)

Device No.	
	- Contact status of Y, general-purpose M and general-purpose S
M1031	■ General-purpose contact and timing coil of T
	■ General-purpose contact, counting coil reset coil of C
	■ General-purpose present value register of D
M1031	■ General-purpose present value register of T
	■ General-purpose present value register of C

Device No.	
	- Contact status of M and S for latched
	- Contact and timing coil of accumulative timer T
M1032	- Contac and timing coil of high-speed counter C for latched
	- Present value register of D for latched
	- Present value register of accumulative timer T
	- Present value register of high-speed counter C for latched

Function Group Output Latched During STOP
Number M1033
Contents:
When M1033 = On and PLC goes from "RUN" to "STOP", the On/Off status of output will be retained.
Assume the output contact load of the PLC is a heater, when PLC switches from RUN to STOP, the status of the heater will be retained. After the PLC program is modified, the PLC will RUN again.

Function Group	All Output Y Inhibited
Number	M1034

Contents:

When M1034 = On, all Y outputs will turn "Off".

Function Group RUN/STOP Switch
Number M1035, D1035
Contents:

1. When M1035 = On, EH2/SVEH3/SV2 series MPU will determine the content (K0 ~ K15) in D1035 to enable input points X0 ~ X17 as the RUN/STOP switch.
2. When M1035 = On, SA/SX/SC series MPU will enable the input point $X 7$ (in SA), $X 3$ (in SX) and $X 5$ (in SC) as the RUN/STOP switch.

Function Group Detecting Speed of X0 ~ X5
Number M1036
Contents:

1. For SC_V1.4 and versions above, SPD can detect the speed of $X 0 \sim X 5$ at the same time. The total bandwidth is 40kHz.
2. Program example:

3. Parameter D0 when $\mathrm{X} 7=\mathrm{On}$

Start No. of DO + index value	Functions
+0	Low 16 bits of the 32-bit speed detected at input point X0.
+1	High 16 bits of the 32-bit speed detected at input point X0.
+2	Low 16 bits of the 32-bit speed detected at input point X 1 .
+3	High 16 bits of the 32-bit speed detected at input point X1.
+4	Low 16 bits of the 32-bit speed detected at input point X 2 .
+5	High 16 bits of the 32-bit speed detected at input point X 2 .
+6	Low 16 bits of the 32-bit speed detected at input point X3.
+7	High 16 bits of the 32-bit speed detected at input point X3.
+8	Low 16 bits of the 32-bit speed detected at input point X 4 .
+9	High 16 bits of the 32-bit speed detected at input point X 4 .
+10	Low 16 bits of the 32-bit speed detected at input point $\times 5$.
+11	High 16 bits of the 32-bit speed detected at input point X5.
+12	Remaining time for speed detection (unit: ms)

Function Group X0 Detecting Pulse Width
Number M1084, D1023

Contents:

When M1084 = On, X0 of ES/EX/SS_V6.4/SA/SX_V1.6/SC_V1.4 can detect pulse width. Whenever X0 turns from "On" to "Off", the value is updated once and stored in D1023 (unit: 0.1 ms). The minimum detectable width is 0.1 ms and maximum $1,000 \mathrm{~ms}$.

Function Group Two speeds
Number M1119

Contents:

1. Supports EH2/SV_V2.2/EH3/SV2_V1.0 and versions above.
2. Before the instruction is enabled, M1119 has to be set to On. After the instruction is enabled, M1119 is set to Off automatically.
3. \mathbf{S}_{1} and $\mathbf{S}_{1}+1$ in DDRVI/DDRVA designates the position of the first speed and the position of the second speed respectively, \mathbf{S}_{2} and $\mathbf{S}_{2}+1$ designates the fist speed and the second speed respectively.
4. The second speed must be less than the first speed. Otherwise, the first speed is taken.

Vbase	T1	T2+T3	$\mathbf{P (1)}$	$\mathbf{V (1)}$	$\mathbf{P (2)}$	$\mathbf{V (2)}$
Initial frequency	Acceleration time	Deceleration time	Position of the first speed	First speed	Position of the second speed	Second speed

Example:

M1002							
-				DMOV	100	D1336	
M0							
\cdots				DMOV	K1000	DO	
				DMOV	10000	D2	
				DMOV	120000	D10	
				DMOV	K10000	D12	
						SET	M1119
M0							
$-$	DERVI	DO	D10		Vo	Y1	

Explanation:

1. Set $P(1)$ to 1000 pulse, $P(2)$ to 2000 pulse, $V(1)$ to 20 kHz , and $V(2)$ to 10 kHz .
2. Set M1119 to On.
3. Execute DDRVI/DDRVA.

Function Group Communication Port Function
 Number M1120, M1136, M1138, M1139, M1143, D1036, D1109, D1120

Contents:

1. Supports ES/EX/SS_V6.0/SA/SX_V1.2/SC_V1.0/SV_V1.0/EH2_V1.0/EH3/SV2_V1.0 and versions above.
2. COM ports (COM1: RS-232; COM2: RS-485) in SA/SXISC series MPU and COM ports (COM1: RS-232; COM2: RS-232/RS-485/RS-422) in EH2/EH3/SV2 series MPU support Modbus ASCII/RTU communication format with speed of up to $115,200 \mathrm{bps}$. COM1 and COM2 can be used at the same time. COM3: RS-232/RS-485 in EH/EH2 series MPU supports Modbus ASCII communication format with speed of up to $38,400 \mathrm{bps}$. The communication port (COM3: F232RS-232/RS-422) in EH3/SV2 series MPU supports ASCII/RTU communication format with speed of up to 115,200 bps.

COM1: For slave stations only. Supports ASCII/RTU communication format, adjustable baud rate with speed of up to $115,200 \mathrm{bps}$, and modification on data length (data bits, parity bits, stop bits). EH3/SV2 series MPUs can be as a masters or slaves, and supports ASCII/RTU communication format, adjustable baud rate with speed of up to $115,200 \mathrm{bps}$, and modification on data length (data bits, parity bits, stop bits).
COM2: For master or slave stations. Supports ASCII/RTU communication format, adjustable baud rate with speed of up to $115,200 \mathrm{bps}$, and modification on data length (data bits, parity bits, stop bits).
COM3: EH2 series MPUs can be used as slaves stations only. Supports ASCII communication format (data bits, parity bits, stop bits) 7, E, 1, adjustable baud rate with speed of up to $38,400 \mathrm{bps}$. COM2 or COM3 cannot be used for slave stations at the same time.

EH3/SV2 series MPUs can be as a masters or slaves, and supports ASCII/RTU communication format, adjustable baud rate with speed of up to $115,200 \mathrm{bps}$, and modification on data length (data bits, parity bits, stop bits).

- Communication Format Settings:

COM1: 1. Communication format is set in D1036. b8 ~ b15 do not support the communication protocol of COM1 (RS-232) Slave.
2. The communication format in EH3/SV2 series MPU is set in D1036. b8 ~ b15 do not support the communication protocol of COM1 (RS-232) Slave/Master.
3. Communication setting in M1138 remains.
4. M1139 is set in ASCII/RTU mode

COM2: 1. Communication format is set in D1120. Communication protocol of COM2 (RS-232/RS-485/RS-422) Master or Slave
2. The communication format in EH2 series MPU is set in D1120. COM2 (RS-485 or DVP-F232 card/DVP-F422 card) will occupies the communication protocol of original COM2 (RS-485) Master or Slave.
3. Communication setting in M1120 remains
4. M1143 is set in ASCII/RTU mode

COM3: 1. Communication format is set in D1109. b0 ~ b3 and b8 ~b15 do not support the communication protocol of COM3 (DVP-F232 card/DVP-F485S card) Slave
2. The communication format in EH3-SV2 is set in D1109. b0 ~b3 and b8 ~ b15 do not support the communication protocol of COM3 Slave or Master.
3. Communication setting in M1136 remains

Communication protocols and how to set:

	Content	0	1
b0	Data length	b0 $=0: 7$	b0 = 1:8
$\begin{aligned} & \text { b1 } \\ & \text { b2 } \end{aligned}$	parity bit	$\begin{aligned} & \mathrm{b} 2, \mathrm{~b} 1=00 \\ & \mathrm{~b} 2, \mathrm{~b} 1=01 \\ & \mathrm{~b} 2, \mathrm{~b} 1=11 \end{aligned}$	None Odd Even
b3	stop bits	b3 $=0: 1$ bit	b3 = 1:2 bit
b 7 ~ b4		$\begin{array}{r} 110 \\ 150 \\ 300 \\ 600 \\ 1,200 \\ 2,400 \\ 4,800 \\ 9,600 \\ 19,200 \\ 38,400 \\ 57,600 \\ 115,200 \end{array}$	bps bps
b8	Select start bit	b8 = 0:None	b8 = 1:D1124
b9	Select the $1^{\text {st }}$ end bit	b9 = 0:None	b9 = 1:D1125
b10	Select the $2^{\text {nd }}$ end bit	b10 = 0:None	b10 = 1:D1126
b15 ~ b11	Not defined		

Example 1: Modifying communication format of COM2

1. Add the program code below on top of the program to modify the communication format of COM2. When PLC switches from STOP to TUN, the program will detect whether M1120 is On in the first scan time. If M1120 is On, the program will modify the relevant settings of COM2 according to the value set in D1120.
2. Modify the communication format of COM2 into ASCII mode, 57,600bps, 7 data bits, even parity, 1 stop bit (57,600, 7, E, 1)

Notes:

1. If COM 2 is to be used as a Slave terminal, make sure there is no communication instruction existing in the program.
2. After the communication format is modified, the format will stay intact when PLC switches from RUN to STOP.
3. If you shut down the power of the PLC and repower it again, the modified communication format will return to default setting.

Example 2: Modifying the communication format of COM1

1. Add the program code below on top of the program to modify the communication format of COM1. When PLC switches from STOP to TUN, the program will detect whether M1138 is On in the first scan time. If M1138 is On,
the program will modify the relevant settings of COM1 according to the value set in D1036.
2. Modify the communication format of COM1 into ASCII mode, 115,200bps, 7 data bits, even parity, 1 stop bit (115,200, 7, E, 1)

Notes:

1. After the communication format is modified, the format will stay intact when PLC switches from RUN to STOP.
2. If you shut down the power of the PLC and repower it again, the modified communication format will return to default setting.

Example 3: Modifying the communication format of COM3

1. The communication format of COM3 is fixed as 7 data bits, even parity, 1 stop bit. Add the program code below on top of the program to modify the baud rate of COM3 into $38,400 \mathrm{bps}$. When PLC switches from STOP to TUN, the program will detect whether M1136 is On in the first scan time. If M1136 is On, the program will modify the relevant settings of COM3 according to the value set in D1109.
2. Modify the baud rate of COM3 into $38,400 \mathrm{bps}$

Notes:

1. After the communication format is modified, the format will stay intact when PLC switches from RUN to STOP.
2. If you shut down the power of the PLC and repower it again, the modified communication format will return to default setting.

Example 4: Setting up RTU mode of COM1 and COM2

1. COM1 and COM2 support ASCII/RTU mode. COM1 is set by M1139 and COM2 is set by M1143. When the flags are On, they are in RTU mode; when the flags are Off, they are in ASCII mode.
2. How to set up RTU mode

COM1: $(9,600,8, ~ E, ~ 1, ~ R T U) ~$

COM2: (9,600, 8, E, 1, RTU)

3. EH2/SV/EH3/SV2 series MPU supports the generation of interruption I170 when the data receiving is completed in Slave mode.
4. Normally when the communication terminal of the PLC is in Slave mode, PLC will not immediately process the communication data entered but process it after the END is executed. Therefore, when the scan time is very long and you need the communication data to be processed immediately, you can use interruption 1170 for this matter.
5. Example of interruption $I 170$ (after the data receiving is completed in Slave mode)

With I170 in the program, when COM2 is in Slave mode and there are communication data coming in, PLC will process the data and respond immediately.

Notes:

1. DO NOT update program on-line when using $\mathbf{I} 170$.
2. The scan time of PLC will be slightly longer.

Definitions of the pins in COM1: (It is suggested that the Delta communication cable DVPACAB2A30.)

CN1
$\square[\boxed{\leftrightarrows} \| 00]$
Unit: mm
9 PIN D-SUB female 8 PIN MINI DIN

```
PLC COM1
PLC COM1


\section*{Function Group Communication Response Delay}

Number
D1038

\section*{Contents:}
1. When PLC is used as slave station, in RS-485 communication interface, users can set up communication response delay time ranging from 0 to 10,000 ( \(0 \sim 1\) second). If the time is without the range, D1038 \(=\mathrm{O}\) (time unit: 0.1 ms ). The set value of time must be less than that in D1000(scan time-out timer WDT).
2. In PLC LINK, you can set up delayed transmission of the next communication data (unit: 1 scan period for SA/SX/SC; 0.1ms for EH2/SV/EH3/SV2).

Function Group Fixed Scan Time
Number M1039, D1039

\section*{Contents:}
1. When M1039 = On, the scan time of program is determined by the content in D1039. When the execution of the program is completed, the next scan will take place when the fixed scan time is reached. If the content in D1039 is less than the actual scan time of the program, the scan time will follow the actual scan time of the program.

2. Instructions related to scan time, RAMP (API 67), HKY (API 71), SEGL (API 74), ARWS (API 75) and PR (API 77) should be used together with "fixed scan time" or "constant interruption".
3. Particularly for HKY instruction, when the 16 -digit button input is operated by \(4 \times 4\) matrix, the scan time has to be fixed to longer than 20 ms .
4. The scan time in D1010 ~ D1012 also includes fixed scan time.

\section*{Function Group Analog Function}

Number
D1056 ~ D1059, D1062, D1110 ~ D1113, D1116 ~ D1118

\section*{Contents:}
1. Resolution of analog input channel: 10 bits for \(E X\), corresponding to \(0 \sim \pm 10 \vee(-512 \sim+511)\) or \(0 \sim \pm 20 \mathrm{~mA}\) \((-512 \sim+511) ; 12\) bits for SX, corresponding to \(0 \sim \pm 10 \mathrm{~V}(-2,000 \sim+2,000)\) or \(0 \sim \pm 20 \mathrm{~mA}(-1,000 \sim+1,000)\).
2. Resolution of analog output channel: 8 bits for EX , corresponding to \(0 \sim 10 \mathrm{~V}(0 \sim 255)\) or \(0 \sim 20 \mathrm{~mA}(0 \sim 255)\);

12 bits for SX, corresponding to \(0 \sim \pm 10 \vee(-2,000 \sim+2,000)\) or \(0 \sim \pm 20 \mathrm{~mA}(-2,000 \sim+2,000)\).
3. Sampling time of analog/digital conversion. Default setting \(=5\); unit: ms . If \(\mathrm{D} 1118 \leq 5\), it will be regarded as 5 ms .
4. Resolution of EH2/SV/EH3/SV2 analog input AD card (DVP-F2AD): 12 bits \(0 \sim 10 \mathrm{~V}(0 \sim+4,000)\) or 11 bits \(0 \sim\) \(20 \mathrm{~mA}(0 \sim+2,000)\)
5. Resolution of EH2/SV/EH3/SV2 analog input DA card (DVP-F2DA): 12 bits \(0 \sim 10 \mathrm{~V}(0 \sim+4,000)\) or \(0 \sim 20 \mathrm{~mA}\) ( 0 ~ +4,000)
\begin{tabular}{|c|l|}
\hline Device No. & \multicolumn{1}{|c|}{ Function } \\
\hline D1056 & Present value of EX/SX analog input channel CH0 and EH2/EH3/SV2 AD card channel CH0 \\
\hline D1057 & Present value of EX/SX analog input channel CH1 and EH2/EH3/SV2 AD card channel CH1 \\
\hline D1058 & Present value of EX analog input channel CH 2 \\
\hline D1059 & Present value of EX analog input channel CH 3 \\
\hline D1062 & Average times (2 ~ 4) of SX AD0 and AD1 \\
\hline D1110 & Average value of EX/SX analog input channel CH0 and EH2/EH3/SV2 AD card channel CH0 \\
\hline D1111 & Average value of EX/SX analog input channel CH1 and EH2/EH3/SV2 AD card channel CH1 \\
\hline D1112 & Average value of EX analog input channel CH2 \\
\hline D1113 & Average value of EX analog input channel CH3 \\
\hline D1116 & EX/SX analog output channel CH0 and EH2/EH3/SV2 DA card channel CH0 \\
\hline D1117 & EX/SX analog output channel CH1 and EH2/EH3/SV2 DA card channel CH1 \\
\hline D1118 & Sampling time (ms) of SX/EX/EH2/EH3/SV2 analog/digital conversion \\
\hline
\end{tabular}

Function Group Reading/Writing the data from/into the memory card
Number M1163, D1063

\section*{Contents:}
1. The function of reading/writing data from/into the memory card in a PLC can be used only when the PLC stops.
2. The reading/writing of the data between the EH2 series MPU and the memory card:
\begin{tabular}{|c|c|l|}
\hline M1163 state & D1063 code & \multicolumn{1}{c|}{ Function } \\
\hline \multirow{4}{*}{ On } & 0x55AA & \begin{tabular}{l} 
The program is read from the memory card, and \\
copied to the main operation area in the MPU.
\end{tabular} \\
\cline { 2 - 4 } & 0x55A9 & \begin{tabular}{l} 
The data is read from the memory card, and copied \\
to the main operation area in the MPU.
\end{tabular} \\
\cline { 2 - 4 } & 0xAA55 & \begin{tabular}{l} 
The program in the main operation area in the MPU \\
is copied to the memory card.
\end{tabular} \\
\cline { 2 - 4 } & 0xA955 & \begin{tabular}{l} 
The data in the main operation area in the MPU is \\
copied to the memory card.
\end{tabular} \\
\hline
\end{tabular}

\section*{Note:}
(1) After the reading/writing of the data is complete, M1163 is automatically set to Off. After the reading/writing of the data is complete, the following flags are On.

M1189 \(\rightarrow\) The data which is read/written is correct.
M1075 \(\rightarrow\) An error occurs when the data is written into the memory card. Please check if the memory card is
inserted or damaged.
M1005 \(\rightarrow\) The PLC ID on the MPU or the main password is different from the memory card.
M1006 \(\rightarrow\) No data or program is in the memory card.
(2) Enter the function code in D1063 first, and then set M1163 to On. Otherwise, M1163 is automatically reset to Off.
(3) If an error occurs during the reading/writing of the data, the special M will be set. No error LED indicator will flash or no situation in which the MPU can not run occurs. Therefore, if customers need an alarm, please make the warning message on the device or superior machine according to the flags above.
(4) Owing to the fact that the storage material of the memory card is Flash ROM, it takes some execution time to write the data into the memory card.
(5) When the program is copied, the MPU automatically copies the password function (including the main password, the limit on the number of errors, the subroutine password, and the PLC ID).
3. The reading/writing of the data between the EH3/SV2 series MPU and the memory card:
\begin{tabular}{|c|c|c|}
\hline M1163 state & D1063 code & Function \\
\hline \multirow{7}{*}{On} & \(0 \times 55 \mathrm{AB}\) & The data is read from the memory card, and copied to the main operation area in the MPU. \\
\hline & 0x55AA & The program code is read from the memory card, and copied to the main operation area in the MPU. \\
\hline & 0x55A9 & The data in D2000~D11999 and file registers 0~4999 are read and copied to the main operation area in the MPU. \\
\hline & 0xAB55 & The data in the main operation area in the MPU is copied to the memory card. \\
\hline & 0xAA55 & The program in the MPU is copied to the memory card. \\
\hline & 0xA955 & The data in D2000~D11999 in the main operation area in the MPU is copied to the memory card. \\
\hline & 0x8888 & Clearing the data in the memory card \\
\hline
\end{tabular}

\section*{Note:}
(1) After the reading/writing of the data is complete, M1163 is automatically set to Off. After the reading/writing of the data is complete, the following flags are On.

M1189 \(\rightarrow\) The data which is read/written is correct.
M1075 \(\rightarrow\) An error occurs when the data is written into the memory card. Please check if the memory card is inserted or damaged.
M1005 \(\rightarrow\) The PLC ID on the MPU or the main password is different from the memory card.
M1006 \(\rightarrow\) No data or program is in the memory card.
(2) Enter the function code in D1063 first, and then set M1163 to On. Otherwise, M1163 is automatically reset to Off.
(3) If an error occurs during the reading/writing of the data, the special M will be set. No error LED indicator will flash or no situation in which the MPU can not run occurs. Therefore, if customers need an alarm, please make the warning message on the device or superior machine according to the flags above.
(4) Owing to the fact that the storage material of the memory card is Flash ROM, it takes some execution time to write the data into the memory card.
(5) When the program is copied, the MPU automatically copies the password function (including the main password, the limit on the number of errors, the subroutine password, and the PLC ID).

\section*{Function Group Reading/Writing the data from/into the backup area Number M1164, D1064}

\section*{Contents:}
1. The function of reading/writing data from/into the backup area in a PLC can be used only when the PLC stops.
2. The reading/writing of the data between the EH2 series MPU and the backup area:
\begin{tabular}{|c|c|l|}
\hline M1164 state & D1064 code & \multicolumn{1}{c|}{ Function } \\
\hline \multirow{3}{*}{ On } & 0x55AA & \begin{tabular}{l} 
The program and the data in D2000~D9999 are read from \\
the backup area, and copied to the main operation area.
\end{tabular} \\
\cline { 2 - 4 } & 0xAA55 & \begin{tabular}{l} 
The program and the data in D2000~D9999 in the main \\
operation area are copied to the backup area.
\end{tabular} \\
\hline
\end{tabular}

\section*{Note:}
(1) After the reading/writing of the data is complete, M1164 is automatically set to Off. After the reading/writing of the data is complete, the following flags are On.

M1189 \(\rightarrow\) The data which is read/written is correct.
M1075 \(\rightarrow\) An error occurs when the data is written into the backup area. Before replacing the PLC, please read the program and the data form the main operation area first.
(2) Enter the function code in D1064 first, and then set M1164 to On. Otherwise, M1164 is automatically reset to Off.
(3) If an error occurs during the reading/writing of the data, the special \(M\) will be set. No error LED indicator will flash or no situation in which the MPU can not run occurs. Therefore, if customers need an alarm, please make the warning message on the device or superior machine according to the flags above.
(4) Owing to the fact that the storage material of the backup area is Flash ROM, it takes some execution time to write the data into the memory card.
(5) When the program is copied, the MPU automatically copies the password function (including the main password, the limit on the number of errors, the subroutine password, and the PLC ID).
3. The reading/writing of the data between the EH3/SV2 series MPU and the backup area:
\begin{tabular}{|c|c|c|}
\hline M1164 state & D1064 code & Function \\
\hline \multirow{5}{*}{On} & 0x55AA & The program and the data in D2000~D9999 are read from the backup area, and copied to the main operation area. \\
\hline & 0x55A9 & The program is read from the backup area, and copied to the main operation area in the MPU. \\
\hline & \(0 \times 55 \mathrm{AB}\) & The data is read from D2000~D11999 in the backup area, and copied to the main operation area in the MPU. \\
\hline & 0xAA55 & The program and the data in D2000~D9999 in the main operation area are copied to the backup area. \\
\hline & 0xA955 & The program in the main operation area is copied to the backup area. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline M1164 state & D1064 code & \multicolumn{1}{c|}{ Function } \\
\hline \multirow{3}{*}{ On } & 0xAB55 & \begin{tabular}{l} 
The data in D2000~D11999 in the operation area is copied to the backup \\
area.
\end{tabular} \\
\cline { 2 - 3 } & \(0 \times 8888\) & The data in the backup area is cleared. \\
\hline
\end{tabular}

\section*{Note:}
(1) After the reading/writing of the data is complete, M1164 is automatically set to Off. After the reading/writing of the data is complete, the following flags are On.
M1189 \(\rightarrow\) The data which is read/written is correct.
M1075 \(\rightarrow\) An error occurs when the data is written into the backup area. Before replacing the PLC, please read the program and the data form the main operation area first.
M1006 \(\rightarrow\) No data or program is in the memory card.
(2) Enter the function code in D1064 first, and then set M1164 to On. Otherwise, M1164 is automatically reset to Off.
(3) If an error occurs during the reading/writing of the data, the special M will be set. No error LED indicator will flash or no situation in which the MPU can not run occurs. Therefore, if customers need an alarm, please make the warning message on the device or superior machine according to the flags above.
(4) Owing to the fact that the storage material of the backup area is Flash ROM, it takes some execution time to write the data into the memory card.
(5) When the program is copied, the MPU automatically copies the password function (including the main password, the limit on the number of errors, the subroutine password, and the PLC ID).

\section*{Function Group Operational Error Flag}

Number M1067 ~ M1068, D1067 ~ D1068

\section*{Contents:}
1. Operational error flag:
\begin{tabular}{|c|l|c|c|c|}
\hline Device & \multicolumn{1}{|c|}{ Description } & Latched & STOP \(\rightarrow\) RUN & RUN \(\rightarrow\) STOP \\
\hline M1067 & Operational error flag & None & Cleared & Latched \\
\hline M1068 & Operational error locked flag & None & Latched & Latched \\
\hline D1067 & Operational error code & None & Cleared & Latched \\
\hline D1068 & STEP value when operational error occurs & None & Latched & Latched \\
\hline
\end{tabular}
2. Error code explanation:
\begin{tabular}{|c|l|}
\hline D1067 error code & \multicolumn{1}{c|}{ Cause } \\
\hline H' \(^{\prime}\) 0E18 & BCD conversion error \\
\hline H' 0E19 \(^{\prime}\) Divisor is 0 \\
\hline H' 0E1A & Use of device exceeds the range (including E, F index register modification) \\
\hline H' 0E1B & Square root value is negative \\
\hline H' 0E1C & FROM/TO instruction communication error \\
\hline
\end{tabular}

\section*{Function Group Low Voltage \\ Number M1087, D1100 \\ Contents:}
1. When PLC detects LV (Low Voltage) signal, it will check if M1087 is "On" or not. If M1087 is "On", the content in D1100 will be stored in Y0 ~ Y17.
2. bit0 (LSB) of D1100 corresponds to Y0, bit1 corresponds to Y1, bit8 corresponds to Y10 and so on.

\section*{Function Group File Register}

Number M1101, D1101 ~ D1103

\section*{Contents:}
1. When the power of PLC turns from "Off" to "On", PLC determines whether to automatically send the content in the file register to the assigned data register by checking M1101, D1101 ~ D1103 (for SA/SX/SC/

EH2/SV/EH3/SV2).
M1101: Whether to automatically downland data from file register
D1101: \(\quad\) Start No. of file register K0 ~ K1,599 (for SA/SXISC)
Start No. of file register K0 ~ K9,999 (for EH2/SV/EH3/SV2)
D1102: \(\quad\) Number of data read from file register K1 ~ K1,600 (for SA/SXISC)
Number of data read from file register K1 ~ K8,000 (for EH2/SV/EH3/SV2)
D1103: Location for storing data read from file register
Start No. of assigned data register D K2,000 ~ K4,999 (for SA/SXISC)
Start No. of assigned data register D K2,000 ~ K9,999 (for EH2/SV/EH3/SV2)
2. See API 148 MEMR and API 149 MEMW for more details.

Function Group DIP Switch Function Card
Number M1104~M1111

\section*{Contents:}
1. When PLC is in RUN status with digital switch function card inserted, the 8 DIP switches amd their status orrespond respectively to M1104 ~ M1111.
2. See API 109 SWRD for more details.
3. When PLC is in RUN status with 4DI card inserted into the input AXO (photocoupler isolation), the status of AXO ~ AX3 correspond respectively to M1104 ~ M1107.

Function Group Transistor Output Function Card
Number M1112, M1113

\section*{Contents:}

When PLC is in RUN status with 2DO function card inserted, M1112 and M1113 will correspond respectively to 2 transistors output points, AYO and AY1.

Function Group Pulse Output With Speed Acceleration/Deceleration
Number M1115 ~ M1119, D1104

\section*{Contents:}
1. Special \(D\) and special \(M\) for acceleration/ deceleration of speed pulse output for ES/EX/SS/SA/SX/SC (not applicable to SC_V1.4 and versions above):
\begin{tabular}{|c|l|}
\hline Device No. & \\
\hline M1115 & Function \\
\hline M1116 & "Accelerating" flag \\
\hline M1117 & "Target frequency reached" flag \\
\hline M1118 & "Decelerating" flag \\
\hline M1119 & "Function completed" flag \\
\hline D1104 & Start No. of control register (D) \\
\hline
\end{tabular}
2. Parameters for D1104 (frequency range: \(25 \mathrm{~Hz} \sim 10 \mathrm{kHz}\) )
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Index } & \multicolumn{1}{c|}{ Function } & \\
\hline+0 & Start frequency (SF) & \\
\hline+1 & Gap frequency (GF) & \multirow{2}{*}{} \\
\hline+2 & Target frequency (TF) & (TP) \\
\hline+3 & The lower 16 bits of the 32 bits for the total number of output pulses & \\
\hline+4 & The higher 16 bits of the 32 bits for the total number of output pulses & (AP) \\
\hline+6 & \begin{tabular}{l} 
The lower 16 bits of the 32 bits for the total number of output pulses in \\
accelerating/decelerating section
\end{tabular} & \\
\hline
\end{tabular}
3. No instruction is needed, users need only to fill out the parameter table and enable M1115 (in RUN mode). This functio only supports YO output and the timing chart is as below.

4. Note: this function is applicable only when "all" the conditions below are met.
a) Start frequency < target frequency.
b) Gap frequency \(\leq\) (target frequency - start frequency)
c) Total number of pulses \(>\) (accel/decel number of pulses \(\times 2\) )
d) For start frequency and target frequency: Min. 25Hz; Max. 10kHz
e) Number of accel/decel pulses > number of accel/decel sections

When M1115 turns from "On" to "Off", M1119 will be reset and M1116, M1117 and M1118 remain unchanged. When PLC goes from "STOP" to "RUN", M1115 ~ M1119 will be reset as "Off". D1104 will only be cleared as " 0 " when it turns from "Off" to "On".

Either accel/decel pulse output function or PLSY YO output can be executed at a time when PLC is operating.
5. How to calculate the action time of each section

Assume the start frequency is set as 1 kHz , gap frequency as 1 kHz , target frequency as 5 kHz , total number of pulses as 100 and number of acceleration pulses as 40 , the timing diagram of the acceleration sections is as the figure below.


From the conditions above, we can obtain the number of acceleration/deceleration sections is \((5 \mathrm{~K}-1 \mathrm{~K}) / 1 \mathrm{~K}=4\) and the number of output pulses in each section is \(40 / 4=10\). Therefore, in the diagram, \(\mathrm{t} 1=(1 / 1 \mathrm{~K}) \times 10=10 \mathrm{~ms}\), \(\mathrm{t} 2=(1 / 2 \mathrm{~K}) \times 10=5 \mathrm{~ms}, \mathrm{t} 3=(1 / 3 \mathrm{~K}) \times 10=3.33 \mathrm{~ms}, \mathrm{t} 4=(1 / 4 \mathrm{~K}) \times 10=2.5 \mathrm{~ms}\).
6. Program example: Forward/reverse acceleration/deceleration step motor control

a) When PLC is in RUN status, store all parameter settings into the registers designated in D1104.
b) When M1115 = On, the acceleration/deceleration pulse output will start.
c) \(\mathrm{M} 1116=\) On in the acceleration process. When the speed reaches its target, M1117 will be On. M1118 \(=\) On in the deceleration process. When the speed reaches its target, M1119 will be On.
d) M1115 will not be reset automatically. You have to check the conditions during the process and reset it.
e) Pulse output curves:


\begin{tabular}{ll} 
Function Group & Special High-Speed Pulse Output \\
Number & M1133 ~ M1135, D1133
\end{tabular}

\section*{Contents:}
1. Special \(D\) and special \(M\) for special high-speed pulse \(Y 0(50 \mathrm{kHz})\) for SA/SX/SC: (The special data registers and the special auxiliary relays are not applicable to SC V1.4 and above. They are not applicable to SX V3.0 and above because the function is replaced by PLSY, which can be used to output 50 KHz bandwidth.)
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{c|}{ Function } \\
\hline M1133 & Output switch for special high-speed pulse Y0 (50kHz) (On = enabled) \\
\hline M1134 & On = Continuous output switch for special high-speed pulse Y0 (50kHz) \\
\hline M1135 & "Number of pulses reached" flag for special high-speed pulse Y0 \((50 \mathrm{kHz})\) \\
\hline D1133 & Start No. of control register (D) for special high-speed pulse Y0 (50kHz) \\
\hline
\end{tabular}
2. Parameters for D1133:
\begin{tabular}{|c|l|}
\hline Index & \multicolumn{1}{c|}{ Function } \\
\hline+0 & The lower 16 bits of the 32 bits for output frequency of special high-speed pulse Y0 \\
\hline+1 & The higher 16 bits of the 32 bits for output frequency of special high-speed pulse Y0 \\
\hline+2 & The lower 16 bits of the 32 bits for number of output pulses of special high-speed pulse Y0 \\
\hline+3 & The higher 16 bits of the 32 bits for number of output pulses of special high-speed pulse Y0 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Index & \multicolumn{1}{c|}{ Function } \\
\hline+4 & The lower 16 bits of the 32 bits of the present number of special high-speed pulses Y0 \\
\hline+5 & The higher 16 bits of the 32 bits of the present number of special high-speed pulses Y0 \\
\hline
\end{tabular}
3. The function:

All output frequency and number of pulses stated in the table above can be modified when M1133 = On and M1135 \(=\) On. The modification will not affect the present output pulses. The present number of output pulses is updated in every scan time. When M1133 turns from "Off" to "on", the number will be cleared as "0". When 1133 turns from "On" to "Off", the last number of output pulses will be shown.
Note:
The special high-speed pulse output function can only be used on specific Y0 output point when PLC is in RUN status. It can coexist with PLSY (Y0) in the program and PLSY (Y1) will not be affected. If PLSY \((\mathrm{YO})\) instruction is executed prior to this function, the function cannot be used and vice versa. When the function is executed, the general function, general Y 0 output will be invalid but \(\mathrm{Y} 1 \sim \mathrm{Y} 7\) can be used.

The output frequency of this function is higher (max. 50 kHz ) than that of PLSY instruction.

Function Group 2-axis Synchronous Control (PH)
Number M1133, M1135, D1133 ~ D1136
Contents:
1. Special D and special M for 2-axis synchronous drawing oblique and arc for SC_V1.4 and versions above:
\begin{tabular}{|c|l|}
\hline Device No. & \multicolumn{1}{c|}{ Function } \\
\hline M1133 & Start flag for Y10 output for two-axis synchronous control \\
\hline M1135 & Start flag for Y11 output for two-axis synchronous control \\
\hline D1133 & Start No. of control register (D) for Y10 output for two-axis synchronous control \\
\hline D1134 & Number of sections for Y10 output for two-axis synchronous control \\
\hline D1135 & Start No. of control register (D) for Y11 output for two-axis synchronous control \\
\hline D1136 & Number of sections for Y11 output for two-axis synchronous control \\
\hline
\end{tabular}
2. Parameters for D1133, D1135:
\begin{tabular}{|c|c|}
\hline Index & Function \\
\hline+0 & Y10, Y11 2-axis synchronous control; output frequency of 1st section = low 16 bits of 32 bits \\
\hline+1 & Y10, Y11 2-axis synchronous control; output frequency of 1st section = high 16 bits of 32 bits \\
\hline+2 & Y10, Y11 2-axis synchronous control; output pulse number of 1st section \(=\) low 16 bits of 32 bits \\
\hline+3 & Y10, Y11 2-axis synchronous control; output pulse number of 1st section \(=\) high 16 bits of 32 bits \\
\hline
\end{tabular}
3. The functions:
a) Definition of the 2 axes:

X axis: Y 0 (direction output) and Y10 (pulse output)
Y axis: Y1 (direction output) and Y11 (pulse output)
b) Define the format of output table:

Assume D1133 = K100 and D1134 = K3 and the output table has to be set as:
\begin{tabular}{|c|c|c|c|c|l|}
\hline \begin{tabular}{c} 
Section \\
No.
\end{tabular} & Device D & \begin{tabular}{c} 
Output \\
frequency
\end{tabular} & Device D & \begin{tabular}{c} 
Number of \\
Output pulses
\end{tabular} & \multicolumn{1}{c|}{ Description } \\
\hline 1 & D101,D100 & K10,000 & D103,D102 & K1,000 & Section 1 outputs 1,000 pulses in 10kHz \\
\hline 2 & D105,D104 & K15,000 & D107,D106 & K2,000 & Section 2 outputs 2,000 pulses in 15kHz \\
\hline 3 & D109,D108 & K5,000 & D111,D110 & K3,000 & Section 3 outputs 3,000 pulses in 5kHz \\
\hline
\end{tabular}

Note: The frequency and number of output pulses are all in 32-bit. Thus, the 3 sections will continuously occupy 12 D devices \((3 \times 2 \times 2=12)\).
4. Note:
a) Make sure that the output frequency and the number of pulses have been set before using this function. The output frequency and the number of pulses cannot be modified during the execution of the function.
b) When PLC program scans to END instruction, it will auto-check whether this function needs to be enabled.
c) When M1133 and M1135 are set in the same scan period, the two axes will output pulses synchronously.
d) When the output frequency \(<100 \mathrm{~Hz}\), the output will be executed in 100 Hz . When the output frequency > 100 kHz , the output will be executed by 100 kHz .
e) Only device D (D0 ~ D999 and D2000 ~ D4999) can be used for this function. DO NOT use other devices or exceed the range of device \(D\).
f) The maximum number of segments for this function is 50 . When the number of segments \(<1\) or \(>50\), this function will be disabled.
g) After this function is enabled, M1102 = "On" indicates Y10 output is completed and M1103 = "On" indicates Y11 output is completed.
5. Examples:
a) Draw oblique lines in 2 axes

Destination: Draw 2 oblique lines (as figure 1)
Program explanation: Y 0 and Y 10 belong to X axis, and Y 1 and Y 11 belong to Y axis (as figure 2)
Output frequency and number of pulses: see table 1

(Figure 1)

(Figure 2)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Axis & Section & Device D & Output frequency & Device D & Number of output pulses \\
\hline \multirow{3}{*}{ X } & 1 & D201, D200 & K1,000 & D203, D202 & K1,000 \\
\cline { 2 - 6 } & 2 & D205, D204 & K4,000 & D207, D206 & K4,000 \\
\hline \multirow{3}{*}{ Y } & 1 & D301, D300 & K3,000 & D303, D302 & K3,000 \\
\cline { 2 - 6 } & 2 & D305, D304 & K1,000 & D307, D306 & K1,000 \\
\hline \multicolumn{6}{|c|}{ (Table 1) }
\end{tabular}
b) Draw an arc in 2 axes

Destination: Draw a \(90^{\circ}\) arc (see Figure 3)
Program explanation: Same as the example of draw oblique lines, except that D1134 and D1136 are modified as K10 (output 10 sections)

Output frequency and number of pulses: see table 2

(Figure 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Axis & Section & Device D & Output frequency & Device D & Number of output pulses \\
\hline \multirow{10}{*}{X} & 1 & D201, D200 & K1,230 & D203, D202 & K615 \\
\hline & 2 & D205, D204 & K3,664 & D207, D206 & K1,832 \\
\hline & 3 & D209, D208 & K6,004 & D211, D210 & K3,002 \\
\hline & 4 & D213, D212 & K8,200 & D215, D214 & K4,100 \\
\hline & 5 & D217, D216 & K10,190 & D219, D218 & K5,095 \\
\hline & 6 & D221, D220 & K11,932 & D223, D222 & K5,966 \\
\hline & 7 & D225, D224 & K13,380 & D227, D226 & K6,690 \\
\hline & 8 & D229, D228 & K14,498 & D231, D230 & K7,249 \\
\hline & 9 & D233, D232 & K15,258 & D235, D234 & K7,629 \\
\hline & 10 & D237, D236 & K15,644 & D239, D238 & K7,822 \\
\hline \multirow{10}{*}{Y} & 1 & D301, D300 & K15,644 & D303, D302 & K7,822 \\
\hline & 2 & D305, D304 & K15,258 & D307, D306 & K7,629 \\
\hline & 3 & D309, D308 & K14,498 & D311, D310 & K7,249 \\
\hline & 4 & D313, D312 & K13,380 & D315, D314 & K6,690 \\
\hline & 5 & D317, D316 & K11,932 & D319, D318 & K5,966 \\
\hline & 6 & D321, D320 & K10,190 & D323, D322 & K5,095 \\
\hline & 7 & D325, D324 & K8,200 & D327, D326 & K4,100 \\
\hline & 8 & D329, D328 & K6,004 & D331, D330 & K3,002 \\
\hline & 9 & D333, D332 & K3,664 & D335, D334 & K1,832 \\
\hline & 10 & D337,D336 & K1,230 & D339, D338 & K615 \\
\hline
\end{tabular}
(Table 2)

\section*{2 Functions of Devices in DVP-PLC}
c) Draw arcs in the four quadrants

Destination: Draw four \(90^{\circ}\) arcs (see Figure 4)
Program explanation: When the direction signal is On, the direction will be a positive one; when the direction signal is Off, the direction will be a negative one (see Figure 5)

Output frequency and number of pulses: see Table 2

(Figure 4)

(Figure 5)

\section*{2 Functions of Devices in DVP-PLC}
- M0, M1 = On refers to drawing a \(90^{\circ}\) arc in Quadrant I; M0, M2 \(=\) On refers to drawing a \(90^{\circ}\) arc in Quadrant II; M0, M3 \(=\) On refers to drawing a \(90^{\circ}\) arc in Quadrant III; M0, M4 \(=\) On refers to drawing a \(90^{\circ}\) arc in Quadrant IV.
- The four \(90^{\circ}\) arcs are drawn when acceleration in X and deceleration in Y . To draw the arcs when deceleration in X and acceleration in X , modify the program into Figure 6, i.e. D1333 \(=\mathrm{K} 300\) and D1335 \(=\) K200.

(Figure 6)
- M0, M1 = On refers to drawing a \(90^{\circ}\) arc in Quadrant I; M0, M2 \(=\) On refers to drawing a \(90^{\circ}\) arc in Quadrant II; M0, M3 = On refers to drawing a \(90^{\circ}\) arc in Quadrant III; M0, M4 \(=\) On refers to drawing a \(90^{\circ}\) arc in Quadrant IV. (See Figure 7)

d) Draw a circle

Destination: Extract four \(90^{\circ}\) arcs from Figure 4 and Figure 7 and combine them into a circle (see Figure 8).

Program explanation: When the direction control pin is On, the direction will be a positive one; otherwise, it will be a negative one (see Figure 9). When \(X 0=O n\), DO will accumulate once and the 2 axes will draw a \(90^{\circ}\) arc.

Output frequency and number of pulses: see Table 2.

(Figure 8)

(Figure 9)
e) Calculate the frequency and number of output pulses in each section

Destination: Draw 10 sections of arcs clockwise until they reach \((50,000,50,000)\) (see Figure 10)
\(R x=\) target value in \(\mathrm{X} ; \mathrm{Ry}=\) target value in \(\mathrm{Y} ; \mathrm{N}=\) number of sections; \(\pi=3.1416\)

(Figure 10)
- Step 1: Calculate the position for each section
\(x_{1}=R x-R x \times \sin [(N-1) \times \pi \div(2 \times N)]\)
\(x_{2}=R x-R x \times \sin [(N-2) \times \pi \div(2 \times N)] \ldots\) See Table 3
\(y_{1}=R y \times \sin [1 \times \pi \div(2 \times N)]\)
\(y_{2}=R y \times \sin [2 \times \pi \div(2 \times N)] \ldots\). See Table 4
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) \\
\hline \begin{tabular}{c} 
With decimal \\
point
\end{tabular} & 615.55 & \(2,447.12\) & \(5,449.61\) & \(9,549.08\) & \(14,464.59\) \\
\hline \begin{tabular}{c} 
Without \\
decimal point
\end{tabular} & 615 & 2,447 & 5,449 & 9,549 & 14,464 \\
\hline Position & \(\mathrm{x}_{6}\) & \(\mathrm{x}_{7}\) & \(\mathrm{x}_{8}\) & \(\mathrm{x}_{9}\) & \(\mathrm{x}_{10}\left(\mathrm{R}_{\mathrm{x}}\right)\) \\
\hline \begin{tabular}{c} 
With decimal \\
point
\end{tabular} & \(20,610.67\) & \(27,300.42\) & \(34,549.11\) & \(42,178.25\) & 50,000 \\
\hline \begin{tabular}{c} 
Without \\
decimal point
\end{tabular} & 20,610 & 27,300 & 34,549 & 42,178 & 50,000 \\
\hline
\end{tabular}
(Table 3)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Position & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) & \(\mathrm{y}_{4}\) & \(\mathrm{y}_{5}\) \\
\hline \begin{tabular}{c} 
With decimal \\
point
\end{tabular} & \(7,821.74\) & \(15,450.88\) & \(22,699.57\) & \(29,389.32\) & \(35,355.40\) \\
\hline \begin{tabular}{c} 
Without \\
decimal point
\end{tabular} & 7,821 & 15,450 & 22,699 & 29,389 & 35,355 \\
\hline Position & \(\mathrm{y}_{6}\) & \(\mathrm{y}_{7}\) & \(\mathrm{y}_{8}\) & \(\mathrm{y}_{9}\) & \(\mathrm{y}_{10}\left(\mathrm{R}_{\mathrm{y}}\right)\) \\
\hline \begin{tabular}{c} 
With decimal \\
point
\end{tabular} & \(40,450.91\) & \(44,550.38\) & \(47,552.87\) & \(49,384.44\) & 50,000 \\
\hline \begin{tabular}{c} 
Without \\
decimal point
\end{tabular} & 40,450 & 44,550 & 47,552 & 49,384 & 50,000 \\
\hline
\end{tabular}
(Table 4)
- Step 2: Calculate the distance (number of pulses) between every section

In X axis: \(\mathrm{x}_{1}=\mathrm{x}_{1}-0, \mathrm{x}_{2}=\mathrm{x}_{2}-\mathrm{x}_{1}, \ldots \mathrm{x}_{10}=\mathrm{x}_{10}-\mathrm{x}_{9}\) (see Table 5)
In Y axis: \(\mathrm{y}_{1}=\mathrm{y}_{1}-0, \mathrm{y}_{2}=\mathrm{y}_{2}-\mathrm{y}_{1}, \ldots \mathrm{y}_{10}=\mathrm{y}_{10}-\mathrm{y}_{9}\) (see Table 5)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Position & \(\mathrm{x}_{1}\) & \(\mathrm{x}_{2}\) & \(\mathrm{x}_{3}\) & \(\mathrm{x}_{4}\) & \(\mathrm{x}_{5}\) & \(\mathrm{x}_{6}\) & \(\mathrm{x}_{7}\) & \(\mathrm{x}_{8}\) & \(\mathrm{x}_{9}\) & \(\mathrm{x}_{10}\) \\
\hline Number of pulses & 615 & 1,832 & 3,002 & 4,100 & 5,095 & 5,966 & 6,690 & 7,249 & 7,629 & 7,822 \\
\hline Position & \(\mathrm{y}_{1}\) & \(\mathrm{y}_{2}\) & \(\mathrm{y}_{3}\) & \(\mathrm{y}_{4}\) & \(\mathrm{y}_{5}\) & \(\mathrm{y}_{6}\) & \(\mathrm{y}_{7}\) & \(\mathrm{y}_{8}\) & \(\mathrm{y}_{9}\) & \(\mathrm{y}_{10}\) \\
\hline Number of pulses & 7,821 & 7,629 & 7,249 & 6,690 & 5,966 & 5,095 & 4,100 & 3,002 & 1,832 & 616 \\
\hline
\end{tabular}
(Table 5)
- Step 3: Decide the execution time of every section and obtain the frequency of every section by Table 5 Assume every section executes for 500 ms , the equation for frequency \((\mathrm{Hz})\) of each section is: \(\mathrm{fx}_{1}=1 \div 0.5 \times\) \(\mathrm{x} 1, ~ \mathrm{fx}_{2}=1 \div 0.5 \times \mathrm{x}_{2} \ldots\) (see Table 6)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Position & \(\mathrm{fx}_{1}\) & \(\mathrm{fx}_{2}\) & \(\mathrm{fx}_{3}\) & \(\mathrm{fx}_{4}\) & \(\mathrm{fx}_{5}\) & \(\mathrm{fx}_{6}\) & \(\mathrm{fx}_{7}\) & \(\mathrm{fx}_{8}\) & \(\mathrm{fx}_{9}\) & \(\mathrm{fx}_{10}\) \\
\hline Frequency & 1,230 & 3,664 & 6,004 & 8,200 & 10,190 & 11,932 & 13,380 & 14,498 & 15,258 & 15,644 \\
\hline Position & \(\mathrm{fy}_{1}\) & \(\mathrm{fy}_{2}\) & \(\mathrm{fy}_{3}\) & \(\mathrm{fy}_{4}\) & \(\mathrm{fy}_{5}\) & \(\mathrm{fy}_{6}\) & \(\mathrm{fy}_{7}\) & \(\mathrm{fy}_{8}\) & \(\mathrm{fy}_{9}\) & \(\mathrm{fy}_{10}\) \\
\hline Frequency & 15,642 & 15,258 & 14,498 & 13,380 & 11,932 & 10,190 & 8,200 & 6,004 & 3,644 & 1,232 \\
\hline
\end{tabular}
(Table 6)
- Step 4: Fill Device D into table 2 and complete all steps.

Reminder 1: When \(R x=R y\), you can calculate \(X\) axis, and copy \(X\) axis to \(Y\) axis (as fy1 = fx10, fy2 = \(f x 9, \ldots f y 10=f x 1\), and \(y 1=x 10, y 2=x 9, \ldots y 10=x 1\) )
Reminder 2: When drawing a counterclockwise arc, switch the index value of \(X\) axis with that of \(Y\) axis.

\section*{Function Group Detecting Extension}

Number D1140, D1142, D1143, D1145

\section*{Contents:}
1. D1140: Number of special right-side extension modules (AD, DA, XA, PT, TC...); Max. 8
2. D1142: Number of \(X\) input points on digital extension device
3. D1143: Number of \(Y\) output points on digital extension device
4. D1145: Number of special left-side extension modules (AD, DA, XA, PT, TC...); Max. 8 (available in SV only)

Function Group Adjustable Pulse Speed Acceleration/Deceleration
Number M1144 ~M1149, M1154, D1030, D1031, D1144, D1154, D1155

\section*{Contents:}
1. Special \(D\) and special \(M\) of \(Y 0\) adjustable pulse speed acceleration/deceleration for SA/SX/SC: (The special data registers and the special auxiliary relays are not applicable to \(S X V 3.0\) and above because the function is replaced by DVSPO.)
\begin{tabular}{|c|c|}
\hline Device No. & Function \\
\hline M1144 & Activation switch for Y0 adjustable pulse speed acceleration/deceleration \\
\hline M1145 & Accelerating flag for Y0 adjustable pulse speed acceleration/deceleration \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Device No. & \multicolumn{1}{c|}{ Function } \\
\hline M1146 & "Target frequency reached" flag for Y0 adjustable pulse speed acceleration/deceleration \\
\hline M1147 & "Decelerating" flag for Y0 adjustable pulse speed acceleration/deceleration \\
\hline M1148 & "Function completed" flag for Y0 adjustable pulse speed acceleration/deceleration \\
\hline M1149 & "Counting temporarily stops" flag for Y0 adjustable pulse speed acceleration/deceleration \\
\hline M1154 & "Enabling deceleration" flag for Y0 adjustable pulse speed acceleration/deceleration \\
\hline D1030 & The lower 16 bits in the 32-bit data register for accumulative Y0 output pulses \\
\hline D1031 & The higher 16 bits in the 32-bit data register for accumulative Y0 output pulses \\
\hline D1144 & Starting No. of the register (D) for Y0 adjustable pulse speed acceleration/deceleration \\
\hline D1154 & Recommended value for indicated gap time of deceleration(10 ~32,767 ms) \\
\hline D1155 & Recommended value for indicated gap frequency of deceleration (-1~-32,700 Hz) \\
\hline
\end{tabular}
2. Parameters for D1144:
\begin{tabular}{|c|c|}
\hline Index & Function \\
\hline + 0 & Total number of sections (n) (max. 10) \\
\hline +1 & Currently executed section (read only) \\
\hline + 2 & Start frequency of the \(1^{\text {st }}\) section (SF1) \\
\hline + 3 & Gap time of the \({ }^{\text {st }}\) section (GT1) \\
\hline + 4 & Gap frequency of the \(1^{\text {st }}\) section (GF1) \\
\hline + 5 & Target frequency of the \(1^{\text {st }}\) section (TF1) \\
\hline + 6 & The lower 16 bits of the 32 bits for the target number of output pulses in the \(1^{\text {st }}\) section (SE1) \\
\hline + 7 & The higher 16 bits of the 32 bits for the target number of output pulses in the \(1^{\text {st }}\) section (SE1) \\
\hline + 8 & Start frequency of the \(2^{\text {nd }}\) section (SF2); Cannot be the same as TF1 \\
\hline + 9 & Gap time of the \(2^{\text {nd }}\) section (GT2) \\
\hline + 10 & Gap frequency of the \(2^{\text {nd }}\) section (GF2) \\
\hline + 11 & Target frequency of the \(2^{\text {nd }}\) section (TF2) \\
\hline + 12 & The lower 16 bits of the 32 bits for the target number of output pulses in the \(2^{\text {nd }}\) section (SE2) \\
\hline + 13 & The higher 16 bits of the 32 bits for the target number of output pulses in the \(2^{\text {nd }}\) section (SE2) \\
\hline : & : \\
\hline +n * \(6+2\) & Start frequency of the \(\mathrm{n}^{\text {th }}\) section (SFn); Cannot be the same as the start frequency of the \(\mathrm{n}-\mathrm{1}^{\text {th }}\) section (TFn-1) \\
\hline + n * \(6+3\) & Gap time of the \(\mathrm{n}^{\text {th }}\) section (GTn) \\
\hline \(+\mathrm{n} * 6+4\) & Gap frequency of the \(\mathrm{n}^{\text {th }}\) section (GFn) \\
\hline +n * \(6+5\) & Target frequency of the \(\mathrm{n}^{\text {th }}\) section (TFn) \\
\hline \(+\mathrm{n} * 6+6\) & The lower 16 bits of the 32 bits for the target number of output pulses in the \(\mathrm{n}^{\text {th }}\) section (SEn) \\
\hline \(+\mathrm{n} * 6+7\) & The higher 16 bits of the 32 bits for the target number of output pulses in the \(\mathrm{n}^{\text {th }}\) section (SEn) \\
\hline
\end{tabular}
3. The functions:

This function can only be used on Y0 output point and the timing chart is as follows. After filling out the parameter table, setup M1144 to start the function (should be applied in RUN mode).

4. How to use and the restrictions:
a) The start frequency and target frequency have to be \(\geq 200 \mathrm{~Hz}\); otherwise, the function will not be executed or complete execution.
b) The start frequency and target frequency have to be \(<32,700 \mathrm{~Hz}\). Frequency \(>32,700 \mathrm{~Hz}\) will be executed in \(32,700 \mathrm{~Hz}\).
c) Range of gap time: \(1 \sim 32,767 \mathrm{~ms}\) (Min. unit: ms)
d) The range of gap frequency within acceleration section: \(1 \mathrm{~Hz} \sim 32,700 \mathrm{~Hz}\); within deceleration section: -1 ~ \(-32,700 \mathrm{~Hz}\). If the gap frequency is set as 0 Hz , it will fail to reach target frequency in the executed section but in the next section when the target number of pulses is reached.
e) The target number of pulses in a section has to be \(>(\mathrm{GF} \times \mathrm{GT} / 1,000) \times[(\mathrm{TF}-\mathrm{SF}) / \mathrm{GF}]\); otherwise the target may not be reached. To correct it, the user may extend gap time or increase the target number of pulses.
f) When PLC is in RUN status and there is a high-speed instruction assigning YO input, the instruction will be executed prior to other instructions.
g) After M1144 = On, if M1148 has not be reached and M1144 is "Off", deceleration will be enabled. And if M1154 = Off at the moment, the deceleration rule will be "decelerating 200 Hz every 200 ms " and M1147 will be set. The pulse output will stop when the frequency falls under 200 Hz . If M1154 = On at the moment, the output will be executed following the gap time and frequency as set by the user. The time shall not be \(\leq 0\) (if \(\leq\) 0 , it will follow the initial setting 200 ms ) and the frequency shall not be \(\geq 0\) (if \(=0\), it will follow the initial setting -1 kHz ; if \(>0\), negative sign comes before the value).
h) When M1148 = On but M1144 = Off, deceleration will not be enabled and M1148 will be reset. Whenever M1144 = Off, M1149 will be reset.
i) The number of sections being executed is determined upon the total number of sections. (Max. number of sections = 10)
j) Acceleration or deceleration is determined upon the start frequency of the next section. That is, if the target frequency of the current section < the start frequency of the next section, acceleration will take place in the next section and the target frequency of the next section must > its start frequency. If the target frequency of the current section > the start frequency of the next section, deceleration will take place in the next section and the target frequency of the next section must < its start frequency. Correct pulse output cannot be guaranteed if the user does not follow the rules.
k) When PLC goes from STOP to RUN, M1144 ~ M1149 will be reset to "Off". When PLC goes from RUN to STOP, only M1144 will be reset, not M1145 ~ M1149.
I) SA/SX/SC uses parameter table D0 ~ D999 and D2000 ~ D4999. If the used parameter table (including all the used section parameters) falls off the range, the instruction will not be executed and M1144 will be "Off".
5. Example 1: Calculate the number of output pulses in every acceleration/deceleration section

Assume you set the start frequency of a section as 200 Hz , gap time as 100 ms , gap frequency as 100 Hz , target frequency as 500 Hz , and target number of pulses as 1,000 :
- The number of output pulses at start frequency \(=200 \times 100 / 1,000=20\)
- The number of output pulses in the first acceleration gap \(=300 \times 100 / 1,000=30\)
- The number of output pulses in the second acceleration gap \(=400 \times 100 / 1,000=40\)
- The number of output pulses at target frequency \(=1,000-(40+30+20)=910\)
(Please be noted that we suggest this number be bigger than 10.)
- Output time for target frequency \(=1 / 500 \times 910=1,820 \mathrm{~ms}\)
- Total time spent for this section \(=1,820+3 \times 100=2,120 \mathrm{~ms}\)
6. Example 2: Pulse output program for 1 acceleration section and 1 deceleration section

7. Example 3: Acceleration and deceleration in 1 section and the pulse output program with direction switch


Explanation:
a) See example 2 for the settings for acceleration and deceleration. The acceleration/deceleration frequency is stored in the latched area; therefore, you do not have to write it in the program.
b) The figure above is the example of the motion. When \(\mathrm{XO}=\mathrm{On}\), it will start the motion back and forth; when XO \(=\) Off, the motion will stop. Y 7 is a direction switch.
c) The program:

8. Example 4: Program of zero return for 1 acceleration section and 1 deceleration section
- The timing diagram of relevant flags:

- Frequency and the positions:

- Settings of acceleration/deceleration time, frequency and number of pulses:
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Started No. D \\
+ index value
\end{tabular} & Setting \\
\hline+0 & 2 \\
\hline+2 & \(250(\mathrm{~Hz})\) \\
\hline+3 & \(100(\mathrm{~ms})\) \\
\hline+4 & \(500(\mathrm{~Hz})\) \\
\hline+5 & \(10,000(\mathrm{~Hz})\) \\
\hline\(+6,+7\) & \(10(\mathrm{pulses})\) \\
\hline+8 & \(9,750(\mathrm{~Hz})\) \\
\hline+9 & \(50(\mathrm{~ms})\) \\
\hline+10 & \(-500(\mathrm{~Hz})\) \\
\hline+11 & \(250(\mathrm{~Hz})\) \\
\hline\(+12,+13\) & \(30,000(\mathrm{pulses})\) \\
\hline
\end{tabular}
- The program: (Assume X 7 is the switch for triggering zero return)

- Program explanations:
a) When X 7 is triggered, M1144 will enable acceleration. Set M1149 (counting temporarily stops) and 10 pulses will be sent out before the deceleration switch X0 is triggered and the program will enter the
deceleration section.
b) When X0 is disabled (i.e. zero return is completed), set M1148 to disable this function.

Note: The example offered here is one of the applications. Please adjust the settings of the parameters according to the features of and restrictions on your machines.

\section*{Function Group PWD Pulse Width Detection Duty-Off/Duty-On}

Number M1144, D1144

\section*{Application:}

Before the instruction DDRVI is used to drive the servo, the acceleration/deceleration operation is performed on the target position and the target frequency. After the instruction DDRVI is enabled, the operation can not be performed on the same target position and target frequency. The advantage is that the production can be enhanced.

\section*{Device:}

If M1144 is On, the function is enabled. If M1144 is Off, the function is disabled.
D1144 \(\rightarrow\) Using the index value of the data register
For example, k0 represents D0, k100 represents D100.

\section*{Usage: (Firmware version above 2.0)}
1. Suppose the value in D1144 is k0. The value in (D0, D1) represents the number of targets, the value in (D2, D3) represents the target frequency of Y0, the value in D1343 represents the acceleration time, the value in D1348 represents the deceleration time, and the value in D1340 represents the acceleration/deceleration frequency .
2. When M1144 is ON and the instruction DDRVI is not enabled, the operation is performed on the acceleration/deceleration frequency and the number of targets. After DDRVI is enabled, the pulses are generated.
3. If M 1144 is On , the previous output value is executed whenever DDRVI is enabled. If users want to change the target frequency or the number of targets, users have to reset M1144 to Off when DDRVI is disabled.
4. When this function is used, the default acceleration time and deceleration time are the values in D1343 and D1348. Therefore, the acceleration sections and decelerations section can occupy 30 sections respectively.
5. This function can be used with the designated deceleration number function (D1232, D1233), and the masking/marking function (M1156).

\section*{Timing chart:}
1. The function is disabled:

2. The function is enabled:

\(\begin{array}{ll}\text { Function Group } & \text { PWD Pulse Width Detection Duty-Off/Duty-On } \\ \text { Number } & \mathrm{M} 1154 \\ \text { Contents: } & \end{array}\)
1. PWD pulse width detection function of M1154 is only available in EH2/SV/EH3/SV2 series V1.6 and later versions.
2. M 1154 = Off: Detecting the width time when duty-off. M1154 = On: Detecting the width time when duty-on.

\section*{Function Group Pulse Output Pause, Mask, Mark}

Number
M1156 ~ M1159, M1538 ~ M1541, D1026, D1027

\section*{Contents:}
1. Actions of interruption type pulse output pause function (with deceleration):


Note: Actual line ( - ) -> Action when 1001 interruption does not occur.
Dotted line ( \(\quad . ..)^{\text {) }}\)-> Action when 1001 inter ruption occurs in unmasked area.
Note \#1: After M1538 = ON and the user reset M1156 = OFF, PLC will complete the remaining number of output pulses automatically.
- Applicable instructions: DRVI/DDRVI/PLSR/DPLSR
- Usage restriction: Has to work with external interruptions, special M and special D.
- Other explanations:
a) When this function is enabled, PLC will start to decelerate according to the set deceleration time. Even if the user does not set up the number of deceleration pulses (i.e. special \(D=0\) ), or the set number of pulses is less than the number planned for the deceleration time, PLC will still decelerate within the deceleration time. On the contrary, if the number of deceleration pulses is more than the planned number for the deceleration time, PLC will decelerate according to the number set in the special D.
b) Range for deceleration time: \(10 \sim 10,000 \mathrm{~ms}\)
c) There is mask interruption in CH0 high-speed output. When D1027/D1026 (32-bit) \(\neq 0\), the mask function will be enabled, i.e. X0 external interruption will not be activated when the number of output pulses is within the mask area.
- High-speed output \(\mathrm{CHO} \sim \mathrm{CH} 3\) v.s. pause function of external input points \(\mathrm{XO} \sim \mathrm{X} 3\) :
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & \begin{tabular}{c} 
Interruption \\
paused flag
\end{tabular} & \begin{tabular}{c} 
External \\
input point
\end{tabular} & \begin{tabular}{c} 
Deceleration \\
time \\
Special D
\end{tabular} & \begin{tabular}{c} 
Deceleration \\
pulses \\
Special D
\end{tabular} & \begin{tabular}{c} 
Mask \\
interruption \\
function
\end{tabular} & \begin{tabular}{c} 
Pause status \\
flag
\end{tabular} \\
\hline \(\mathrm{CH}(\mathrm{Y} 0, \mathrm{Y} 1)\) & M 1156 & X 0 & D 1348 & \(\mathrm{D} 1232 \sim \mathrm{D} 1233\) & \begin{tabular}{c} 
D1026, \\
D 1027
\end{tabular} & M 1538 \\
\hline \(\mathrm{CH}(\mathrm{Y} 2, \mathrm{Y} 3)\) & M 1157 & X 1 & D 1349 & \(\mathrm{D} 1234 \sim \mathrm{D} 1235\) & No & M 1539 \\
\hline \(\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) & M 1158 & X 2 & D 1350 & \(\mathrm{D} 1236 \sim \mathrm{D} 1237\) & No & M 1540 \\
\hline \(\mathrm{CH} 3(\mathrm{Y} 6, \mathrm{Y} 7)\) & M 1159 & X 3 & D 1351 & \(\mathrm{D} 1238 \sim \mathrm{D} 1239\) & No & M 1541 \\
\hline
\end{tabular}

\section*{EH3/SV2}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter & Interruption & \begin{tabular}{c} 
External \\
paused flag \\
input point
\end{tabular} & \begin{tabular}{c} 
Deceleration \\
time \\
Special D
\end{tabular} & \begin{tabular}{c} 
Deceleration \\
pulses \\
Special D
\end{tabular} & \begin{tabular}{c} 
Mask \\
interruption \\
function
\end{tabular} & \begin{tabular}{c} 
Pause status \\
flag
\end{tabular} \\
\hline Channel & M 1156 & X 0 & D 1348 & \(\mathrm{D} 1232 \sim \mathrm{D} 1233\) & \begin{tabular}{c} 
D1026, \\
D1027
\end{tabular} & M 1538 \\
\hline \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\) & M 1157 & X 1 & D 1349 & \(\mathrm{D} 1234 \sim \mathrm{D} 1235\) & \begin{tabular}{c} 
D1135~ \\
D1136
\end{tabular} & M 1539 \\
\hline \(\mathrm{CH}(\mathrm{Y} 4, \mathrm{Y} 5)\) & M 1158 & X 2 & D 1350 & \(\mathrm{D} 1236 \sim \mathrm{D} 1237\) & \begin{tabular}{c} 
D1154~ \\
D 1155
\end{tabular} & M 1540 \\
\hline \(\mathrm{CH}(\mathrm{Y} 6, \mathrm{Y} 7)\) & M 1159 & X 3 & D 1351 & \(\mathrm{D} 1238 \sim \mathrm{D} 1239\) & No & M 1541 \\
\hline
\end{tabular}
- Application examples:
> When M0 turns from Off to On, YO will start to output pulses and wait for the external input interruption X0 to take place. When interruption signals occur in the acceleration section or the highest speed section during the output, Y0 will immediately decelerate and stop the output after 100ms, and M1538 = On.
> When \(\mathrm{M} 1538=\) On, the user can reset (RST) M1156, and PLC will start to output the remaining pulses. When all the target pulses are completed, M1029 will be On.
\(>\) If the external interruption occurs in the planned deceleration area, the output will not decelerate or set M1538 to On.
b) Example 1: Immediately decelerate and pause within deceleration time
\(>\) Application: When external interruptions occur, the high-speed output has to achieve deceleration and pause within the designated deceleration time. It is generally applied in the searching mark function in single-axis motion control.
> The program:

c) Program explanation:
> When M0 turns from Off to On, Y0 will start to output pulses and wait for the external input interruption X0 to take place. When interruption signals occur in the acceleration section or the highest speed section during the output, Y0 will immediately decelerate and stop the output after 100ms, and M1538 = On.
> When M1538 = On, the user can reset (RST) M1156, and PLC will start to output the remaining pulses. When all the target pulses are completed, M1029 will be On.
> If the external interruption occurs in the planned deceleration area, the output will not decelerate or set M1538 to On.
d) Example 2: Immediately decelerate and pause within the number of deceleration pulses
> Application: When external interruptions occur, the high-speed output has to achieve deceleration and pause within the designated number of deceleration pulses. It is generally applied in the searching mark function in single-axis motion control.
> The program:

e) Program explanation:
\(>\) When MO turns from Off to On, YO will start to output pulses. After the external input interruption X0 occurs during the output, Y0 will immediately decelerate and output 50,000 pulses before it stops and set M1538 (pause status flag) to On.
> When M1538 = On, the user can reset (RST) M1156, and PLC will start to output the remaining pulses. When all the target pulses are completed, M1029 will be On.
\(>\) If the external interruption occurs in the planned deceleration area, the output will not decelerate or set M1538 to On.
2. Actions of program type pulse output pause function (with no deceleration):

- Applicable instructions: DRVI/DDRVI/DRVA/DDRVA/PLSR/DPLSR
- Applicable model/firmware version: EH2, EH3/SV2 v1.4, SV v1.5 (and their later versions)
- During the pulse output, force On M1308 will stop the output, and force Off M1308 will start the output of remaining pulses.
- The max. stop time inaccuracy in this pause function is 1 scan cycle.
- High-speed output CH0 ~ CH3 v.s. pause function of pause flags:
\begin{tabular}{|c|c|}
\hline Flag & Pause flag \\
\hline CH 0 & M 1308 \\
\hline CH 1 & M 1309 \\
\hline CH 2 & M 1310 \\
\hline CH 3 & M 1311 \\
\hline
\end{tabular}
3. Special M and special D registers for SV V1.4 and later versions when conducting deceleration to pausing output (for the ongoing high-speed pulse output encountering interruption signals), mask and mark.
\begin{tabular}{|c|c|c|}
\hline evice No. & \multicolumn{2}{|l|}{Function} \\
\hline M1308 & \multicolumn{2}{|l|}{Off -> On: \(1^{\text {st }}\) group of \(\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)\) high-speed pulse output immediately pauses. On -> Off: Complete the remaining number of output pulses} \\
\hline M1309 & \multicolumn{2}{|l|}{Off -> On: \(2^{\text {nd }}\) group of \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\) high-speed pulse output immediately pauses. On -> Off: Complete the remaining number of output pulses} \\
\hline M1310 & \multicolumn{2}{|l|}{\begin{tabular}{l}
Off -> On: \(3^{\text {rd }}\) group of \(\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) high-speed pulse output immediately pauses. \\
On -> Off: Complete the remaining number of output pulses
\end{tabular}} \\
\hline M1311 & \multicolumn{2}{|l|}{Off -> On: \(4^{\text {th }}\) group of \(\mathrm{CH} 3(\mathrm{Y} 6, \mathrm{Y} 7)\) high-speed pulse output immediately pauses. On -> Off: Complete the remaining number of output pulses} \\
\hline M1156 & \multicolumn{2}{|l|}{Enable XO interruption to trigger immediate decelerating and pausing CHO high-speed output. (When M1156 is enabled and M1538 = On, simply clear M1156 to finish sending out the remaining output pulses.)} \\
\hline M1157 & \multicolumn{2}{|l|}{Enable X1 interruption to trigger immediate decelerating and pausing CH1 high-speed output} \\
\hline M1158 & \multicolumn{2}{|l|}{Enable X2 interruption to trigger immediate decelerating and pausing CH2 high-speed output} \\
\hline M1159 & \multicolumn{2}{|l|}{Enable X3 interruption to trigger immediate decelerating and pausing CH 3 high-speed output} \\
\hline M1538 & \multicolumn{2}{|l|}{CHO pause status} \\
\hline M1539 & \multicolumn{2}{|l|}{CH1 pause status} \\
\hline M1540 & \multicolumn{2}{|l|}{CH2 pause status} \\
\hline M1541 & \multicolumn{2}{|l|}{CH3 pause status} \\
\hline D1026 & \multirow[t]{2}{*}{When \(\neq 0\), enabling DRVI and PLSR instructions to work with X0 (mask) interruption.} & Low word \\
\hline D1027 & & High word \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Device No. & \multicolumn{2}{|c|}{Function} \\
\hline D1232 & \multirow[b]{2}{*}{Number of CH0 output pulses after mark} & Low word \\
\hline D1233 & & High word \\
\hline D1234 & \multirow[t]{2}{*}{Number of CH1 output pulses after mark} & Low word \\
\hline D1235 & & High word \\
\hline D1236 & \multirow[t]{2}{*}{Number of CH2 output pulses after mark} & Low word \\
\hline D1237 & & High word \\
\hline D1238 & \multirow[b]{2}{*}{Number of CH3 output pulses after mark} & Low word \\
\hline D1239 & & High word \\
\hline
\end{tabular}

Function Group Single Step Execution
Number M1170, M1171, D1170

\section*{Contents:}
1. Special \(D\) and special \(M\) for single step execution for EH2/SV/EH3/SV2:
\begin{tabular}{|c|l|}
\hline Device No. & \\
\hline M1170 & Start flag \\
\hline M1171 & Action flag \\
\hline D1170 & STEP No. of the currently executed instruction \\
\hline
\end{tabular}
2. The function:
a) Execution timing: The flag is valid only when PLC is in RUN status.
b) Action steps:
i) When M1170 is enabled, PLC enters the single step execution mode. PLC stays at a specific instruction, stores the location of STEP in D1170 and executes the instruction once.
ii) When M1171 is forced "On", PLC executes the next instruction and stops. At the same time, PLC auto-force "O ff" M1171 and stops at the next instruction. D1170 stores the present STEP value.
iii) When Y output is in single step execution mode, Y outputs immediately without having to wait until END instruction is being executed.
3. Note:
a) Instruction that will be affected by scan time will be executed incorrectly due to the single step execution. For example, when HKY instruction is executed, it takes 8 scan times to obtain a valid input value from a key. Therefore, the single step execution will result in incorrect actions.
b) High-speed pulse input/output and high-speed counter comparison instructions are executed by hardware; therefore, they will not be affected by the single step execution.

Function Group 2-phase Pulse Output
Number M1172 ~ M1174, D1172 ~ D1177

\section*{Contents:}
1. Special \(D\) and special \(M\) for two-phase pulse output for SA/SX/SC: (The special data registers and the special auxiliary relays are not applicable to SX V3.0 and above because the function is replaced by PLSY. Users can use PLSY and D1220.)
\begin{tabular}{|c|c|}
\hline Device No. & Function \\
\hline M1172 & Switch for two-phase pulse output (On = enabled) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Device No. & \\
\hline M1173 & On = Continuous output switch \\
\hline M1174 & "Number of pulses reached" flag \\
\hline D1172 & Output frequency \((12 \mathrm{~Hz} \sim 20 \mathrm{kHz})\) \\
\hline D1173 & Output mode (K1 and K2) \\
\hline D1174 & The lower 16 bits of the 32 bits for the target number of pulses \\
\hline D1175 & The higher 16 bits of the 32 bits for the target number of pulses \\
\hline D1176 & The lower 16 bits of the 32 bits for the present number of pulses \\
\hline D1177 & The higher 16 bits of the 32 bits for the present number of pulses \\
\hline
\end{tabular}
2. The function:

Output frequency \(=1 / 1\) pulse cycle period (i.e. \(1 / T\); as the figure below)
There are two output modes. K1 refers to "A-phase ahead of B-phase" and K2 refers to "B-phase ahead of A-phase". The number of pulses accumulates once whenever a phase gap occurs. For example, the number of pulses in the figure below \(=8\), and when the number is reached, M1174 turns "On". To clear the number, simply turn "Off" M1172.


The output frequency, target number of pulses and selection of modes can be modified when M1172 = On and M1174 = Off. Modification on output frequency and target number of pulses will not affect the present number of pulses, but when the mode is modified, the present number of pulses will be cleared as " 0 ". The present number of output pulses is updated in every scan time. When M1133 turns from "Off" to "on", the number will be cleared as "0". When M1172 is cleared as "0" when PLC goes from STOP to RUN. When PLC goes from RUN to STOP, the last number of pulses will be shown.
3. Note:

This function can only be used when PLC is in RUN status and can coexist with PLSY instruction in the program. If PLSY instruction is executed prior to this function, the function cannot be used and vice versa.

\section*{Function Group VR Volume}

Number
M1178 ~ M1179, D1178 ~ D1179

\section*{Contents:}
1. Special D and special M for built-in 2-point VR volume for EH2/SV/EH3/SV2 and SA/SC:
\begin{tabular}{|c|ll|}
\hline Device No. & & Function \\
\hline M1178 & Enable VR0 volume & \\
\hline
\end{tabular}
\begin{tabular}{|c|ll|}
\hline Device No. & & Function \\
\hline M1179 & Enable VR1 volume & \\
\hline D1178 & VR0 value & \\
\hline D1179 & VR1 value & \\
\hline
\end{tabular}
2. The function:

This function should be used when PLC is in RUN status. When M1178 = On, VR0 value will be converted into a value of \(0 \sim 255\) and stored in D1178. When M1179 \(=\) On, VR1 value will be converted into a value of \(0 \sim 255\) and stored in D1179.
3. See API 85 VRRD for more details.

Function Group Interruption Instruction for Reading the Number of Pulses
Number M1181~M1182, D1180~D1181, D1198~D1199
Contents:
1. SA/SX/SC can use external interruption to store the present value in the middle-high-speed counter into D1180 ~ D1181 and D1198 ~ D1199, and use M1181 ~ M1182 to clear the present value in the high-speed counter.
2. The function:
a) For SA/SX, X0 (pulse input point) has to work with X2 (external interruption point), and C235/C251/C253 (high-speed counter) has to work with 1201 (interruption No.). D1180 and D1181 are the registers to store the 32-bit values. If M1181 is enabled before the interrupt is triggered, the value in C235/C251/C253 is moved to D1180 and D1181 when the interrupt is triggered, and the value in C235/C251/C253 will be cleared.

Condition: When the program enables I201 (X2 is the external interruption input), and C235, C251, and C253 are used, the function is enabled.
b) For SA/SX, X1 (pulse input point) has to work with X3 (external interruption point), and C236 has to work with I301. D1198 and D1199 are the registers to store the 32-bit values. If M1182 is enabled before the interrupt is triggered, the value in C236 is moved to D1198 and D1199 when the interrupt is triggered, and the value in C236 will be cleared.
Condition: When the program enables \(\operatorname{I301}\) ( \(X 3\) is the external interruption input), and C236 is used, the function is enabled.
c) For SC, X10 (pulse input point) has to work with X4 (external interruption point), C243/C255 (high-speed counter) and 1401 (interruption No.). D1180 and D1181 are the registers to store the 32-bit values. X11 (pulse input point) has to work with X5 (external interruption point), C245 and I501. D1198 and D1199 are the registers to store the 32-bit values.

Condition 1: When the program enables I401 (X4 is the external interruption input), and C235, C241 and C251 are used, the function is enabled. Once the high-speed counting value is acquired, the present value of high-speed counting will be cleared immediately. When the program enables I501 (X5 is the external interruption input), and C236 is used, the function is enabled. Once the high-speed counting value is acquired, the present value of high-speed counting will be cleared immediately.
Condition 2: When the program enables 1401 (X4 is the external interruption input), and C243 and C255 are used, the function is enabled, but the high-speed counting value will not be cleared. When the program enables 1501
( X 5 is the external interruption input), and C245 is used, the function is enabled, but the high-speed counting value will not be cleared.

\section*{Function Group Auto-mapping Function}

Number M1182 ~M1183, D9800 ~ D9879, D9900~D9979
1. The default value of M1182 is ON.

When M1182 is OFF, the auto-mapping function is enabled. The analog-to-digital values/digital-to-analog values correspond to D9800~D9879. If the first left-side module connected to EH3-L/SV2 is a communication module, the analog-to-digital values/digital-to-analog values correspond to D9810~. For example, if the modules connected to SV2 from left to right are 04DA-SL, EN01-SL, and 04AD-SL, and M1182 is OFF, D9820~D9823 will be assigned to \(\mathrm{CH} 1 \sim \mathrm{CH} 4\) in the third left-side module 04DA-SL.
\begin{tabular}{|c|c|c|c|}
\hline 04DA-SL & EN01-SL & 04AD-SL & SV2 \\
\hline \multicolumn{3}{|l|}{\(\downarrow\) 沫} & \\
\hline Third left-side module & Second left-side module & First left-side module & \\
\hline D9820 & X & D9800 & CH 1 AlO conversion value \\
\hline D9821 & X & D9801 & \[
\begin{gathered}
\mathrm{CH} 2 \mathrm{AIO} \\
\text { conversion value }
\end{gathered}
\] \\
\hline D9822 & X & D9802 & \begin{tabular}{l}
CH3 AIO \\
conversion value
\end{tabular} \\
\hline D9823 & X & D9803 & CH 4 AlO conversion value \\
\hline
\end{tabular}

Note: The default value of M1182 in SV2 version 1.0 is OFF. If users want to disable the auto-mapping function, they have to set M1182 to ON.
2. The default value of M1183 is ON.

When M1183 is OFF, the auto-mapping function is enabled. The analog-to-digital values/digital-to-analog values correspond to D9900~D9979. For example, if the modules connected to SV2 from left to right are 04DA-S, 04DA-S, and 06XA-S, and M1182 is OFF, D9900~D9903 will be assigned to \(\mathrm{CH} 1 \sim \mathrm{CH} 4\) in the first right-side module 04DA-S, D9910~D9913 will be assigned to \(\mathrm{CH} 1 \sim \mathrm{CH} 4\) in the second right-side module 04DA-S, and D9920~D9925 will be assigned to CH1~CH6 in the third module 06XA-S.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ SV2 } & 04DA-S & 04AD-S & 06XA-S \\
\hline & \(\downarrow\) & \(\downarrow\) & \(\downarrow\) \\
\hline & First module & Second module & Third module \\
\hline CH1 AIO conversion value & D9900 & D9910 & D9920 \\
\hline CH2 AIO conversion value & D9901 & D9911 & D9921 \\
\hline CH3 AIO conversion value & D9902 & D9912 & D9922 \\
\hline CH4 AIO conversion value & D9903 & D9913 & D9923 \\
\hline CH5 AIO conversion value & X & X & D9924 \\
\hline CH6 AIO conversion value & X & X & D9925 \\
\hline
\end{tabular}

\section*{Function Group MODEM Connection Function \\ Number M1184~M1188}

\section*{Contents:}
1. The system connection

2. Special M for MODEM connection for EH2/EH3/SV2:
\begin{tabular}{|c|l|l|}
\hline Device No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Note } \\
\hline M1184 & Enable MODEM & On: The following actions are valid \\
\hline M1185 & Initialize MODEM & Off: Initialization is completed \\
\hline M1186 & Fail to initialize MODEM & Off: M1185 = On \\
\hline M1187 & MODEM initialization is completed & Off: M1185 = On \\
\hline M1188 & Shows if MODEM is connected & On: Connecting \\
\hline
\end{tabular}

Note: The special Ms are both applicable when PLC is in RUN or STOP status.
3. How to connect (Please follow the steps below):
a) Set "On" M1184 (Enable PLC MODEM connection).
b) Set "On" M1185 (Enable initialization of MODEM from PLC).
c) Check if the initialization of MODEM is successful from M1186, M1187.
d) Wait for the connection.
4. Note:
a) When PLC is to be connected with MODEM, a RS-232 extension card is required. If there is no RS-232 extension card, all special M above will be invalid.
b) After enabling MODEM (M1184 = On), PLC has to initialize MODEM first (M1185 = On). If PLC fails to initialize MODEM, the auto-answering function of the MODEM will not be enabled.
c) After MODEM is initialized, it will enter auto-answering mode automatically.
d) If the remote PC is disconnected, MODEM will enter stand-by mode automatically and if the user turns off MODEM now, MODEM will have to be initialized again when it is turned on again.
e) The connection speed is set by PLC as 9,600bps fixed and modification on the speed is not allowed. MODEM has to be able to support the speed of 9,600bps and versions above.
f) The initialization format from PLC to MODEM are ATZ and ATSO \(=1\).
g) If PLC fails to initialize MODEM, use the super terminal in PC to initialize it by the format ATZ and ATSO \(=1\).

\section*{Function Group Latched Area}

Number D1200 ~ D1219

\section*{Contents:}
1. The latched area for EH2/SV/EH3/SV2 and SA/SX/SC is from the start address No. to the end address No.
2. See the tables in Chapter 2.1 for more details.

\section*{Function Group Set On/Off of Input Point X on MPU}

\section*{Number M1304}

\section*{Contents:}
1. For SS/ES/EX, when M1304 = On, the \(X\) input points (X0 ~ X17) on MPU can be set On/Off by peripheral devices, e.g. WPLSoft or DVP-HPP. However, the LED indicators will not respond to the setup.
2. For SA/SX/SC, when M1304 = On, peripheral devices, e.g. WPLSoft or DVP-HPP, can set On/Off of X0 ~ X17 on the MPU, but the LED indicators will not respond to it.
3. For EH2/SV/EH3/SV2, when M1304 = On, peripheral devices, e.g. WPLSoft or DVP-HPP, can set On/Off of \(X\) input points on the MPU, but the LED indicators will not respond to it.

Function Group High-speed Output Pulse Stop Mode
Number
M1310 ~ M1311, M1334 ~ M1335, D1166 ~ D1167, D1343 ~ D1353

\section*{Contents:}
1. Special \(D\) and special \(M\) for high-speed pulse output stop mode: (SC_V1.4 and versions above are with an additional mode 3)
\begin{tabular}{|c|l|}
\hline Device No. & \multicolumn{1}{|c|}{ Function } \\
\hline M1334 & Select stop mode for Y10 pulse \\
\hline M1335 & Select stop mode for Y11 pulse \\
\hline M1310 & Immediately stop Y10 pulse output \\
\hline M1311 & Immediately stop Y11 pulse output \\
\hline D1166 & X10 rising-edge/falling-edge counting mode switch \\
\hline D1167 & X11 rising-edge/falling-edge counting mode switch \\
\hline D1343 & Acceleration/deceleration time for Y10 pulse output \\
\hline D1353 & Acceleration/deceleration time for Y11 pulse output \\
\hline
\end{tabular}
2. How do Y10 pulse output stop modes work:
a) Using Y10 pulse output
- Mode 1 - Planned deceleration

Applicable to: DDRVI and DDRVA instructions
Criteria for executing planned deceleration: Shut down the criteria contact for pulse output instruction and turn "Off" M1334.

The time from executing planned deceleration to the end of pulse output: The time set in D1343 (for acceleration/deceleration)

The solid lines in the figure below are the originally planned routes and the dotted lines refer to the routes after planned deceleration is executed.


\section*{- Mode 2 - Output shutdown}

Applicable to: DDRVI, DDRVA, PLSY instructions
Criteria for executing output shutdown: Shut down the criteria contact for pulse output instruction and turn "On" M1334. (Because PLSY does not have acceleration/deceleration setting, M1334 does not need to be set in PLSY)

The time from executing output shutdown to the end of pulse output: Max. 1 scan cycle.
The solid lines in the figure below are the originally planned routes and the dotted lines refer to the routes after output shutdown is executed.


Max. Stop time \(=1\) scan cycle

\section*{- Mode 3 - Immediate output shutdown}

Applicable to: DDRVI, DDRVA, PLSY instructions
Criteria for executing immediate output shutdown: M1310 = On (set before executing the instruction) and the criteria triggers set in X10 (D1166 \(=\) K0 refers to rising-edge; D1166 \(=\) K1 refers to falling-edge) The time from executing immediate output shutdown to the end of pulse output: Max. 1 pulse time. The solid lines in the figure below are the originally planned routes and the dotted lines refer to the routes after X10 is triggered.

b) Using Y11 pulse output

\section*{- Mode 1 - Planned deceleration}

Applicable to: DDRVI and DDRVA instructions
Criteria for executing planned deceleration: Shut down the criteria contact for pulse output instruction and turn "Off" M1335.

The time from executing planned deceleration to the end of pulse output: The time set in D1353 (for acceleration/deceleration)

\section*{- Mode 2 - Output shutdown}

Applicable to: DDRVI, DDRVA, PLSY instructions
Criteria for executing output shutdown: Shut down the criteria contact for pulse output instruction and turn "On" M1335. (Because PLSY does not have acceleration/deceleration setting, M1335 does not need to be set in PLSY)

The time from executing output shutdown to the end of pulse output: Max. 1 scan cycle.
- Mode 3 - Immediate output shutdown

Applicable to: DDRVI, DDRVA, PLSY instructions
Criteria for executing immediate output shutdown: M1311 = On (set before executing the instruction) and the criteria triggers set in X11 (D1167 = K0 refers to rising-edge; D1167 \(=\) K1 refers to falling-edge) The time from executing immediate output shutdown to the end of pulse output: Max. 1 pulse time.
3. Note:
a) The execution criteria M1334 and M1335 for mode 1 and 2 have to be set before executing pulse output shutdown instruction. The execution criteria M1310, M1311 and trigger criteria D1166, D1167 for mode 3 have to be set before the pulse output instruction is executed.
b) In mode 3 (immediate output shutdown), Y10 can only be used with X10 and Y11 with X11.
c) When using X10 or X11 in mode 3, DO NOT use X10 or X11 as the input high-speed counter.

Function Group Right-Side Special Extension Module ID
Number D1320 ~ D1327
Contents:
1. The ID of right-side special extension module, if any, connected to EH2/EH3/SV2 are stored in D1320 ~ D1327 in sequence.
2. Special extension module ID for EH:
\begin{tabular}{|c|c|c|c|}
\hline Module Name & Module ID (hex) & Module Name & Module ID (hex) \\
\hline DVP04AD-H & H'0400 & DVP01PU-H & H'0110 \\
\hline DVP04DA-H & H'0401 & DVP01HC-H & H'0120 \\
\hline DVP04PT-H & H'0402 & DVP02HC-H & H'0220 \\
\hline DVP04TC-H & H'0403 & DVP01DT-H & H'0130 \\
\hline DVP06XA-H & H'0604 & DVP02DT-H & H'0230 \\
\hline
\end{tabular}
3. Special extension module ID for EH2 (EH3 can be connected to the special extension module of EH2):
\begin{tabular}{|c|c|c|c|}
\hline Module Name & Module ID (hex) & Module Name & Module ID (hex) \\
\hline DVP04AD-H2 & H'6400 & DVP01HC-H2 & H'6120 \\
\hline DVP04DA-H2 & H'6401 & DVP02HC-H2 & H'6220 \(^{\prime}\) \\
\hline DVP04PT-H2 & H'6402 & DVPDT02-H2 & H'0230 \(^{\prime}\) \\
\hline DVP04TC-H2 & H'6403 & DVPCP02-H2 & H'0240 \(^{\text {DVP06XA-H2 }}\) \\
\hline DVP01PU-H2 & H'6604 & DVPPF02-H2 & H'0250 \\
\hline
\end{tabular}
4. Special extension module ID for EH3:
\begin{tabular}{|c|c|}
\hline Module Name & Module ID (hex) \\
\hline DVP04AD-H3 & H'6407 \\
\hline DVP06XA-H3 & H'6608 \\
\hline DVP04DA-H3 & H'6409 \\
\hline
\end{tabular}

Function Group Left-Side High-Speed Special Extension Module ID
Number D1386 ~ D1393

\section*{Contents:}
1. The ID of left-side special extension module, if any, connected to SV/SV2/EH2-L are stored in D1386 ~ D1393 in sequence.
2. Left-side special extension module ID for SV/SV2/EH2-L:
\begin{tabular}{|c|c|c|c|}
\hline Module Name & Module ID (hex) & Module Name & Module ID (hex) \\
\hline DVP04AD-SL & H'4400 & DVP01HC-SL & H'4120 \\
\hline DVP04DA-SL & H'4401 & DVP02HC-SL & H'4220 \\
\hline DVP04PT-SL & H'4402 & DVPDNET-SL & H'4131 \(^{\text {DVP04TC-SL }}\) \\
\hline H'4403 & DVPEN01-SL & H'4050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Module Name & Module ID (hex) & Module Name & Module ID (hex) \\
\hline DVP06XA-SL & H'6404 & DVPMDM-SL & H'4040 \(^{\prime}\) \\
\hline DVP01PU-SL & H'4110 & DVPCOPM-SL & H'4133 \\
\hline
\end{tabular}

\section*{Function Group PLC LINK}

Number M1350 ~M1354, M1360 ~ M1519, D1399, D1355 ~ D1370, D1415 ~ D1465, D1480 ~ D1991

\section*{Contents:}
1. Special D and special M for ID1 ~ ID8 of the 16 stations in PLC LINK (M1353 = Off) for SA/SX/SC/EH2/SV/EH3/SV2:

\section*{MASTER PLC}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SLAVE ID 1} & \multicolumn{2}{|l|}{SLAVE ID 2} & \multicolumn{2}{|l|}{SLAVE ID 3} & \multicolumn{2}{|l|}{SLAVE ID 4} & \multicolumn{2}{|l|}{SLAVE ID 5} & \multicolumn{2}{|l|}{SLAVE ID 6} & \multicolumn{2}{|l|}{SLAVE ID 7} & \multicolumn{2}{|l|}{SLAVE ID 8} \\
\hline & \[
\begin{gathered}
\mathrm{Wr} \\
\text { ir }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{Re} \\
\mathrm{OL}
\end{gathered}
\] & & Read out & & & & & &  & & out & & Read out & Write in \\
\hline
\end{tabular}

M1353 = Off: Disable 32 stations in the Link and the function of reading/writing more than 16 data (RST M1353); the No. of special D for storing the 16 read/written data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\left\lvert\, \begin{gathered}
\text { D1480 } \\
\mid \\
\text { D1495 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1496 } \\
\text { D1511 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { D1512 } \\
\text { | } \\
\text { D1527 }
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { D1528 } \\
\text { D1543 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1544 } \\
\text { D1559 }
\end{gathered}\right.
\] &  & \[
\left\lvert\, \begin{gathered}
\text { D1576 } \\
\text { D1591 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1592 } \\
\text { D1607 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { D1608 } \\
\text { D1623 }
\end{gathered}
\] &  & \[
\left\lvert\, \begin{gathered}
\text { D1640 } \\
\text { D1655 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { D1656 } \\
\text { D1671 }
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { D1672 } \\
\text { D1687 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1688 } \\
\text { D1703 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\mathrm{D} 1704 \\
\text { D1719 }
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { D1720 } \\
\text { D1735 }
\end{gathered}\right.
\] \\
\hline Number of data & Number of data \\
\hline D1434 & D1450 & D1435 & D1451 & D1436 & D1452 & D1437 & D1453 & D1438 & D1454 & D1439 & D1455 & D1440 & D1456 & D1441 & D1457 \\
\hline \multicolumn{16}{|c|}{Start Communication Address} \\
\hline D1355 & D1415 & D1356 & D1416 & D1357 & D1417 & D1358 & D1418 & D1359 & D1419 & D1360 & D1420 & D1361 & D1421 & D1362 & D1422 \\
\hline \multicolumn{16}{|c|}{LINK in SLAVE PLC?} \\
\hline \multicolumn{2}{|r|}{M1360} & \multicolumn{2}{|l|}{M1361} & \multicolumn{2}{|r|}{M1362} & \multicolumn{2}{|r|}{M1363} & \multicolumn{2}{|r|}{M1364} & \multicolumn{2}{|l|}{M1365} & \multicolumn{2}{|r|}{M1366} & \multicolumn{2}{|r|}{M1367} \\
\hline \multicolumn{16}{|c|}{Action flag for SLAVE PLC from MASTER PLC} \\
\hline \multicolumn{2}{|r|}{M1376} & \multicolumn{2}{|l|}{M1377} & \multicolumn{2}{|r|}{M1378} & \multicolumn{2}{|r|}{M1379} & \multicolumn{2}{|r|}{M1380} & \multicolumn{2}{|l|}{M1381} & \multicolumn{2}{|r|}{M1382} & \multicolumn{2}{|r|}{M1383} \\
\hline \multicolumn{16}{|c|}{"Read/write error" flag} \\
\hline \multicolumn{2}{|r|}{M1392} & \multicolumn{2}{|l|}{M1393} & \multicolumn{2}{|r|}{M1394} & \multicolumn{2}{|r|}{M1395} & \multicolumn{2}{|r|}{M1396} & \multicolumn{2}{|l|}{M1397} & \multicolumn{2}{|r|}{M1398} & \multicolumn{2}{|r|}{M1399} \\
\hline \multicolumn{16}{|c|}{"Reading completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|r|}{M1408} & \multicolumn{2}{|l|}{M1409} & \multicolumn{2}{|r|}{M1410} & \multicolumn{2}{|r|}{M1411} & \multicolumn{2}{|r|}{M1412} & \multicolumn{2}{|l|}{M1413} & \multicolumn{2}{|r|}{M1414} & \multicolumn{2}{|r|}{M1415} \\
\hline \multicolumn{16}{|c|}{"Writing completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|r|}{M1424} & \multicolumn{2}{|l|}{M1425} & \multicolumn{2}{|r|}{M1426} & \multicolumn{2}{|r|}{M1427} & \multicolumn{2}{|r|}{M1428} & \multicolumn{2}{|l|}{M1429} & \multicolumn{2}{|r|}{M1430} & \multicolumn{2}{|r|}{M1431} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SLAVE ID 1} & \multicolumn{2}{|l|}{SLAVE ID 2} & \multicolumn{2}{|l|}{SLAVE ID 3} & \multicolumn{2}{|l|}{SLAVE ID 4} & \multicolumn{2}{|l|}{SLAVE ID 5} & \multicolumn{2}{|l|}{SLAVE ID 6} & \multicolumn{2}{|l|}{SLAVE ID 7} & \multicolumn{2}{|l|}{SLAVE ID 8} \\
\hline Read out & Write in & Read out & Write in \\
\hline \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { D100 } \\
& \text { D115 }
\end{aligned}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { D100 } \\
& \text { D115 }
\end{aligned}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { | } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] \\
\hline
\end{tabular}
- Default start communication address D1355 ~ D1362 to be read = H1064 (D100)
- Default start communication address D1415 ~ D1422 to be written = H10C8 (D200)
2. Special D and special M for ID9 ~ ID16 of the 16 stations in PLC LINK (M1353 = Off) for SA/SX/SC/EH2/SV/EH3/SV2:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{MASTER PLC} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 9} & \multicolumn{2}{|l|}{SLAVE ID 10} & \multicolumn{2}{|l|}{SLAVE ID 11} & \multicolumn{2}{|l|}{SLAVE ID 12} & \multicolumn{2}{|l|}{SLAVE ID 13} & \multicolumn{2}{|l|}{SLAVE ID 14} & \multicolumn{2}{|l|}{SLAVE ID 15} & \multicolumn{2}{|l|}{SLAVE ID 16} \\
\hline Read out & Write in & Read out & Write in \\
\hline
\end{tabular}

M1353 = Off: Disable 32 stations in the Link and the function of reading/writing more than 16 data (RST M1353); the No. of special D for storing the 16 read/written data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|c|}
\hline \text { D1736 } \\
\text { D1751 }
\end{array}
\] & \[
\begin{gathered}
\text { D1752 } \\
\left.\right|_{1}
\end{gathered}
\] & \[
\underset{\text { D1783 }}{\substack{\text { D1768 }}}
\] & \[
\left\lvert\, \begin{gathered}
\text { D1784 } \\
\text { D1799 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { D1800 } \\
\text { D1815 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D1816 } \\
\text { D1831 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D1832 } \\
\text { D1847 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D1848 } \\
\text { D1863 }
\end{gathered}
\] & \[
\left|\begin{array}{c}
\text { D1864 } \\
\mid \\
\text { D1879 }
\end{array}\right|
\] & \[
\left\lvert\, \begin{gathered}
\text { D1880 } \\
\text { D1895 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { D1896 } \\
\text { D1911 }
\end{gathered}
\] & \[
\left\lvert\, \begin{gathered}
\text { D1912 } \\
\text { D1927 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1928 } \\
\text { D1943 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1944 } \\
\text { D1959 }
\end{gathered}\right.
\] & \[
\left\lvert\, \begin{gathered}
\text { D1960 } \\
\text { D1975 }
\end{gathered}\right.
\] & \[
\begin{gathered}
\text { D1976 } \\
\text { D1991 }
\end{gathered}
\] \\
\hline Number of data & Number of data \\
\hline D1442 & D1458 & D1443 & D1459 & D1444 & D1460 & D1445 & D1461 & D1446 & D1462 & D1447 & D1463 & D1448 & D1464 & D1449 & D1465 \\
\hline \multicolumn{16}{|c|}{Start Communication Address} \\
\hline D1363 & D1423 & D1364 & D1424 & D1365 & D1425 & D1366 & D1426 & D1367 & D1427 & D1368 & D1428 & D1369 & D1429 & D1370 & D1430 \\
\hline \multicolumn{16}{|c|}{LINK in SLAVE PLC?} \\
\hline \multicolumn{2}{|r|}{M1368} & \multicolumn{2}{|l|}{M1369} & \multicolumn{2}{|l|}{M1370} & \multicolumn{2}{|l|}{M1371} & \multicolumn{2}{|l|}{M1372} & \multicolumn{2}{|l|}{M1373} & \multicolumn{2}{|l|}{M1374} & \multicolumn{2}{|r|}{M1375} \\
\hline
\end{tabular}

Action flag for SLAVE PLC from MASTER PLC
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline M1384 & M1385 & M1386 & M1387 & M1388 & M1389 & M1390 & M1391 \\
\hline \multicolumn{8}{|c|}{ "Read/write error" flag } \\
\hline M1400 & M1401 & M1402 & M1403 & M1404 & M1405 & M1406 & M1407 \\
\hline \multicolumn{7}{|c|}{ "Reading completed" flag (turns "Off" whenever read/write a station is completed) } \\
\hline M1416 & M1417 & M1418 & M1419 & M1420 & M1421 & M1422 & M1423 \\
\hline \multicolumn{8}{|c|}{ "Writing completed" flag (turns "Off" whenever read/write a station is completed) } \\
\hline M1432 & M1433 & M1434 & M1435 & M1436 & M1437 & M1438 & M1439 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SLAVE ID 9} & \multicolumn{2}{|l|}{SLAVE ID 10} & \multicolumn{2}{|l|}{SLAVE ID 11} & \multicolumn{2}{|l|}{SLAVE ID 12} & \multicolumn{2}{|l|}{SLAVE ID 13} & \multicolumn{2}{|l|}{SLAVE ID 14} & \multicolumn{2}{|l|}{SLAVE ID 15} & \multicolumn{2}{|l|}{SLAVE ID 16} \\
\hline Read out & Write in & Read out & Write in \\
\hline \[
\begin{gathered}
\text { D100 } \\
\text { | } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { | } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { | } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { D100 } \\
& \text { D115 }
\end{aligned}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { | } 115
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] \\
\hline
\end{tabular}
- Default start communication address D1363 ~ D1370 to be read = H1064 (D100)
- Default start communication address D1423 ~ D1430 to be written = H10C8 (D200)
3. Special D and special M for ID1 ~ ID8 of the 32 stations in PLC LINK (M1353 = On) for EH2/SV/EH3/SV2:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{MASTER PLC} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 1} & \multicolumn{2}{|l|}{SLAVE ID 2} & \multicolumn{2}{|l|}{SLAVE ID 3} & \multicolumn{2}{|l|}{SLAVE ID 4} & \multicolumn{2}{|l|}{SLAVE ID 5} & \multicolumn{2}{|l|}{SLAVE ID 6} & \multicolumn{2}{|l|}{SLAVE ID 7} & \multicolumn{2}{|l|}{SLAVE ID 8} \\
\hline Read out & Write in & Read out & Write in \\
\hline
\end{tabular}

M1353 = On: Enable 32 stations in the Link and the function of reading/writing more than 16 data (SET M1353); the No. of D registers for storing the read/written data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D1480 & D1496 & D1481 & D1497 & D1482 & D1498 & D1483 & D1499 & D1484 & D1500 & D1485 & D1501 & D1486 & D1502 & D1487 & D1503 \\
\hline
\end{tabular}

If M1356 is ON, users can set the station numbers of slave ID1~ID8 in D1900~D1907. The master station sends commands according to the station numbers set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{D1900} & \multicolumn{2}{|l|}{D1901} & \multicolumn{2}{|l|}{D1902} & \multicolumn{2}{|r|}{D1903} & \multicolumn{2}{|r|}{D1904} & \multicolumn{2}{|l|}{D1905} & \multicolumn{2}{|r|}{D1906} & \multicolumn{2}{|r|}{D1907} \\
\hline Number of data & Number of data \\
\hline D1434 & D1450 & D1435 & D1451 & D1436 & D1452 & D1437 & D1453 & D1438 & D1454 & D1439 & D1455 & D1440 & D1456 & D1441 & D1457 \\
\hline \multicolumn{16}{|c|}{Start Communication Address} \\
\hline D1355 & D1415 & D1356 & D1416 & D1357 & D1417 & D1358 & D1418 & D1359 & D1419 & D1360 & D1420 & D1361 & D1421 & D1362 & D1422 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{LINK in SLAVE PLC?} \\
\hline M1360 & M1361 & M1362 & M1363 & M1364 & M1365 & M1366 & M1367 \\
\hline \multicolumn{8}{|c|}{Action flag for SLAVE PLC from MASTER PLC} \\
\hline M1376 & M1377 & M1378 & M1379 & M1380 & M1381 & M1382 & M1383 \\
\hline \multicolumn{8}{|c|}{"Read/write error" flag} \\
\hline M1392 & M1393 & M1394 & M1395 & M1396 & M1397 & M1398 & M1399 \\
\hline \multicolumn{8}{|c|}{"Reading completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline M1408 & M1409 & M1410 & M1411 & M1412 & M1413 & M1414 & M1415 \\
\hline \multicolumn{8}{|c|}{"Writing completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline M1424 & M1425 & M1426 & M1427 & M1428 & M1429 & M1430 & M1431 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\(\dagger\)} & \multicolumn{2}{|c|}{\[
\downarrow
\]} & \multicolumn{2}{|c|}{\[
\downarrow
\]} & \multicolumn{2}{|c|}{\[
\downarrow
\]} & \multicolumn{2}{|c|}{\[
\eta
\]} & \multicolumn{2}{|c|}{\[
\downarrow
\]} & \multicolumn{2}{|c|}{\[
1
\]} & \multicolumn{2}{|c|}{\[
\downarrow
\]} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 1} & \multicolumn{2}{|l|}{SLAVE ID 2} & \multicolumn{2}{|l|}{SLAVE ID 3} & \multicolumn{2}{|l|}{SLAVE ID 4} & \multicolumn{2}{|l|}{SLAVE ID 5} & \multicolumn{2}{|l|}{SLAVE ID 6} & \multicolumn{2}{|l|}{SLAVE ID 7} & \multicolumn{2}{|l|}{SLAVE ID 8} \\
\hline Read out & Write in & Read out & Write in \\
\hline \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { | } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} 200 \\
\text { | } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{aligned}
& \text { D100 } \\
& \text { D115 }
\end{aligned}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] \\
\hline
\end{tabular}
- Default start communication address D1355 ~ D1362 to be read \(=\) H1064 (D100)
- Default start communication address D1415 ~ D1422 to be written = H10C8 (D200)
4. Special D and special M for ID9 ~ ID16 of the 32 stations in PLC LINK (M1353 = On) for EH2/SV/EH3/SV2:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{MASTER PLC} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 9} & \multicolumn{2}{|l|}{SLAVE ID 10} & \multicolumn{2}{|l|}{SLAVE ID 11} & \multicolumn{2}{|l|}{SLAVE ID 12} & \multicolumn{2}{|l|}{SLAVE ID 13} & \multicolumn{2}{|l|}{SLAVE ID 14} & \multicolumn{2}{|l|}{SLAVE ID 15} & \multicolumn{2}{|l|}{SLAVE ID 16} \\
\hline Read out & Write in & Read out & Write in \\
\hline
\end{tabular}

M1353 = On: Enable 32 stations in the Link and the function of reading/writing more than 16 data (SET M1353); the No. of D registers for storing the read/written data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D1488 & D1504 & D1489 & D1505 & D1490 & D1506 & D1491 & D1507 & D1492 & D1508 & D1493 & D1509 & D1494 & D1510 & D1495 & D1511 \\
\hline
\end{tabular}

If M1356 is ON, users can set the station numbers of slave ID9~ID16 in D1908~D1915. The master station sends commands according to the station numbers set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D1908} & \multicolumn{2}{|l|}{D1909} & \multicolumn{2}{|l|}{D1910} & \multicolumn{2}{|r|}{D1911} & \multicolumn{2}{|r|}{D1912} & \multicolumn{2}{|r|}{D1913} & \multicolumn{2}{|r|}{D1914} & \multicolumn{2}{|l|}{D1915} \\
\hline Number of data & Number
of data & Number of data & Number
of data & Number of data & Number of data & Number of data & Number of data & Number of data & Number of data \\
\hline D1442 & D1458 & D1443 & D1459 & D1444 & D1460 & D1445 & D1461 & D1446 & D1462 & D1447 & D1463 & D1448 & D1464 & D1449 & D1465 \\
\hline \multicolumn{16}{|l|}{} \\
\hline D1363 & D1423 & D1364 & D1424 & D1365 & D1425 & D1366 & D1426 & D1367 & D1427 & D1368 & D1428 & D1369 & D1429 & D1370 & D1430 \\
\hline \multicolumn{16}{|c|}{LINK in SLAVE PLC?} \\
\hline \multicolumn{2}{|l|}{M1368} & \multicolumn{2}{|l|}{M1369} & \multicolumn{2}{|l|}{M1370} & \multicolumn{2}{|l|}{M1371} & \multicolumn{2}{|l|}{M1372} & \multicolumn{2}{|l|}{M1373} & \multicolumn{2}{|l|}{M1374} & \multicolumn{2}{|l|}{M1375} \\
\hline \multicolumn{16}{|c|}{Action flag for SLAVE PLC from MASTER PLC} \\
\hline \multicolumn{2}{|l|}{M1384} & \multicolumn{2}{|l|}{M1385} & \multicolumn{2}{|l|}{M1386} & \multicolumn{2}{|l|}{M1387} & \multicolumn{2}{|l|}{M1388} & \multicolumn{2}{|l|}{M1389} & \multicolumn{2}{|l|}{M1390} & \multicolumn{2}{|l|}{M1391} \\
\hline \multicolumn{16}{|c|}{"Read/write error" flag} \\
\hline \multicolumn{2}{|l|}{M1400} & \multicolumn{2}{|l|}{M1401} & \multicolumn{2}{|l|}{M1402} & \multicolumn{2}{|l|}{M1403} & \multicolumn{2}{|l|}{M1404} & \multicolumn{2}{|l|}{M1405} & \multicolumn{2}{|l|}{M1406} & \multicolumn{2}{|l|}{M1407} \\
\hline \multicolumn{16}{|c|}{"Reading completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|l|}{M1416} & \multicolumn{2}{|l|}{M1417} & \multicolumn{2}{|l|}{M1418} & \multicolumn{2}{|l|}{M1419} & \multicolumn{2}{|l|}{M1420} & \multicolumn{2}{|l|}{M1421} & \multicolumn{2}{|l|}{M1422} & \multicolumn{2}{|l|}{M1423} \\
\hline \multicolumn{16}{|c|}{"Writing completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|l|}{M1432} & \multicolumn{2}{|l|}{M1433} & \multicolumn{2}{|l|}{M1434} & \multicolumn{2}{|l|}{M1435} & \multicolumn{2}{|l|}{M1436} & \multicolumn{2}{|l|}{M1437} & \multicolumn{2}{|l|}{M1438} & \multicolumn{2}{|l|}{M1439} \\
\hline \multicolumn{2}{|l|}{\[
\downarrow
\]} & \multicolumn{14}{|r|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SLAVE ID 9} & \multicolumn{2}{|l|}{SLAVE ID 10} & \multicolumn{2}{|l|}{SLAVE ID 11} & \multicolumn{2}{|l|}{SLAVE ID 12} & \multicolumn{2}{|l|}{SLAVE ID 13} & \multicolumn{2}{|l|}{SLAVE ID 14} & \multicolumn{2}{|l|}{SLAVE ID 15} & \multicolumn{2}{|l|}{SLAVE ID 16} \\
\hline Read out & Write in & Read out & Write in \\
\hline \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} 200 \\
\mathrm{D} 215
\end{gathered}
\] & \[
\begin{aligned}
& \text { D100 } \\
& \text { D115 }
\end{aligned}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] \\
\hline
\end{tabular}
- Default start communication address D1363 ~ D1370 to be read = H1064 (D100)
- Default start communication address D1423 ~ D1430 to be written = H10C8 (D200)
5. Special D and special M for ID17 ~ ID24 of the 32 stations in PLC LINK (M1353 = On) for EH2/SV/EH3/SV2:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{MASTER PLC} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 17} & \multicolumn{2}{|l|}{SLAVE ID 18} & \multicolumn{2}{|l|}{SLAVE ID 19} & \multicolumn{2}{|l|}{SLAVE ID 20} & \multicolumn{2}{|l|}{SLAVE ID 21} & \multicolumn{2}{|l|}{SLAVE ID 22} & \multicolumn{2}{|l|}{SLAVE ID 23} & \multicolumn{2}{|l|}{SLAVE ID 24} \\
\hline Read out & Write in & Read out & Write in \\
\hline
\end{tabular}

M1353 = On: Enable 32 stations in the Link and the function of reading/writing more than 16 data (SET M1353); the No. of D registers for storing the read/written data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D1576 & D1592 & D1577 & D1593 & D1578 & D1594 & D1579 & D1595 & D1580 & D1596 & D1581 & D1597 & D1582 & D1598 & D1583 & D1599 \\
\hline
\end{tabular}

If M1356 is ON, users can set the station numbers of slave ID17~ID24 in D1916~D1923. The master station sends commands according to the station numbers set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D1916} & \multicolumn{2}{|r|}{D1917} & \multicolumn{2}{|l|}{D1918} & \multicolumn{2}{|l|}{D1919} & \multicolumn{2}{|l|}{D1920} & \multicolumn{2}{|l|}{D1921} & \multicolumn{2}{|r|}{D1922} & \multicolumn{2}{|r|}{D1923} \\
\hline Number of data & Number of data \\
\hline D1544 & D1560 & D1545 & D1561 & D1546 & D1562 & D1547 & D1563 & D1548 & D1564 & D1549 & D1565 & D1550 & D1566 & D1551 & D1567 \\
\hline \multicolumn{16}{|c|}{start Communication Address} \\
\hline D1512 & D1528 & D1513 & D1529 & D1514 & D1530 & D1515 & D1531 & D1516 & D1532 & D1517 & D1533 & D1518 & D1534 & D1519 & D1535 \\
\hline \multicolumn{16}{|c|}{LINK in SLAVE PLC?} \\
\hline \multicolumn{2}{|r|}{M1440} & \multicolumn{2}{|r|}{M1441} & \multicolumn{2}{|l|}{M1442} & \multicolumn{2}{|l|}{M1443} & \multicolumn{2}{|l|}{M1444} & \multicolumn{2}{|l|}{M1445} & \multicolumn{2}{|l|}{M1446} & \multicolumn{2}{|r|}{M1447} \\
\hline \multicolumn{16}{|c|}{Action flag for SLAVE PLC from MASTER PLC} \\
\hline \multicolumn{2}{|r|}{M1456} & \multicolumn{2}{|r|}{M1457} & \multicolumn{2}{|l|}{M1458} & \multicolumn{2}{|l|}{M1459} & \multicolumn{2}{|l|}{M1460} & \multicolumn{2}{|l|}{M1461} & \multicolumn{2}{|l|}{M1462} & \multicolumn{2}{|r|}{M1463} \\
\hline \multicolumn{16}{|c|}{"Read/write error" flag} \\
\hline \multicolumn{2}{|r|}{M1472} & \multicolumn{2}{|r|}{M1473} & \multicolumn{2}{|l|}{M1474} & \multicolumn{2}{|l|}{M1475} & \multicolumn{2}{|l|}{M1476} & \multicolumn{2}{|l|}{M1477} & \multicolumn{2}{|l|}{M1478} & \multicolumn{2}{|r|}{M1479} \\
\hline \multicolumn{16}{|c|}{"Reading completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|r|}{M1488} & \multicolumn{2}{|r|}{M1489} & \multicolumn{2}{|l|}{M1490} & \multicolumn{2}{|l|}{M1491} & \multicolumn{2}{|l|}{M1492} & \multicolumn{2}{|l|}{M1493} & \multicolumn{2}{|l|}{M1494} & \multicolumn{2}{|r|}{M1495} \\
\hline \multicolumn{16}{|c|}{"Writing completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|r|}{M1504} & \multicolumn{2}{|r|}{M1505} & \multicolumn{2}{|l|}{M1506} & \multicolumn{2}{|l|}{M1507} & \multicolumn{2}{|l|}{M1508} & \multicolumn{2}{|l|}{M1509} & \multicolumn{2}{|l|}{M1510} & \multicolumn{2}{|r|}{M1511} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\(\dagger\)} & \multicolumn{2}{|c|}{\[
1
\]} & \multicolumn{2}{|c|}{\[
\downarrow
\]} & \multicolumn{2}{|l|}{\[
1
\]} & \multicolumn{2}{|l|}{\[
1
\]} & \multicolumn{2}{|l|}{\[
1
\]} & \multicolumn{2}{|l|}{\[
1
\]} & \multicolumn{2}{|c|}{\[
\downarrow
\]} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 17} & \multicolumn{2}{|l|}{SLAVE ID 18} & \multicolumn{2}{|l|}{SLAVE ID 29} & \multicolumn{2}{|l|}{SLAVE ID 20} & \multicolumn{2}{|l|}{SLAVE ID 21} & \multicolumn{2}{|l|}{SLAVE ID 22} & \multicolumn{2}{|l|}{SLAVE ID 23} & \multicolumn{2}{|l|}{SLAVE ID 24} \\
\hline Read out & Write in & Read out & Write in \\
\hline \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { | } 215
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { | } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} 200 \\
\text { | } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] \\
\hline
\end{tabular}
- Default start communication address D1512 ~ D1519 to be read \(=\) H1064 (D100)
- Default start communication address D1528 ~ D1535 to be written = H10C8 (D200)
6. Special D and special M for ID25 ~ ID32 of the 32 stations in PLC LINK (M1353 = On) for EH2/SV/EH3/SV2:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{MASTER PLC} \\
\hline \multicolumn{2}{|l|}{SLAVE ID 25} & \multicolumn{2}{|l|}{SLAVE ID 26} & \multicolumn{2}{|l|}{SLAVE ID 27} & \multicolumn{2}{|l|}{SLAVE ID 28} & \multicolumn{2}{|l|}{SLAVE ID 29} & \multicolumn{2}{|l|}{SLAVE ID 30} & \multicolumn{2}{|l|}{SLAVE ID 31} & \multicolumn{2}{|l|}{SLAVE ID 32} \\
\hline Read out & Write in & Read out & Write in \\
\hline
\end{tabular}

M1353 = On: Enable 32 stations in the Link and the function of reading/writing more than 16 data (SET M1353); the No. of D registers for storing the read/written data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D1584 & D1600 & D1585 & D1601 & D1586 & D1602 & D1587 & D1603 & D1588 & D1604 & D1589 & D1605 & D1590 & D1606 & D1591 & D1607 \\
\hline
\end{tabular}

If M1356 is ON, users can set the station numbers of slave ID25~ID32 in D1924~D1931. The master station sends commands according to the station numbers set.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{D1924} & \multicolumn{2}{|r|}{D1925} & \multicolumn{2}{|l|}{D1926} & \multicolumn{2}{|l|}{D1927} & \multicolumn{2}{|r|}{D1928} & \multicolumn{2}{|l|}{D1929} & \multicolumn{2}{|r|}{D1930} & \multicolumn{2}{|r|}{D1931} \\
\hline Number of data & Number of data \\
\hline D1552 & D1568 & D1553 & D1569 & D1554 & D1570 & D1555 & D1571 & D1556 & D1572 & D1557 & D1573 & D1558 & D1574 & D1559 & D1575 \\
\hline \multicolumn{16}{|c|}{Start Communication Address} \\
\hline D1520 & D1536 & D1521 & D1537 & D1522 & D1538 & D1523 & D1539 & D1524 & D1540 & D1525 & D1541 & D1526 & D1542 & D1527 & D1543 \\
\hline \multicolumn{16}{|c|}{LINK in SLAVE PLC?} \\
\hline \multicolumn{2}{|l|}{M1448} & \multicolumn{2}{|r|}{M1449} & \multicolumn{2}{|l|}{M1450} & \multicolumn{2}{|l|}{M1451} & \multicolumn{2}{|r|}{M1452} & \multicolumn{2}{|l|}{M1453} & \multicolumn{2}{|r|}{M1454} & \multicolumn{2}{|r|}{M1455} \\
\hline \multicolumn{16}{|c|}{Action flag for SLAVE PLC from MASTER PLC} \\
\hline \multicolumn{2}{|l|}{M1464} & \multicolumn{2}{|r|}{M1465} & \multicolumn{2}{|l|}{M1466} & \multicolumn{2}{|l|}{M1467} & \multicolumn{2}{|r|}{M1468} & \multicolumn{2}{|l|}{M1469} & \multicolumn{2}{|r|}{M1470} & \multicolumn{2}{|r|}{M1471} \\
\hline \multicolumn{16}{|c|}{"Read/write" error flag} \\
\hline \multicolumn{2}{|l|}{M1480} & \multicolumn{2}{|r|}{M1481} & \multicolumn{2}{|l|}{M1482} & \multicolumn{2}{|l|}{M1483} & \multicolumn{2}{|r|}{M1484} & \multicolumn{2}{|l|}{M1485} & \multicolumn{2}{|r|}{M1486} & \multicolumn{2}{|r|}{M1487} \\
\hline \multicolumn{16}{|c|}{"Reading completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|l|}{M1496} & \multicolumn{2}{|r|}{M1497} & \multicolumn{2}{|l|}{M1498} & \multicolumn{2}{|l|}{M1499} & \multicolumn{2}{|r|}{M1500} & \multicolumn{2}{|l|}{M1501} & \multicolumn{2}{|r|}{M1502} & \multicolumn{2}{|r|}{M1503} \\
\hline \multicolumn{16}{|c|}{"Writing completed" flag (turns "Off" whenever read/write a station is completed)} \\
\hline \multicolumn{2}{|l|}{M1512} & \multicolumn{2}{|r|}{M1513} & \multicolumn{2}{|l|}{M1514} & \multicolumn{2}{|l|}{M1515} & \multicolumn{2}{|r|}{M1516} & \multicolumn{2}{|l|}{M1517} & \multicolumn{2}{|r|}{M1518} & \multicolumn{2}{|r|}{M1519} \\
\hline \multicolumn{16}{|c|}{\(\downarrow 1\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SLAVE ID 25} & \multicolumn{2}{|l|}{SLAVE ID 26} & \multicolumn{2}{|l|}{SLAVE ID 27} & \multicolumn{2}{|l|}{SLAVE ID 28} & \multicolumn{2}{|l|}{SLAVE ID 29} & \multicolumn{2}{|l|}{SLAVE ID 30} & \multicolumn{2}{|l|}{SLAVE ID 31} & \multicolumn{2}{|l|}{SLAVE ID 32} \\
\hline Read out & Write in & Read out & Write in \\
\hline \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{D} 200 \\
\text { | } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { | } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D100 } \\
\text { D115 }
\end{gathered}
\] & \[
\begin{gathered}
\text { D200 } \\
\text { D215 }
\end{gathered}
\] \\
\hline
\end{tabular}
- Default start communication address D1520 ~ D1527 to be read \(=\) H1064 (D100)
- Default start communication address D1536 ~ D1543 to be written = H10C8 (D200)
7. Note:
a) PLC LINK is based on Modbus communication protocol.
b) EH2/SV/EH3/SV2 supports 32 stations in the LINK and reading/writing of more than 16 data (SET1353) (M1353 = On). SA/SX/SC supports 16 devices in the LINK and reading/writing of 16 data.
c) EH2/SV/EH3/SV2: When a MASTER PLC and a Slave PLC is connected, they are able to read/write maximum 100 WORD data (M1353 = On). SA/SX/SC: Does not support M1353. When a Master PLC and a Slave PLC is connected, they are able to read/write maximum 16 WORD data.
d) When the Master PLC is connected through COM2 (RS-485), baud rates and communication formats of all Slave PLCs must be the same (set in D1120). When SA/SX/SC/EH2/SV/EH3/SV2 serves as Master, it supports ASCII and RTU format.
e) When the Slave PLC is connected through COM2 (RS-232/RS-485/RS-422), baud rates and communication formats of all connected Slave PLCs must be the same as those in the Master PLC (set in D1120). When SA/SX/SC/EH2/SV/EH3/SV2 serves as Slave, it supports ASCII and RTU format.
f) When the Slave PLC is connected through COM1 (RS-232), baud rates and communication formats of all connected Slave PLCs must be the same as those in the Master PLC (set in D1036). When SA/SX/SC/EH2/SV/EH3/SV2 serves as Slave, it supports ASCII and RTU format.
g) When the Slave PLC is connected through COM3 (RS-232/RS-485), baud rates and communication formats of all connected Slave PLCs must be the same as those in the Master PLC (set in D1109). When SA/SX/SC/EH/EH2/SV serves as Slave, it only supports ASCII format (Max. baud rate \(=38,400 \mathrm{bps}\) ).
h) The start station No. (K1 ~ K214) of Slave ID1 is assigned by D1399 of Master PLC. Station No. of every Slave and Master PLC can not be the same (set in D1121).
i) For one-to-one LINK: Connected through RS-232, RS-485, RS-422. PLC COM1, COM2, COM3 support many communication formats.
j) For one-to-many LINK: Connected through RS-485. PLC COM1, COM2, COM3 support many communication formats.
8. How to operate PLC LINK:
a) Set up the baud rates and communication formats of Master PLC and all connected Slave PLCs and make them the same. COM1_RS-232: D1136; COM2_RS-232/RS-485/RS-422: D1120; COM3_RS-232/RS-485: D1109.
b) Set up the station No. of Master PLC (in D1121) and assign the start station No. of Slave PLC from D1399 of Master PLC. Next, set up the station No. of Slave PLC. Station No. of Master and Slave cannot be the same.
c) Set up the number of connected Slave stations and the number of data to be read in/written to Slave stations. For EH2/SV/EH3/SV2 (M1353 = On): Enable the function of the 32 conncected Slaves and reading/writing of more than 16 data (Max. 100 data). Next, set up the No. of \(D\) registers for storing the read data (D1480 ~ D1495, D1576 ~ D1591) and written data (D1496 ~ D1511, D1592 ~ D1607) (See the explanations above on special D). SA/SX/SC only supports reading/writing of 16 data.
d) Set up the length of data to be read from/written into the Slave. (If the user does not set up set them up, PLC will follow the initial setting or the setting set in the previous operation.) (See the explanations above on special D.)
e) Set up the start communication address of the Slave to be read/written. (See the explanations above on special D). The default start communication address of Slave to be read: H1064 = D100. The default start communication address of Slave to be written: \(\mathrm{H} 10 \mathrm{C} 8=\mathrm{D} 200\).
f) Operation procedure:
i) Enable the function of more than 32 stations connected to PLC LINK and reading/writing of 16 data (Max. 100 data) (M1353).
ii) Enable reading/writing of PLC LINK in the same polling (M1354).
iii) Set up PLC LINK as auto mode (M1351), or manual mode (M1352) and the times of polling (D1431).
iv) When M1355 = On, M1360 ~ M1375 (M1440 ~M1455) will be the flags for the PLC designated to be connected to. When M1355 = Off, there will be detection on the slaves connected, and M1360 ~ M1375 (M1440 ~ M1455) will become the flags for the existence of connected PLC.
v) Enable PLC LINK (M1350).
9. How does Master PLC work:
a) To detect station No. of Slave: Set up the LINK to be automatic mode (M1351 = On) or manual mode \((\) M1352 \(=\) On) (Note: M1351 and M1352 cannot be "On" at the same time) When M1350 = On, Master PLC starts to detect the total number of Slave stations connected to the LINK and records the number in D1433. The detection time may differ upon the number of Slave stations and the setting of communication timeout in D1129.
b) When M1360 ~ M1375, M1440 ~ M1455 = On, Slave ID1 ~ ID32 exist.
c) If the detected number Slave stations is 0 , M1350 will be "Off" and the LINK will be stopped.
d) M1353 and M1354 should be set before PLC LINK is enabled. When PLC LINK is executed, the two special \(M\) will not afftec the action of PLC LINK.
e) When M1355 = On, M1360 ~ M1375 (M1440 ~M1455) will be the flags for the PLC designated to be connected to. Therefore, no matter how many PLCs are actually connected, the PLC LINK function will continue to send read/write instruction in cycle according to the designated flags.
f) When 1353 = On, D1480 ~ D1607 (read/write buffer of SLAVE ID1 ~ 4) will be used for storing the No. of registers D for Slave ID1 ~ ID32, The No. of register D shall not be " \(>9,900\) " or " \(<0\) "; otherwise, PLC will auto-set it as 9,900 . The data length shall not be " \(>100\) " or " \(<0\) "; otherwise, PLC will auto-set it as 100 .
g) When M1354 = On, set up Modbus Function H17 (synchronous read/write) for PLC LINK communication. If the number of written data is set to be " 0 ", the communication of PLC LINK will be automatically converted into Modbus Function H03 (read multiple words). Similarly, if the number of read data is set to be " 0 ", the communication of PLC LINK will be converted into Modbus Function H06 (write 1 word) or Modbus Function H10 (write multiple words).
h) If the number of read/written data \(>16\), the time for timeout (D1129) shall be \(>500 \mathrm{~ms}\) in case communication timeout may occur.
i) After M1350 = On, Master PLC detects the ID of Slave E PLC only right after the LINK is enabled and will not detect the ID again afterward.
j) After the detection on Slave PLCs is completed, Master PLC starts to read and write data from/into every Slave PLC. Please be noted that, Master PLC only reads/writes data from/into the detected Slave PLC.

Master PLC will not read/write from/into the new Slave PLC to the LINK, unless it re-detects the ID of Slave PLCs.
k) Master PLC conducts reading before writing. The ranges of Slave PLCs to be read/written will follow the setting.
I) Master PLC will move to the reading/writing of the next Slave PLC after finishing reading/writing the current Slave PLC.
10. Auto mode and maual mode:
a) Auto mode (M1351 = On): Master PLC automatically reads/writes from/to Slave PLC and stops when M1350/M1351 = Off to terminate PLC LINK.
b) Manual mode \((\mathrm{M} 1352=\mathrm{On})\) : When M1352 = On, you also have to set up the times of polling in D1431. One time of polling refers to the completion of reading and writing all Slaves. After the PLC LINK is enabled, D1432 will start to count how many LINKs have been done. When D1431 = D1432, PLC LINK stops and M1352 is reset. To re-enable PLC LINK in the manual mode, simply turn "On" M1352 and D1431 will starts to count the times of LINK again.
c) Note:
i) Automatic mode (M1351) and manual mode (M1352) cannot be "On" at the same time; otherwise PLC LINK will stop and M1350 will be reset.
ii) For EH2/SV/EH3/SV2: M1350 has to be reset before switching between automatic mode and manual mode. For SA/SXISC: No such restriction.
iii) When M1355 = On, M1360 ~ M1375 (M1440 ~ M1455) will be the flags for the PLC designated to be connected to. Therefore, no matter how many PLCs are actually connected, the PLC LINK function will continue to send read/write instruction in cycle according to the designated flags.
iv) The communication timeout is adjustable (D1129, range: \(200 \leq \mathrm{D} 1129 \leq 3,000\) ). If D 1129 falls out the range, PLC will determine the time by 200 or 3,000 . The timeout setting of PLC LINK is only valid if it is set before the LINK is enabled. If the number of read/written data \(>16\), the communication timeout shall be \(>500 \mathrm{~ms}\) in case a communication timeout may occur.
v) PLC LINK is only workable when the baud rate is \(>1,200 \mathrm{bps}\). If the baud rate is \(<9,600\), the communication timeout setting shall be > 1 second.
vi) The communication is unworkable when the number of read/written data \(=0\).
vii) PLC LINK does not support the reading/writing from/to 32-bit counters (C200~C255).
viii)The maximum set value for D1399 is 230 . If the set value is bigger than 230 , PLC will automatically correct it as 230 . The minimum set value for D1300 is 1 . If the set value is smaller than 1, PLC will automatically correct it as 1.
ix) Setting up of D1399 has to be done before PLC LINK is enabled. After PLC LINK is enabled, setting up D1399 will not result in any changes.
x) Advantages (when using a multi-layer network): Assume you are using a network with 3 layers and the first and second layer and the second and third layer are using PLC LINK for communication, the IDs in the second and third layer will definitely overlap due to the old version of PLC LINK detects only Slave ID\#1~16. When the IDs of Slave and Master overlap, PLC LINK will ignore the PLC of overlapping ID, resulting in the
situation that the third layer can have only 15 PLCs. Therefore, D1399 allows more PLCs connected in a multi-layer network.
11. Operation Procedure of PLC LINK

Set up the Slave ID\# to be read
Set up the number of data in Slave to be read
Set up the Slave ID\# to be written
Set up the number of data in Slave to be written
(If there is no set value, use the previous set value or the default value.)

a) Example 1: Enabling 32 slave units linkage and up to 100 data for exchange in PLC LINK by M1353

- M1353 has to be set On before PLC LINK is enabled. When PLC LINK is executed, On/Off of M1353 will not affect the execution.
- Registers designated in D1480 ~ D1495, D1576~D1591 (starting register for data read from Slave ID\#1~ 16) and D1496 ~ D1511, D1592 ~ D1607 (starting register for data written into Slave ID\#1 ~ 16) can only be register D, and every special D will correspond to one Slave ID\#, e.g. D1480 corresponds to ID1, D1481 to ID2, and so on.
- D1480 ~ D1495, D1576 ~ D1591, D1496 ~ D1511 and D1592 ~ D1607 have to be set before PLC LINK is enabled. In the execution of PLC LINK, you can modify the contents in these special Ds, but the modified results will take effect in the next PLC LINK polling.
- If the ID\# designated by D1480 ~ D1495, D1576 ~ D1591, D1496 ~ D1511 and D1592 ~ D1607 is smaller than 0 or bigger than 9,900, PLC will automatically correct the ID\# into 9,900.
- If M1353 is not enabled during the execution of PLC LINK, the range for D1434 ~ D1449, D1544 ~ D1559 (number of data read from Slave ID\#) and D1450 ~ D1465, D1560 ~ D1575 (numbere of data written into Slave ID\#) will be \(0 \sim 16\). If the setting in the special D exceeds the range, PLC will correct it to 16 . When M 1353 is enabled, the range will be \(0 \sim 100\). If the setting in the special \(D\) exceeds the range, PLC will correct it to 100.
- You can modify the settings in D1434 ~ D1449, D1544 ~ D1559, D1450 ~ D1465 and D1560 ~ D1575 during the execution of PLC LINK, but the modified results will take effect in the next PLC LINK polling.
b) Example 2: PLC LINK with M1353 and I170

- With I170, the processing of data in PLC LINK will not be done at END, but at the enabling of I170 immediately after the receiving of data is completed
- If the reaction speed of the RS-485 IC direction control signal pin of the Slave is slow, it is suggested that you do not enable I170.
- You can set up D1399 (starting Slave ID designated by PLC LINK), and the ID\# of the next 15 Slaves have to be in sequence. For example, when D1399 is set as K20, the Master PLC will detect Slave ID\# 20 -35 .
c) Example 3: Connection of 1 Master and 2 Slaves by RS-485 and exchange of 16 data between Master and Slaves through PLC LINK (M1353 = Off, linkage of 16 stations, 16 data read/write mode)
- Write the ladder diagram program into Master PLC (ID\#17)

- When X1 = On, the data exchange between Master and the two Slaves will be automatically done in PLC LINK, i.e. the data in D100 ~ D115 in the two Slaves will be read into D1480 ~ D1495 and D1512 ~ D1527 of the Master, and the data in D1496 ~ D1511 and D1528 ~ D1543 will be written into D200 ~ D215 of the two Slaves.
\begin{tabular}{|c|c|c|}
\hline Master PLC *1 & Read & Slave PLC*2 \\
\hline D1480 ~ D1495 & & D100 ~ D115 of Slave ID\#1 \\
\hline D1496 ~ D1511 & Write & D200 ~ D215 of Slave ID\#1 \\
\hline D1512 ~ D1527 & & Drite \\
\hline
\end{tabular}
- Assume the data in D for data exchange between Master and Slave before PLC LINK is enabled (M1350 = Off) are as the follow:
\begin{tabular}{|c|c|c|c|}
\hline Master PLC & Preset value & Slave PLC & Preset value \\
\hline D1480 ~ D1495 & K0 & D100 ~ D115 of Slave ID\#1 & K5,000 \\
\hline D1496 ~ D1511 & K1,000 & D200 ~ D215 of Slave ID\#1 & K0 \\
\hline D1512 ~ D1527 & K0 & D100 ~ D115 of Slave ID\#2 & K6,000 \\
\hline D1528 ~ D1543 & K2,000 & D200 ~ D215 of Slave ID\#2 & K0 \\
\hline
\end{tabular}

After PLC LINK is enabled \((\mathrm{M} 1350=O n)\), the data in D for data exchange will become:
\begin{tabular}{|c|c|c|c|}
\hline Master PLC & Preset value & Slave PLC & Preset value \\
\hline D1480 ~ D1495 & K5,000 & D100 ~ D115 of Slave ID\#1 & K5,000 \\
\hline D1496 ~ D1511 & K1,000 & D200 ~ D215 of Slave ID\#1 & K1,000 \\
\hline D1512 ~ D1527 & K6,000 & D100 ~ D115 of Slave ID\#2 & K6,000 \\
\hline D1528 ~ D1543 & K2,000 & D200 ~D215 of Slave ID\#2 & K2,000 \\
\hline
\end{tabular}
- The Master PLC has to be SA/SX/SC/EH2/SV/EH3/SV2 series MPU, and the Slave PLC can be any MPU of DVP series.
- There can be maximum 16 Slave PLCs in PLC LINK. See the special Ds in the Master PLC corresponding to D100 ~ D115 and D200 ~ D215 in every Slave PLC in the tables of special M and special D.
d) Example 4: Connection between Delta PLC and Delta VFD-M AC motor drive through PLC LINK for STOP, forward/reverser revolution and writing/reading of frequency.
- Write the ladder diagram program into Master PLC (ID\#17)

- D1480 ~ D1485 correspond to parameters H2100 ~ H2105 in VFD-M. When X1 = On, PLC LINK will be enabled, and the data in H2100 ~ H2105 will be displayed in D1480 ~ D1485.
- D1496 ~ D1497 correspond to parameters H2000 ~ H2001 in VFD-M. When X1 = On, PLC LINK will be enabled, and the data in H2000 ~ H2001 will be displayed in D1496 ~ D1497.
- Modify D1496 to give command to VFD, e.g. D1496 = H12: enabling forward revolution of VFD-M; D1496 = H11: enabling reverse revolution of VFD.
- Modify D1497 to change the frequency of VFD, e.g. D1497 = K5,000: changing the frequency to 50 kHz .
- The Master PLC has to be SA/SX/SC/EH2/SV/EH3/SV2 series MPU, and the Slave AC motor drive can be any VFD series models except VFD-A.
- The Slave can also be Delta temperature controller DTA, DTB, Delta servo ASDA and so on which are compatible to Modbus protocol. Maximum 16 devices are connectable to the LINK.
- See the tables of special M and special D for the starting ID of Slave to be read/written and the number of data to be read/written.

\section*{Function Group Enabling the instruction DICF to execute the constant speed/final output section Number M1528~M1529}

\section*{Contents:}
1. M1528 \(\rightarrow\) On: Enabling the instruction DICF to execute the constant speed output section M1529 \(\rightarrow\) On: Enabling the instruction DICF to execute the final output section

If users want to use this special output function, they have to use M1528/M1529 with DVSPO/DICF. Please do not enable the two flags simultaneously.
2. The instruction format is DVSPO \(\begin{array}{llllll}\mathbf{S}_{1} & S_{2} & S_{3} & D . \text { The instruction is a 32-bit instruction. } \mathbf{S}_{1} \text { is the target }\end{array}\) frequency of output, \(\mathbf{S}_{\mathbf{2}}\) is the target number of pulses, \(\mathbf{S}_{\mathbf{3}}\) indicates the gap time and the gap frequency, and \(\mathbf{D}\) is the pulse output device. (If \(\mathbf{S}_{\mathbf{2}}\) is KO , there will be no limit on the number of output pulses, and pulses will be output until the final output section is set.
3. The instruction format is DICF \(\quad \mathbf{S}_{1} \quad \mathbf{S}_{2} \quad \mathbf{D}\). The instruction is a 32-bit instruction. \(\mathbf{S}_{1}\) is the target frequency to be changed, \(\mathbf{S}_{\mathbf{2}}\) indicates the gap time and the gap frequency, and \(\mathbf{D}\) is the pulse output device.
4. If users do not need to set the target number of pulses when DVSPO enables output, they can set \(\mathbf{S}_{\mathbf{2}}\) to K0, and then set the target frequency of the output, the gap time, and the gap frequency. If users want to end the output, they can use DICF and M1529 to execute the final output section. After the execution of the final output section is complete, DVSPO sill set the completion flag. (Please refer to example 1.)
5. When DICF is used with M1529 to execute the final output section, \(\mathbf{S}_{\mathbf{1}}\) is the target frequency of output ( \(\mathbf{S}_{1}\) can not be modified by an E device or an F device), and the 32-bit value indicated by \(\mathbf{S}_{1}+2\) is the number of pulses which need to be output in the final section. For example, if \(S_{1}\) is D100, the 32-bit value in (D101, D100) is the target frequency of output, and the 32-bit value in (D103, D102) is the number of pulses which need to be output in the final section. After M1529 successfully enables the final output section, M1529 will be reset to Off automatically.
6. In the final output section, DICF carries out acceleration/deceleration operations according to the acceleration/deceleration time specified by the axes (the parameter indicated by S 2 is not used), and the current output speed increases/decreases until the number of pulses required is reached. DVSPO sets the completion flag. (Please refer to the examples in 1.1~1.2 in example 1 for more information.)
7. If the number of pulses in the final section is not sufficient for the acceleration/deceleration output set by users, DICF will automatically change the acceleration/deceleration operation to the default acceleration/deceleration operation so that the target number of pulses in the final output section can be reached.
8. When DICF is used with M1528 to execute the constant speed output section, \(\mathbf{S}_{\mathbf{1}}\) is the target frequency of output ( \(\mathbf{S}_{1}\) can not be modified by an E device or an \(F\) device), and the 32 -bit value indicated by \(\mathbf{S}_{\mathbf{1}}+2\) is the number of pulses which need to be output in the constant speed output section. For example, if \(\mathbf{S}_{1}\) is D100, the

32-bit value in (D101, D100) is the target frequency of output, and the 32-bit value in (D103, D102) is the number of pulses which need to be output in the constant speed section. After M1528 successfully enables the constant speed output section, M1528 will be reset to Off automatically. (Please refer to example 2 for more information.)
9. After DICF enables the execution the final output section (M1529)/constant speed output section (M1528), the variable speed function of DVSPO/DICF will be disabled. Not until the execution is complete can the variable speed function of DVSPO/DICF be used.

\section*{Example:}
- The timing diagram for the final output section is shown below.
1. The target frequency in the final section is higher than the current output frequency.

2. The target frequency in the final section is lower than the current output frequency


Note 1: Although there will be no limit on the number of output pulses if \(\mathbf{S}_{2}\) is K0, the number of pulses in the final section will be the target number of pulses in the final section after the final output section is enabled, and
the completion flag will be set after the target number of pulses is reached.
Note 2: If DICF in an interrupt is used to change the target frequency, please note that the reaction time of the interrupt will affect the execution of the final output section.
3. Sample program
- Setting initial values


- The timing diagram for the constant speed output section is shown below.

(1) \(\rightarrow\) DVSPO sets the target frequency \(\left(\mathbf{S}_{1}\right)\)
(2) \(\rightarrow\) DVSPO sets the number of pulses \(\left(\mathbf{S}_{2}\right)\) to K0 (no limit on the number of output pulses).
(3) \(\rightarrow\) DICF sets the number of pulses which need to be output in the constant speed output section \(\left(\mathbf{S}_{1}+2\right)\).
(4) \(\rightarrow\) DICF and M1528 are used to reach the target frequency and the target number of pulses in the constant speed output section.
(5) \(\rightarrow\) The acceleration/deceleration is complete, and M1542 is set to On.
(6) \(\rightarrow\) The target number of pulses in the constant speed output section is reached, M1543 is set to On, and M1542 is reset to Off. (The output used is Y0.)

Note: Whenever the constant speed output section is executed, the instruction resets the reaching flag and the completion flag.1. The flags corresponding to the axes used to execute the constant speed output section are shown below.
\begin{tabular}{|c|c|c|}
\hline Output number & \begin{tabular}{c} 
Reaching the target \\
frequency in the constant \\
speed output section
\end{tabular} & \begin{tabular}{c} 
Finishing the constant \\
speed output
\end{tabular} \\
\hline Y0 & M1542 & M1543 \\
\hline Y2 & M1544 & M1545 \\
\hline Y4 & M1546 & M1547 \\
\hline Y6 & M1548 & M1549 \\
\hline
\end{tabular}

\section*{2. Sample program:}
- Setting initial values



Note 1: If DICF is not enabled, and the constant speed output section is executed, the instruction will constantly check whether the target frequency is reached and whether the output state is complete, and will set the corresponding flags. If the scan time is long, users can insert many lines of DICF instructions, or execute DICF in a time interrupt (do not need to enable the instruction) to update the output state constantly.

\subsection*{2.12 Communication Addresses of Devices in DVP Series PLC}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Device & \multicolumn{2}{|l|}{Range} & Type & DVP Com. Address (hex) & Modbus Com. Address (dec) \\
\hline S & \multicolumn{2}{|l|}{000~255} & bit & 0000 ~ 00FF & 000001 ~ 000256 \\
\hline S & \multicolumn{2}{|l|}{246 ~ 511} & bit & 0100 ~ 01FF & 000247 ~ 000512 \\
\hline S & \multicolumn{2}{|l|}{512~767} & bit & 0200 ~ 02FF & 000513 ~ 000768 \\
\hline S & \multicolumn{2}{|l|}{768 ~ 1,023} & bit & 0300 ~ 03FF & 000769 ~ 001024 \\
\hline X & \multicolumn{2}{|l|}{000~377 (Octal)} & bit & 0400 ~ 04FF & 101025 ~ 101280 \\
\hline Y & \multicolumn{2}{|l|}{000 ~ 377 (Octal)} & bit & 0500 ~ 05FF & 001281 ~ 001536 \\
\hline \multirow{2}{*}{T} & \multicolumn{2}{|l|}{\multirow{2}{*}{000 ~ 255}} & bit & 0600 ~ 06FF & 001537 ~ 001792 \\
\hline & & & word & 0600 ~ 06FF & 401537 ~ 401792 \\
\hline M & \multicolumn{2}{|l|}{000~255} & bit & 0800 ~ 08FF & 002049 ~ 002304 \\
\hline M & \multicolumn{2}{|l|}{256 ~ 511} & bit & 0900 ~ 09FF & 002305 ~ 002560 \\
\hline M & \multicolumn{2}{|l|}{\(512 \sim 767\)} & bit & 0A00 ~ OAFF & 002561~002816 \\
\hline M & \multicolumn{2}{|l|}{768 ~ 1,023} & bit & OB00 ~ OBFF & 002817 ~ 003072 \\
\hline M & \multicolumn{2}{|l|}{1,024 ~ 1,279} & bit & 0C00 ~ OCFF & 003073 ~ 003328 \\
\hline M & \multicolumn{2}{|l|}{1,280 ~ 1,535} & bit & OD00 ~ ODFF & 003329 ~ 003584 \\
\hline M & \multicolumn{2}{|l|}{1,536 ~ 1,791} & bit & B000 ~ BOFF & 045057 ~ 045312 \\
\hline M & \multicolumn{2}{|l|}{1,792 ~ 2,047} & bit & B100 ~ B1FF & 045313 ~ 045568 \\
\hline M & \multicolumn{2}{|l|}{2,048 ~ 2,303} & bit & B200 ~ B2FF & 045569 ~ 045824 \\
\hline M & \multicolumn{2}{|l|}{2,304 ~ 2,559} & bit & B300 ~ B3FF & 045825 ~ 046080 \\
\hline M & \multicolumn{2}{|l|}{2,560 ~ 2,815} & bit & B400 ~ B4FF & 046081 ~ 046336 \\
\hline M & \multicolumn{2}{|l|}{2,816 ~ 3,071} & bit & B500 ~ B5FF & 046337 ~ 046592 \\
\hline M & \multicolumn{2}{|l|}{3,072 - 3,327} & bit & B600 ~ B6FF & \(046593 \sim 046848\) \\
\hline M & \multicolumn{2}{|l|}{3,328 ~ 3,583} & bit & B700 ~ B7FF & 046849 ~ 047104 \\
\hline M & \multicolumn{2}{|l|}{3,584 ~ 3,839} & bit & B800 ~ B8FF & \(047105 \sim 047360\) \\
\hline M & \multicolumn{2}{|l|}{3,840 ~ 4,095} & bit & B900 ~ B9FF & 047361 ~ 047616 \\
\hline \multirow{4}{*}{C} & \multirow{2}{*}{0 ~ 199} & \multirow{2}{*}{16-bit} & bit & OE00 ~ OEC7 & 003585 ~ 003784 \\
\hline & & & word & 0E00 ~ 0EC7 & 403585 ~ 403784 \\
\hline & \multirow{2}{*}{\(200 \sim 255\)} & \multirow{2}{*}{32-bit} & bit & 0EC8 ~ 0EFF & 003785 ~ 003840 \\
\hline & & & word & 0700 ~ 076F & 403785 ~ 403840 \\
\hline D & \multicolumn{2}{|l|}{000~256} & word & 1000 ~ 10FF & 404097~404352 \\
\hline D & \multicolumn{2}{|l|}{256 ~ 511} & word & 1100 ~ 11FF & 404353 ~ 404608 \\
\hline D & \multicolumn{2}{|l|}{512 ~ 767} & word & 1200 ~ 12FF & 404609 ~ 404864 \\
\hline D & \multicolumn{2}{|l|}{768 ~ 1,023} & word & 1300 ~ 13FF & 404865 ~ 405120 \\
\hline D & \multicolumn{2}{|l|}{1,024 ~ 1,279} & word & 1400 ~ 14FF & 405121 ~ 405376 \\
\hline D & \multicolumn{2}{|l|}{1,280 ~ 1,535} & word & 1500 ~ 15FF & 405377 ~ 405632 \\
\hline D & \multicolumn{2}{|l|}{1,536 ~ 1,791} & word & 1600 ~ 16FF & 405633 ~ 405888 \\
\hline D & \multicolumn{2}{|l|}{1,792 ~ 2,047} & word & 1700 ~ 17FF & 405889 ~ 406144 \\
\hline D & \multicolumn{2}{|l|}{2,048 ~ 2,303} & word & 1800 ~ 18FF & 406145 ~ 406400 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Device & Range & Type & DVP Com. Address (hex) & Modbus Com. Address (dec) \\
\hline D & 2,304 ~ 2,559 & word & 1900 ~ 19FF & 406401 ~ 406656 \\
\hline D & 2,560 ~ 2815 & word & 1A00 ~ 1AFF & 406657 ~ 406912 \\
\hline D & 2,816 ~ 3,071 & word & 1B00 ~ 1BFF & 406913 ~ 407168 \\
\hline D & 3,072 ~ 3,327 & word & 1C00 ~ 1CFF & 407169 ~ 407424 \\
\hline D & 3,328 ~ 3,583 & word & 1D00 ~ 1DFF & 407425 ~ 407680 \\
\hline D & 3,584 ~ 3,839 & word & 1E00 ~ 1EFF & 407681 ~ 407936 \\
\hline D & 3,840 ~ 4,095 & word & 1F00 ~ 1FFF & 407937 ~ 408192 \\
\hline D & 4,096 ~ 4,351 & word & 9000 ~ 90FF & 436865 ~ 437120 \\
\hline D & 4,352 ~ 4,607 & word & 9100 ~ 91FF & 437121 ~ 437376 \\
\hline D & 4608 ~ 4863 & word & 9200 ~ 92FF & 437377 ~ 437632 \\
\hline D & 4,864 ~ 5,119 & word & 9300 ~ 93FF & 437633 ~ 437888 \\
\hline D & 5,120 ~ 5,375 & word & 9400 ~ 94FF & 437889 ~ 438144 \\
\hline D & 5,376 ~ 5,631 & word & 9500 ~ 95FF & 438145 ~ 438400 \\
\hline D & 5,632 ~ 5,887 & word & 9600 ~ 96FF & 438401 ~ 438656 \\
\hline D & 5,888 ~ 6,143 & word & 9700 ~ 97FF & 438657 ~ 438912 \\
\hline D & 6,144 ~ 6,399 & word & 9800 ~ 98FF & 438913 ~ 439168 \\
\hline D & 6,400 ~ 6,655 & word & 9900 ~ 99FF & 439169 ~ 439424 \\
\hline D & 6,656 ~ 6,911 & word & 9A00 ~ 9AFF & 439425 ~ 439680 \\
\hline D & 6,912 ~ 7,167 & word & 9B00 ~ 9BFF & 439681 ~ 439936 \\
\hline D & 7,168 ~ 7,423 & word & 9C00 ~ 9CFF & 439937 ~ 440192 \\
\hline D & 7,424 ~ 7,679 & word & 9D00 ~ 9DFF & 440193 ~ 440448 \\
\hline D & 7,680 ~ 7,935 & word & 9E00 ~ 9EFF & 440449 ~ 440704 \\
\hline D & 7,936 ~ 8,191 & word & 9F00 ~ 9FFF & 440705 ~ 440960 \\
\hline D & 8,192 ~ 8,447 & word & A000 ~ A0FF & 440961 ~ 441216 \\
\hline D & 8,448 ~ 8,703 & word & A100 ~ A1FF & 441217 ~ 441472 \\
\hline D & 8,704 ~ 8,959 & word & A200 ~ A2FF & 441473 ~ 441728 \\
\hline D & 8,960 ~ 9,215 & word & A300 ~ A3FF & 441729 ~ 441984 \\
\hline D & 9,216 ~ 9,471 & word & A400 ~ A4FF & 441985 ~ 442240 \\
\hline D & 9,472 - 9,727 & word & A500 ~ A5FF & 442241 ~ 442496 \\
\hline D & 9,728 ~ 9,983 & word & A600 ~ A6FF & 442497 ~ 442752 \\
\hline D & 9984~10239 & word & A700~A7FF & 442753~443008 \\
\hline D & 10234~10495 & word & A800~A8FF & 443009~443246 \\
\hline D & 10496~10751 & word & A900~A9FF & 443247~443502 \\
\hline D & 10752~11007 & word & AA00~AAFF & 443503~443758 \\
\hline D & 11008~11263 & word & AB00~ABFF & 443759~444014 \\
\hline D & 11264~11519 & word & AC00~ACFF & 444015~444270 \\
\hline D & 11520~11775 & word & AD00~ADFF & 444271~444526 \\
\hline D & 11776~11999 & word & AE00~AEDF & 444527~444750 \\
\hline
\end{tabular}

\subsection*{2.13 Error Codes}

After you write the program into the PLC, the illegal use of operands (devices) or incorrect syntax in the program will result in flashing of ERROR indicator and M1004 = On. In this case, you can find out the cause of the error by checking the error code (hex) in special register D1004. The address where the error occurs is stored in the data register D1137. If the error is a general loop error, the address stored in D1137 will be invalid.
\begin{tabular}{|c|c|c|c|}
\hline Error code & Cause of error & \[
\begin{aligned}
& \text { Error } \\
& \text { code }
\end{aligned}
\] & Cause of error \\
\hline 0001 & Use of device S exceeds the range & OFOA & Times of using TTMR, STMR instruction exceed the range \\
\hline 0002 & Using \(\mathrm{P}^{*}\) repeatedly or use of \(\mathrm{P}^{*}\) exceeds the range & OFOB & Times of using SORT instruction exceed the range \\
\hline 0003 & Use of KnSm exceeds the range & OFOC & Times of using TKY instruction exceed the range \\
\hline 0102 & Using I* repeatedly or use of \(\mathrm{I}^{*}\) exceeds the range & OFOD & Times of using HKY instruction exceed the range \\
\hline 0202 & Use of MC \({ }^{*}\) exceeds the range & 1000 & Improper use of operands of ZRST instruction \\
\hline 0302 & Use of MCR \({ }^{*}\) exceeds the range & 10EF & Incorrect use of E, F, or the modification exceeds the range \\
\hline 0401 & Use of device X exceeds the range & \multirow{3}{*}{2000} & \multirow[t]{3}{*}{\begin{tabular}{l}
Times of using TTMR, PR, HOUR instructions exceed the range. \\
Improper use of operands of MRT, ARWS instructions
\end{tabular}} \\
\hline 0403 & Use of KnXm exceeds the range & & \\
\hline 0501 & Use of device Y exceeds the range & & \\
\hline 0503 & Use of KnYm exceeds the range & C400 & Illegal instruction \\
\hline 0601 & Use of device T exceeds the range & C401 & General loop error \\
\hline 0604 & Use of register T exceeds the range & C402 & Continuously using LD/LDI instructions for more than 9 times \\
\hline 0801 & Use of device M exceeds the range & C403 & Continuously using MPS for more than 9 times \\
\hline 0803 & Use of KnMm exceeds the range & C404 & More than 6 steps in FOR - NEXT \\
\hline OB01 & Incorrect use of KH & \multirow[b]{3}{*}{C405} & \multirow[b]{3}{*}{Using STL/RET between FOR - NEXT Using SRET/IRET between FOR - NEXT Using MC/MCR between FOR - NEXT Using END/FEND between FOR - NEXT} \\
\hline 0D01 & Improper use of operands of DECO instruction & & \\
\hline OD02 & ES/EX/SS/EH2/SV/EH3/SV2: improper use of operands of ENCO instruction SA/SX/SC: illegal use of the first operand of ANS instruction & & \\
\hline 0D03 & Improper use of operands of DHSCS instruction & C407 & Continuously using STL for more than 9 times \\
\hline OD04 & Improper use of operands of DHSCR instruction & C408 & Using MC/MCR in STL, using I/P in STL \\
\hline 0D05 & Improper use of operands of pulse output instruction & C409 & Using STL/RET in subroutine Using STL/RET in interruption subroutine \\
\hline 0D06 & Improper use of operands of PWM instruction & \multirow[t]{2}{*}{C40A} & \multirow[t]{2}{*}{Using MC/MCR in subroutine Using MC/MCR in interruption subroutine} \\
\hline \multirow[b]{2}{*}{0D07} & \multirow[b]{2}{*}{Improper use of operands of FROM/TO instruction} & & \\
\hline & & C40B & MC/MCR does not start from NO, or is not continuous \\
\hline 0D08 & Improper use of operands of PID instruction & C40C & Corresponding N of MC and MCR are different \\
\hline 0D09 & Improper use of operands of SPD instruction & C40D & Improper use of I/P \\
\hline ODOA & Incorrect operands in DHSZ instruction & C40E & IRET does not appear after the last FEND. SRET does not appear after the last FEND. \\
\hline ODOB & Improper use of operands in IST instruction & C40F & PLC program and data in parameters have not been initialized. \\
\hline OE01 & Use of device C exceeds the range & C41B & Invalid RUN/STOP instruction to extension module \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Error \\
code
\end{tabular} & \multicolumn{1}{|c|}{ Cause of error } \\
\hline 0E04 & Use of register C exceeds the range \\
\hline 0E05 & \begin{tabular}{l} 
Improper use of operand CXXX of DCNT \\
instruction
\end{tabular} \\
\hline 0E18 & BCD conversion error \\
\hline 0E19 & Division error (divisor = 0) \\
\hline 0E1A & \begin{tabular}{l} 
Use of device exceeds the range (including E, \\
F index register modification)
\end{tabular} \\
\hline 0E1B & The index of the radical is a negative value \\
\hline 0E1C & Communication error of FROM/TO instruction \\
\hline 0F04 & Use of register D exceeds the range \\
\hline 0F05 & \begin{tabular}{l} 
Improper use of operand DXXX of DCNT \\
instruction
\end{tabular} \\
\hline 0F06 & Improper use of operands of SFTR instruction \\
\hline 0F07 & Improper use of operands of SFTL instruction \\
\hline 0F08 & Improper use of operands of REF instruction \\
\hline 0F09 & \begin{tabular}{l} 
Improper use of operands of WSFR, WSFL \\
instructions
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Error \\
code
\end{tabular} & \multicolumn{1}{|c|}{ Cause of error } \\
\hline C41C & Points of extension module exceed the range \\
\hline C41D & \begin{tabular}{l} 
Number of extension modules exceeds the \\
range
\end{tabular} \\
\hline C41E & Incorrect hardware setting for extension module \\
\hline C41F & \begin{tabular}{l} 
Failing to write data into the memory (EH2/SV) \\
Right-side module detection error (EH3)
\end{tabular} \\
\hline C420 & Read/write function card error \\
\hline C430 & Initializing parallel interface error \\
\hline C440 & Hardware error in high-speed counter \\
\hline C441 & Hardware error in high-speed comparator \\
\hline C442 & Hardware error in MCU pulse output \\
\hline C443 & No response from extension unit \\
\hline C450 & The AD/DA function in the MPU breaks down. \\
\hline C4EE & No END instruction in the program \\
\hline C4FF & Invalid instruction (No such instruction exists.) \\
\hline
\end{tabular}

Finding out the module which is disconnected or damaged in an EH system:
Situation: A DVP-EH2/EH3 series MPU is powered, the ERROR LED indicator blinks, and the error code in D1004 is H'C41E.

Reading the value in D1104: The value in D1104 indicates the GPIO which is damaged. It represents a GPIO number. (GPIOs are numbered from 0. .)

The number of GPIOs in an MPU or an extension module is described below.
\begin{tabular}{|c|c|c|c|c|}
\hline MPU & \(40 \mathrm{EH} 2 / \mathrm{EH} 3\) & \(48 \mathrm{EH} 2 / \mathrm{EH} 3\) & \(64 \mathrm{EH} 2 / \mathrm{EH} 3\) & \(80 \mathrm{EH} 2 / \mathrm{EH} 3\) \\
\hline Number of GPIOs & 1 & 1 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline DIO module & \(08 \mathrm{HP} / \mathrm{HM} / \mathrm{HN}\) & \(16 \mathrm{HP} / \mathrm{HM}\) & \(32 \mathrm{HP} / \mathrm{HN} / \mathrm{HM}\) & 48 HP \\
\hline Number of GPIOs & 1 & 1 & 1 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline AIO module & 04AD / 04DA & 06XA & 04PT / 04TC & 08TC \\
\hline Number of GPIO & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Other modules & 01PU & 01 HC & PF02/CP02/DT02 \\
\hline Number GPIOs & 1 & 1 & 1 \\
\hline
\end{tabular}

Example 1: The system created is \(32 \mathrm{EH} 2+16 \mathrm{HP}+04 \mathrm{AD}+32 \mathrm{HM}\).
If the error code in D1004 is H'C41E, and the value in D1104 is K1, the GPIO numbers in the system will be as shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline System & 32 EH 2 & 16 HP & 04 AD & 32 HM \\
\hline GPIO number & No GPIO & 0 & 1 & 2 \\
\hline
\end{tabular}

The GPIO which is damaged is probably the GPIO in 04AD. If the error code still exists after 04AD is replaced, there may be something wrong with the communication interface in 16HP.

Example 2: The system created is \(40 \mathrm{EH} 2+48 \mathrm{HP}+04 \mathrm{AD}+04 \mathrm{PT}\).
If the error code in D1004 is H'C41E, and the value in D1104 is K2, the GPIO numbers in the system will be as shown in the table below.
\begin{tabular}{|c|c|c|c|c|}
\hline System & 40EH2 & 48 HP & 04 AD & 04PT \\
\hline GPIO number & 0 & 1,2 & 3 & 4 \\
\hline
\end{tabular}

The GPIO which is damaged is probably a GPIO in 48HP.

Example 3: There is only one 64EH2.
If the error code in D1004 is H'C41E, and the value in D1104 is K0, the GPIO number in 64EH2 will be as shown in the table below.
\begin{tabular}{|c|c|}
\hline System & 64 EH 2 \\
\hline GPIO number & 0 \\
\hline
\end{tabular}

The GPIO on the driver board in 64EH2 is damaged. The driver board needs to be replaced.

\subsection*{3.1 Basic Instructions and Step Ladder Instructions}

ES includes ES/EXISS; SA includes SA/SX/SC; EH includes EH2/SV/EH3/SV2.
For EH series MPU, the execution speed in the brackets ( ) refers to the execution speed of designated operand M1536 ~ M4095.
\(\square\) Basic Instructions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & ES & SA & EH & \\
\hline LD & Loading in A contact & X, Y, M, S, T, C & 3.8 & 3.8 & 0.24 (0.56) & 1~3 \\
\hline LDI & Loading in B contact & X, Y, M, S, T, C & 3.88 & 3.88 & 0.24 (0.56) & 1~3 \\
\hline AND & Series connection- A contact & X, Y, M, S, T, C & 2.32 & 2.32 & 0.24 (0.56) & 1~3 \\
\hline ANI & Series connection- B contact & X, Y, M, S, T, C & 2.4 & 2.4 & 0.24 (0.56) & 1~3 \\
\hline OR & Parallel connection- A contact & X, Y, M, S, T, C & 2.32 & 2.32 & 0.24 (0.56) & 1~3 \\
\hline ORI & Parallel connection- B contact & X, Y, M, S, T, C & 2.4 & 2.4 & 0.24 (0.56) & 1~3 \\
\hline ANB & Series connection- loop blocks & N/A & 1.76 & 1.76 & 0.24 & 1~3 \\
\hline ORB & Parallel connection- loop blocks & N/A & 1.76 & 1.76 & 0.24 & 1~3 \\
\hline MPS & Store the current result of the internal PLC operations & N/A & 1.68 & 1.68 & 0.24 & 1~3 \\
\hline MRD & Reads the current result of the internal PLC operations & N/A & 1.6 & 1.6 & 0.24 & 1 \\
\hline MPP & Pops (recalls and removes) the currently stored result & N/A & 1.6 & 1.6 & 0.24 & 1 \\
\hline
\end{tabular}

Output instructions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & ES & SA & EH & \\
\hline OUT & Output coil & Y, M, S & 5.04 & 5.04 & 0.24 (0.56) & 1~3 \\
\hline SET & Latched ( On ) & Y, M, S & 3.8 & 3.8 & 0.24 (0.56) & 1~3 \\
\hline RST & Clear the contacts or the registers & Y, M, S, T, C, D, E, F & 7.8 & 7.8 & 0.24 (0.56) & 3 \\
\hline
\end{tabular}

Timers, Counters
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{API} & \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & & ES & SA & EH & \\
\hline 96 & TMR & 16-bit timer & T-K or T-D & 10.6 & 10.6 & 9.6 & 4 \\
\hline 97 & CNT & 16-bit counter & C-K or C-D (16 bits) & 9.7 & 9.7 & 12.8 & 4 \\
\hline 97 & DCNT & 32-bit counter & C-K or C-D (32 bits) & 10.3 & 10.3 & 14.3 & 6 \\
\hline
\end{tabular}

Main control instructions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & ES & SA & EH & \\
\hline MC & Master control start & NO ~ N7 & 5.6 & 5.6 & 5.6 & 3 \\
\hline MCR & Master control reset & N0 ~ N7 & 5.7 & 5.7 & 5.7 & 3 \\
\hline
\end{tabular}

Instructions for detecting the contacts of rising-/falling-edge
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{API} & \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & & ES & SA & EH & \\
\hline 90 & LDP & Rising-edge detection operation & X, Y, M, S, T, C & 5.1 & 5.1 & 0.56 (0.88) & 3 \\
\hline 91 & LDF & Falling-edge detection operation & X, Y, M, S, T, C & 5.1 & 5.1 & 0.56 (0.88) & 3 \\
\hline 92 & ANDP & Rising-edge series connection & X, Y, M, S, T, C & 4.9 & 4.9 & 0.56 (0.88) & 3 \\
\hline 93 & ANDF & Falling-edge series connection & X, Y, M, S, T, C & 4.9 & 4.9 & 0.56 (0.88) & 3 \\
\hline 94 & ORP & Rising-edge parallel connection & X, Y, M, S, T, C & 4.9 & 4.9 & 0.56 (0.88) & 3 \\
\hline 95 & ORF & Falling-edge parallel connection & X, Y, M, S, T, C & 4.9 & 4.9 & 0.56 (0.88) & 3 \\
\hline
\end{tabular}

\section*{Rising-/falling-edge output instructions}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{API} & \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & & ES & SA & EH & \\
\hline 89 & PLS & Rising-edge output & Y, M & 7.8 & 7.8 & 9.92 & 3 \\
\hline 99 & PLF & Falling-edge output & Y, M & 7.8 & 7.8 & 10.16 & 3 \\
\hline
\end{tabular}

\section*{End instruction}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction Code} & \multirow[t]{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow[t]{2}{*}{STEP} \\
\hline & & & ES & SA & EH & \\
\hline END & Program ends & N/A & 5 & 5 & 0.24 & 1 \\
\hline
\end{tabular}

Other instructions
\begin{tabular}{|l|l|l|l|c|c|c|c|}
\hline \multirow{2}{*}{ API } & \multirow{2}{*}{\begin{tabular}{c} 
Instruction \\
Code
\end{tabular}} & Function & \multirow{2}{*}{ Operands } & \multicolumn{3}{|c|}{ Execution speed (us) } & \multirow{2}{*}{ STEP } \\
\cline { 4 - 9 } & & & ES & SA & EH & \\
\hline & NOP & No operation & N/A & 0.88 & 0.88 & 0.16 & 1 \\
\hline 98 & INV & Inverting operation & N/A & 1.6 & 1.6 & 0.24 & 1 \\
\hline & P & Pointer & PO \(\sim\) P255 & 0.88 & 0.88 & - & 1 \\
\hline & I & Interruption program marker & \(\boxed{I} \square \square\) & 0.88 & 0.88 & - & 1 \\
\hline
\end{tabular}

\section*{1 Step ladder instructions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Instruction Code} & \multirow{2}{*}{Function} & \multirow{2}{*}{Operands} & \multicolumn{3}{|l|}{Execution speed (us)} & \multirow{2}{*}{STEP} \\
\hline & & & ES & SA & EH & \\
\hline STL & Step transition ladder start instruction & S & 11.6 & 10.6 & 0.56 & 1 \\
\hline RET & Step transition ladder return instruction & N/A & 7.04 & 6.04 & 0.24 & 1 \\
\hline
\end{tabular}

Note 1: ES includes ES/EXISS; SA includes SA/SXISC; EH includes EH/EH2/SV.
Note 2: For EH series MPU, the execution speed in the brackets ( ) refers to the execution speed of designated operand M1536 ~ M4095.

\subsection*{3.2 Explanations on Basic Instructions}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline LD & Loading in A contact & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Operand} & X0 ~ X377 & Y0 ~ Y377 & M0 ~ M4095 & S0 ~ S1023 & T0 ~ T255 & \(\mathrm{CO} \sim \mathrm{C} 255\) & D0 ~ D9999 \\
\hline & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline
\end{tabular}

\section*{Explanations:}

The LD instruction is used on the A contact that has its start from the left BUS or the A contact that is the start of a contact circuit. The functions are to save the present contents and store the acquired contact status into the accumulative register.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll}
\hline \multicolumn{2}{l}{ Instruction code: } & Operation: \\
\hline LD & X0 & Loading in contact \(A\) of X0 \\
\hline AND & X1 & Connecting to contact \(A\) of X1 in series \\
OUT & Y1 & Driving Y1 coil
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands X, Y, M, and S. These operands can be qualified by E or F, e.g. LD X0E1.


\section*{Explanations:}

The LDI instruction is used on the B contact that has its start from the left BUS or the B contact that is the start of a contact circuit. The functions are to save the present contents and store the acquired contact status into the accumulative register.

\section*{Program Example:}

Ladder diagram:
\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
\hline LDI & X0 & Loading in contact B of X0 \\
AND & X1 & Connecting to contact A of X1 in series \\
OUT & Y1 & Driving Y1 coil
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\), and S . These operands can be qualified by E or F, e.g. LDI X0E1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{3}{|c|}{Function} & \multicolumn{2}{|l|}{Program steps} & \multicolumn{10}{|c|}{Controllers} \\
\hline AND & \multicolumn{3}{|l|}{Series connection- A contact} & \multicolumn{2}{|l|}{1} & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow{2}{*}{Operand} & X0 ~ X377 & YO ~ Y377 & \multicolumn{2}{|l|}{M0 ~ M4095} & \multicolumn{2}{|l|}{S0 ~ S1023} & \multicolumn{3}{|l|}{T0 ~ T255} & \multicolumn{3}{|l|}{C0 ~ C255} & \multicolumn{3}{|l|}{D0 ~ D9999} \\
\hline & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \(\checkmark\) & & & - & \\
\hline
\end{tabular}

\section*{Explanations:}

The AND instruction is used in the series connection of A contact. The functions are to read out the status of present d series connection contacts and perform the "AND" operation with the logical operation result obtained. The final result will be store in the accumulative register.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
LDI & X1 & Loading in contact B of X1 \\
\hline AND & X0 & Connecting to contact A of X0 in series \\
OUT & Y1 & Driving Y1 coil
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands \(X, Y, M\), and \(S\). These operands can be qualified by \(E\) or \(F\), e.g. AND X0E1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{3}{|c|}{Function} & \multicolumn{2}{|l|}{Program steps} & \multicolumn{10}{|c|}{Controllers} \\
\hline ANI & \multicolumn{3}{|l|}{Series connection- B contact} & \multicolumn{2}{|l|}{1} & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow{2}{*}{Operand} & X0 ~ X377 & Y0 ~ Y377 & \multicolumn{2}{|l|}{M0 ~ M4095} & \multicolumn{2}{|l|}{S0 ~ S1023} & \multicolumn{3}{|l|}{T0 ~ T255} & \multicolumn{3}{|l|}{C0 ~ C255} & \multicolumn{3}{|l|}{D0 ~ D9999} \\
\hline & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & \(\checkmark\) & & & \(\checkmark\) & & & \(\checkmark\) & & & - & \\
\hline
\end{tabular}

\section*{Explanations:}

The ANI instruction is used in the series connection of B contact. The functions are to read out the status of present designated series connection contacts and perform the "AND" operation with the logical operation result obtained. The final result will be store in the accumulative register.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
\hline LD & X1 & Loading in contact A of X1 \\
\hline ANI & X0 & Connecting to contact B of X0 in series \\
\hline OUT & Y1 & Driving Y1 coil
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\), and S . These operands can be qualified by E or F, e.g. ANI X0E1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{3}{|c|}{Function} & \multicolumn{2}{|l|}{Program steps} & \multicolumn{10}{|c|}{Controllers} \\
\hline OR & \multicolumn{3}{|l|}{Parallel connection- A contact} & \multicolumn{2}{|l|}{1} & ES & EX & SS & SA & X & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow{2}{*}{Operand} & X0 ~ X377 & YO ~ Y 377 & \multicolumn{2}{|l|}{M0 ~ M4095} & \multicolumn{2}{|l|}{S0 ~ S1023} & \multicolumn{3}{|r|}{T0 ~ T255} & \multicolumn{3}{|l|}{\(\mathrm{CO} \sim \mathrm{C} 255\)} & \multicolumn{3}{|l|}{D0 ~ D9999} \\
\hline & \(\checkmark\) & \(\checkmark\) & & \(\checkmark\) & & & & \(\checkmark\) & & & \(\checkmark\) & & & - & \\
\hline
\end{tabular}

\section*{Explanations:}

The OR instruction is used in the parallel connection of A contact. The functions are to read out the status of present designated parallel connection contacts and perform the "OR" operation with the logical operation result obtained. The final result will be store in the accumulative register.

\section*{Program Example:}

Ladder diagram: Instruction code: Operation:

\begin{tabular}{lll}
\hline LD & X0 & Loading in contact \(A\) of \(X 0\) \\
OR & X1 & Connecting to contact \(A\) of \(X 1\) in parallel \\
\hline OUT & Y1 & Driving Y1 coil \\
\hline
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\), and S . These operands can be qualified by E or F , e.g. OR X1E1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline ORI & Parallel connection- B contact & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Operand } & \(\mathrm{X} 0 \sim \mathrm{X} 377\) & \(\mathrm{YO} \sim \mathrm{Y} 377\) & \(\mathrm{MO} \sim \mathrm{M} 4095\) & \(\mathrm{~S} 0 \sim\) S1023 & T0 ~T255 & \(\mathrm{C} 0 \sim \mathrm{C} 255\) & D0 ~ D9999 \\
\cline { 2 - 8 } & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline
\end{tabular}

\section*{Explanations:}

The OR instruction is used in the parallel connection of \(B\) contact. The functions are to read out the status of present designated parallel connection contacts and perform the "OR" operation with the logical operation result obtained. The final result will be store in the accumulative register.

\section*{Program Example:}

Ladder diagram:

Instruction code:
\begin{tabular}{lll} 
LD & X0 & Operation: \\
\hline ORI & X1 & Coading in contact A of X0 \\
\hline OUT & Y1 & Driving Y1 coil \\
\hline
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\), and S . These operands can be qualified by E or F, e.g. ORI X1E1.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline ANB & Series connection- loop blocks & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline Operand & \multicolumn{12}{|c|}{N/A} \\
\hline
\end{tabular}

\section*{Explanations:}

To perform the "AND" operation of the preserved logic results and content in the accumulative register.

\section*{Program Example:}

Ladder diagram:


Block A Block B
\begin{tabular}{lll} 
Instruction code: & Operation: \\
LD & X0 & Loading in contact A of X0 \\
ORI & X2 & Connecting to contact B of X2 in parallel \\
LDI & X1 & Loading in contact B of X1 \\
OR & X3 & Connecting to contact A of X3 in parallel \\
ANB & & Connecting circuit block in series \\
OUT & Y1 & Driving Y1 coil
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline ORB & Parallel connection- loop blocks & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline Operand & \multicolumn{12}{|c|}{N/A} \\
\hline
\end{tabular}

\section*{Explanations:}

To perform the "OR" operation of the preserved logic results and content in the accumulative register.

\section*{Program Example:}

Ladder diagram:


Block B
\begin{tabular}{lll} 
Instruction code: & Operation: \\
LD & X0 & Loading in contact A of X0 \\
ANI & X1 & Connecting to contact B of X1 in series \\
LDI & X2 & Loading in contact B of X2 \\
AND & X3 & Connecting to contact A of X3 in series \\
ORB & & Connecting circuit block in parallel \\
OUT & Y1 & Driving Y1 coil
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline MPS & Store the current result of the internal PLC operations & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}

Operand
N/A

\section*{Explanations:}

To save the content in the accumulative register into the operational result (the pointer of operational result will plus 1).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline MRD & Reads the current result of the internal PLC operations & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline Operand & \multicolumn{12}{|c|}{N/A} \\
\hline
\end{tabular}

\section*{Explanations:}

To read the operational result and store it into the accumulative register (the pointer of operational result stays intact).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline MPP & Pops (recalls and removes) the currently stored result & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline Operand & \multicolumn{12}{|c|}{N/A} \\
\hline
\end{tabular}

\section*{Explanations:}

To retrieve the previous preserved logical operation result and store it into the accumulative register (the pointer of operational result will minus 1 ).

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
LD & X0 & Loading in contact A of X0 \\
\hline MPS & & Saving into stack \\
\hline AND & X1 & Connecting to contact A of X1 in series \\
OUT & Y1 & Driving Y1 coil \\
\hline MRD & & Reading from stack \\
\hline AND & X2 & Connecting to contact A of X2 in series \\
OUT & M0 & Driving M0 coil \\
\hline MPP & & Reading from stack and pop pointer \\
\hline OUT & Y2 & Driving Y2 coil \\
END & & Program ends
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & \multicolumn{2}{|r|}{Program steps} & \multicolumn{8}{|c|}{Controllers} \\
\hline OUT & \multicolumn{2}{|l|}{Output coil} & 1 & & EX & SS & SA & & SC EH2 & SV & EH3 \({ }^{\text {SV2 }}\) \\
\hline \multirow{2}{*}{Operand} & X0 ~ X377 & Y0 ~ Y 377 & M0 ~ M4095 & S0 ~ S1023 & \multicolumn{3}{|r|}{T0 ~ T255} & \multicolumn{2}{|l|}{\(\mathrm{C} 0 \sim \mathrm{C} 255\)} & \multicolumn{2}{|l|}{D0 ~ D9999} \\
\hline & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & - & & & - & & - \\
\hline
\end{tabular}

\section*{Explanations:}
1. To output the logical operation result before OUT instruction into a designated device.
2. Actions of coil contact:
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ Operational result } & \multicolumn{3}{|c|}{ OUT instruction } \\
\cline { 2 - 4 } & \multirow{2}{*}{ Coil } & \multicolumn{2}{|c|}{ Contact } \\
\cline { 3 - 4 } & & A contact (normally open) & B contact (normally closed) \\
\hline FALSE & Off & Off & On \\
\hline TRUE & On & On & Off \\
\hline
\end{tabular}

\section*{Program Example:}

Ladder diagram:
\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
LDI & X0 & Loading in contact B of X0 \\
AND & X1 & Connecting to contact A of X1 in series \\
OUT & Y1 & Driving Y1 coil
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands Y , M, and S. These operands can be qualified by E or F, e.g. OUT Y1E2.


\section*{Explanations:}

When the SET instruction is driven, its designated device will be "On" and keep being On both when SET instruction is still being driven or not driven. Use RST instruction to set "Off" the device.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll}
\multicolumn{1}{l}{ Instruction code: } & Operation: \\
LD & X0 & Loading in contact A of X0 \\
ANI & Y0 & Connecting to contact B of Y0 in series \\
SET & Y1 & Y1 latched \((O n)\)
\end{tabular}

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands \(Y\), M, and S. These operands can be qualified by E or F, e.g. SET Y1E2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline RST & Clear the contacts or the registers & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Operand } & \(\mathrm{X} 0 \sim \mathrm{X} 377\) & \(\mathrm{Y} 0 \sim \mathrm{Y} 377\) & \begin{tabular}{c}
\(\mathrm{M} 0 \sim\) \\
M 4095
\end{tabular} & \(\mathrm{SO} \sim \mathrm{S} 1023\) & \(\mathrm{TO} \sim \mathrm{T} 255\) & \(\mathrm{C} 0 \sim \mathrm{C} 255\) & \begin{tabular}{c}
\(\mathrm{D} 0 \sim\) \\
D 9999
\end{tabular} & \begin{tabular}{c}
\(\mathrm{E} 0 \sim \mathrm{E7}\) \\
\(\mathrm{FO} \sim \mathrm{F7}\)
\end{tabular} \\
\cline { 2 - 8 } & - & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Explanations:}
1. When the RST instruction is driven, the actions of the designated devices are:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Device } & \multicolumn{1}{c|}{ Status } \\
\hline \(\mathrm{Y}, \mathrm{M}, \mathrm{S}\), & Coil and contact will be set to "Off" \\
\hline \(\mathrm{T}, \mathrm{C}\) & \begin{tabular}{l} 
Present values of the timer or counter will be set to "0", and the coil and contact will be set to \\
"Off"
\end{tabular} \\
\hline \(\mathrm{D}, \mathrm{E}, \mathrm{F}\) & The content will be set to "0". \\
\hline
\end{tabular}
2. If RST instruction is not being executed, the status of the designated device will stay intact.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
LD \(\quad\) X0 Loading in contact A of \(\mathrm{X0}\) RST Y5 Resetting contact Y5

Note: DVP-EH3 series PLCs whose version is 1.40 and DVP-SV2 series PLCs whose version is 1.20 support the operands Y, M, and S. These operands can be qualified by E or F, e.g. RST Y5E2.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline TMR & 16-bit timer & 4 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{ Operand } & T-K & T0 \(\sim\) T255, K0 \(\sim\) K32,767 \\
\cline { 2 - 3 } & T-D & T0 \(\sim\) T255, D0 \(\sim\) D9999 \\
\hline
\end{tabular}

\section*{Explanations:}

When TMR instruction is executed, the designated coil of the timer will be On and the timer will start to time. When the set value in the timer is reached (present \(\geq\) set value), the contact will be:
\begin{tabular}{|l|l|}
\hline NO (Normally Open) contact & Open collector \\
\hline NC (Normally Closed) contact & Close collector \\
\hline
\end{tabular}

\section*{Program Example:}

Ladder diagram:
\begin{tabular}{|c|c|c|}
\hline TMR & T5 & K1000 \\
\hline
\end{tabular}

Instruction code: Operation:
\begin{tabular}{l|l|l}
\hline LD & X0 & Loading in contact A of X0 T5 timer \\
\hline TMR & T5 K1000 & Set value in timer T5 as K1,000 \\
\hline
\end{tabular}

\section*{Remarks:}

See the specification of each model for the range of operand \(T\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline ATMR & 16-bit contact type timer counter & 5 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multirow{3}{*}{ Operand } & T-K & T0 \(\sim\) T255,K0 \(\sim\) K32,767 \\
\cline { 2 - 3 } & \(\mathrm{T}-\mathrm{D}\) & \(\mathrm{TO} \sim \mathrm{T} 255, \mathrm{DO} \sim \mathrm{D} 11999\) \\
\hline
\end{tabular}

\section*{Explanations:}
1. The instruction ATMR corresponds to the combination of AND and TMR. If the contact preceding ATMR is ON, the timer specified will begin to count. When the count value is greater than or equal to the setting value, the AND contact is ON. If the contact preceding ATMR is not ON, ATMR will automatically clear the count value.

\section*{Program Example:}
\begin{tabular}{|c|c|c|c|c|}
\hline Ladder diagram: & & \multicolumn{2}{|l|}{Instruction code:} & Operation: \\
\hline \multirow[t]{3}{*}{\[
\stackrel{\text { XO }}{+}
\]} & & LD & X0 & Loading in contact A of \(\mathrm{X0}\) \\
\hline & & ATMR & T5 K100 & The setting value of T5 is K100. \\
\hline & & OUT & Y0 & When the count value is greater than or equal to the setting value, YO is ON . \\
\hline
\end{tabular}

\section*{Remarks:}
1. Please refer to specifications for the model used for more information about the timers which can be used.
2. EH3 series PLCs whose version is 1.40 and SV2 series PLCs whose version is 1.20 support ATMR.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline CNT & 16-bit counter & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow{2}{*}{Operand} & C-K & \multicolumn{11}{|l|}{C0 ~ C199, K0~K32,767} \\
\hline & C-D & \multicolumn{11}{|l|}{C0 ~ C199, D0 ~ D9999} \\
\hline
\end{tabular}

\section*{Explanations:}
3. When the CNT instruction goes from Off to On, the designated counter coil will be driven, and the present value in the counter will plus 1 . When the counting reaches the set value (present value = set value), the contact will be:
\begin{tabular}{|l|l|}
\hline NO (Normally Open) contact & Open collector \\
\hline NC (Normally Closed) contact & Close collector \\
\hline
\end{tabular}
4. If there are other counting pulse inputs after the counting reaches its target, the contact and present value will stay intact. Use RST instruction to restart or reset the counting.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
\(\begin{array}{lll}\text { LD } & \text { X0 } & \text { Loading in contact A of X0 } \\ \text { CNT } & \text { C20 K100 } & \text { Set value in counter C20 as K100 }\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline DCNT & 32-bit counter & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{3}{*}{ Operand } & \(\mathrm{C}-\mathrm{K}\) & \(\mathrm{C} 200 \sim \mathrm{C} 255, \mathrm{~K}-2,147,483,648 \sim \mathrm{~K} 2,147,483,647\) \\
\cline { 2 - 3 } & \(\mathrm{C}-\mathrm{D}\) & \(\mathrm{C} 200 \sim \mathrm{C} 255, \mathrm{D} 0 \sim \mathrm{D} 9999\) \\
\hline
\end{tabular}

\section*{Explanations:}
1. DCNT is the instruction for enabling the 32-bit high-speed counters \(\mathrm{C} 200 \sim \mathrm{C} 255\).
2. For general purpose addition/subtraction counters C200~C234, when DCNT goes from Off to On, the present value in the counter will pulse 1 (counting up) or minus 1 (counting down) according to the modes set in special M1200 ~ M1235.
3. For high-speed addition/subtraction counters C235~C255, when the high-speed counting pulse input goes from Off to On, the counting will start its execution. For the input terminals (X0 ~ X17) and counting methods (counting up/down) of the high-speed counter, see Chapter 2.7 Numbering and Function of Counter [C] for more details.
4. When DCNT is Off, the counting will stop, but the existing present value in the counter will not be cleared. To clear the present value and the contact, you have to use the instruction RST C2XX. Use externally designated input points to clear the present values and contacts of high-speed addition/subtraction counters C235 ~ C255.

\section*{Program Example:}
Ladder diagram: Instruction code: Operation:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline M0 & \multirow[b]{2}{*}{DCNT} & \multirow[b]{2}{*}{C254} & \multirow[b]{2}{*}{K1000} & LD & MO & Loading in contact A of M0 \\
\hline -1 & & & & DCNT & C254 K1000 & Set value of counter C254 as K1,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline MC / MCR & Master control Start/Reset & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{l|l} 
Operand & NO ~N7
\end{tabular}

\section*{Explanations:}
1. MC is the main-control start instruction. When MC instruction is executed, the execution of instructions between MC and MCR will not be interrupted. When MC instruction is Off, the actions of the instructions between MC and MCR are:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Instruction type } & \multicolumn{1}{c|}{ Explanation } \\
\hline General purpose timer & \begin{tabular}{l} 
Present value \(=0\) \\
Coil is Off, No action for the contact
\end{tabular} \\
\hline Accumulative timer & Coil is Off, present value and contact stay intact \\
\hline Subroutine timer & \begin{tabular}{l} 
Present value \(=0\) \\
Coil is Off, No action for the contact
\end{tabular} \\
\hline Counter & Coil is Off, present value and contact stay intact \\
\hline Coils driven by OUT instruction & All Off \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Instruction type } & \multicolumn{1}{c|}{ Explanation } \\
\hline \begin{tabular}{l} 
Devices driven by SET and RST \\
instructions
\end{tabular} & Stay intact \\
\hline & All disabled. \\
The FOR-NEXT nested loop will still execute back and forth for N times. \\
Application instructions & \begin{tabular}{l} 
Instructions between FOR-NEXT will act as the instructions between MC \\
and MCR.
\end{tabular} \\
\hline
\end{tabular}
2. MCR is the main-control end instruction that is placed in the end of the main-control program. There should not be any contact instructions prior to MCR instruction.
3. MC-MCR main-control program instructions support the nested program structure (max. 8 layers) and please use the instruction in the order N0 ~ N7.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
\begin{tabular}{lll} 
LD & X0 & Loading in A contact of X0 \\
MC & N0 & Enabling N0 common series connection contact \\
LD & X1 & Loading in A contact of X1 \\
OUT & Y0 & Driving Y0 coil \\
\(:\) & & \\
LD & X2 & Loading in A contact of X2 \\
MC & N1 & Enabling N1 common series connection contact \\
LD & X3 & Loading in A contact of X3 \\
OUT & Y1 & Driving Y1 coil \\
\(\quad:\) & & \\
MCR & N1 & Disabling N1 common series connection contact \\
\(\quad:\) & & \\
MCR & N0 & Disabling N0 common series connection contact \\
\hline\(:\) & & \\
LD & X10 & Loading in A contact of X10 \\
MC & N0 & Enabling N0 common series connection contact \\
LD & X11 & Loading in A contact of X11 \\
OUT & Y10 & Driving Y10 coil \\
\(\quad:\) & & \\
MCR & N0 & Disabling N0 common series connection contact
\end{tabular}


\section*{Explanations:}

The method of using LDP is the same as using LD, but the actions of the two instructions differ. LDP saves the current content and store the detected status of rising-edge to the accumulative register.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
\begin{tabular}{lll} 
LDP & X0 & Starting X0 rising-edge detection \\
AND & X1 & Series connecting A contact of X1 \\
OUT & Y1 & Driving Y1 coil
\end{tabular}

\section*{Remarks:}
1. See the specification of each model for the range of operands.
2. If the status of a designated rising-edge is On before the PLC is powered, the contact of the rising-edge will be TRUE after PLC is powered.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{3}{|c|}{Function} & Program steps & \multicolumn{9}{|c|}{Controllers} \\
\hline LDF & \multicolumn{2}{|l|}{Falling-edge detection operation} & & 1 & ES & EX SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow{2}{*}{Operand} & X0 ~ X377 & Y0 ~ Y377 & M0 ~ M4095 & S0 ~ S1023 & \multicolumn{2}{|l|}{T0 ~ T255} & \multicolumn{3}{|r|}{\(\mathrm{CO} \sim \mathrm{C} 255\)} & & \multicolumn{3}{|l|}{D0 ~ D9999} \\
\hline & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \multicolumn{2}{|r|}{\(\checkmark\)} & \multicolumn{3}{|c|}{\(\checkmark\)} & & \multicolumn{3}{|c|}{-} \\
\hline
\end{tabular}

\section*{Explanations:}

The method of using LDF is the same as using LD, but the actions of the two instructions differ. LDF saves the current content and store the detected status of falling-edge to the accumulative register.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
\begin{tabular}{lll} 
LDF & X0 & Starting X0 falling-edge detection \\
AND & X1 & Series connecting A contact of X1 \\
OUT & Y1 & Driving Y1 coil
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{3}{|c|}{Function} & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline ANDP & \multicolumn{2}{|l|}{Rising-edge series connection} & \multicolumn{2}{|r|}{1} & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow[t]{2}{*}{Operand} & X0 ~ X377 & Y0 ~ Y377 & \[
\begin{gathered}
\text { M0~ } \\
\text { M4095 }
\end{gathered}
\] & S0 ~ S1023 & \multicolumn{3}{|l|}{T0 ~ T255} & \multicolumn{4}{|r|}{\(\mathrm{C} 0 \sim \mathrm{C} 255\)} & & ~ D9 & 9999 \\
\hline & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \multicolumn{3}{|c|}{\(\checkmark\)} & \multicolumn{4}{|c|}{\(\checkmark\)} & \multicolumn{3}{|c|}{-} \\
\hline
\end{tabular}

\section*{Explanations:}

ANDP instruction is used in the series connection of the contacts' rising-edge detection.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{l}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
\hline LD \\
\hline X0
\end{tabular} Loading in A contact of X0


\section*{Explanations:}

ANDF instruction is used in the series connection of the contacts' falling-edge detection.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
\begin{tabular}{lll} 
LD & X0 & Loading in A contact of X0 \\
ANDF & X1 & X1 falling-edge detection in series connection \\
OUT & Y1 & Drive Y1 coil
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{2}{|r|}{Function} & \multicolumn{2}{|r|}{Program steps} & \multicolumn{9}{|c|}{Controllers} \\
\hline ORP & \multicolumn{2}{|l|}{Rising-edge parallel connection} & \multicolumn{2}{|r|}{1} & ES & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow[t]{2}{*}{Operand} & X0 ~ X377 & YO ~ Y377 & \[
\begin{gathered}
\text { M0 ~ } \\
\text { M4095 }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{SO} \sim \\
\mathrm{~S} 1023
\end{gathered}
\] & \multicolumn{2}{|l|}{T0 ~ T255} & \multicolumn{4}{|r|}{\(\mathrm{C} 0 \sim \mathrm{C} 255\)} & \multicolumn{3}{|l|}{D0 ~ D9999} \\
\hline & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & & & & & \(\checkmark\) & & & - & \\
\hline
\end{tabular}

\section*{Explanations:}

The ORP instructions are used in the parallel connection of the contact's rising-edge detection.

Program Example:

Ladder diagram:

Instruction code:
\begin{tabular}{lll} 
LD & X0 & Operation: \\
\hline ORP & X1 & X1 rising-edge detection in parallel connection \\
\hline OUT & Y1 & Driving Y1 coil \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline ORF & Falling-edge parallel connection & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Operand } & \(\mathrm{X} 0 \sim \mathrm{X} 377\) & \(\mathrm{Y} 0 \sim \mathrm{Y} 377\) & \(\mathrm{M} 0 \sim \mathrm{M} 4095\) & \(\mathrm{~S} 0 \sim \mathrm{~S} 1023\) & \(\mathrm{~T} 0 \sim \mathrm{~T} 255\) & \(\mathrm{C} 0 \sim \mathrm{C} 255\) & \(\mathrm{D} 0 \sim \mathrm{D} 9999\) \\
\cline { 2 - 8 } & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - \\
\hline
\end{tabular}

\section*{Explanations:}

The ORP instructions are used in the parallel connection of the contact's falling-edge detection.

\section*{Program Example:}


Instruction code: Operation:
\begin{tabular}{|l|l|l|}
\hline LD & X0 & Loading in A contact of X0 \\
\hline ORF & X1 & X1 falling-edge detection in parallel connection \\
\hline OUT & Y1 & Driving Y1 coil \\
\hline
\end{tabular}


\section*{Explanations:}

When X0 goes from Off to On (rising-edge trigger), PLS instruction will be executed and \(\mathbf{S}\) will send out pulses for once of 1 scan time.

\section*{Program Example:}

Ladder diagram:


Timing Diagram:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & \multicolumn{2}{|l|}{Function} & Program steps & & \multicolumn{9}{|c|}{Controllers} \\
\hline PLF & \multicolumn{2}{|l|}{Falling-edge output} & 1 & ES & EX & SS & SA & & SC & EH2 & SV & EH3 & SV2 \\
\hline \multirow{2}{*}{Operand} & X0 ~ X377 & Y0 ~ Y 377 & M0 ~ M4095 & S0 ~ S1023 & & \multicolumn{2}{|l|}{T0 ~ T255} & \multicolumn{3}{|l|}{C0 ~ C255} & \multicolumn{3}{|l|}{D0 ~ D9999} \\
\hline & - & \(\checkmark\) & \(\checkmark\) & - & & \multicolumn{2}{|l|}{-} & \multicolumn{3}{|c|}{-} & \multicolumn{3}{|c|}{-} \\
\hline
\end{tabular}

\section*{Explanations:}

When X0 goes from On to Off (falling-edge trigger), PLF instruction will be executed and \(\mathbf{S}\) will send out pulses for once of 1 scan time.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction code: } & Operation: \\
LD & X0 & Loading in A contact of X0 \\
PLF & MO & MO falling-edge output \\
LD & MO & Loading in contact A of MO \\
SET & YO & YO latched \((\) On \()\)
\end{tabular}

Timing Diagram:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline END & Program End & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Operand & N/A \\
\hline
\end{tabular}

\section*{Explanations:}

END instruction has to be placed in the end of a ladder diagram or instruction program. PLC will start to scan from address 0 to END instruction and return to address 0 to restart the scan.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline NOP & No operation & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline Operand & \multicolumn{12}{|c|}{N/A} \\
\hline
\end{tabular}

\section*{Explanations:}

NOP instruction does not conduct any operations in the program; therefore, after the execution of NOP, the existing logical operation result will be kept. If you want to delete a certain instruction without altering the length of the program, you can use NOP instruction.

\section*{Program Example:}
\begin{tabular}{llll} 
Ladder diagram: & Instruction code: & Operation: \\
\begin{tabular}{l} 
NOP instruction will be \\
omitted in the ladder diagram
\end{tabular} & LD & NOP & Loading in B contact of X0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline INV & Inverting Operation & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline Operand & \multicolumn{12}{|c|}{N/A} \\
\hline
\end{tabular}

\section*{Explanations:}

The logical operation result before INV instruction will be inverted and stored in the accumulative register.

\section*{Program Example:}

Ladder diagram:

\begin{tabular}{lll} 
Instruction code: & Operation: \\
LD \(\quad\) X0 & Loading in A contact of X0 \\
\hline INV & & Inverting the operation result \\
OUT Y1 & Driving Y1 coil
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Mnemonic & Function & Program steps & \multicolumn{10}{|c|}{Controllers} \\
\hline P & Pointer & 1 & ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular}
Operand \(\quad \mathrm{P} 0 \sim \mathrm{P} 255\)

\section*{Explanations:}

Pointer \(P\) is used in API 00 CJ and API 01 CALL instructions. The use of \(P\) does not need to start from No. 0 , and the No. of \(P\) cannot be repeated; otherwise, unexpected errors may occur.

\section*{Program Example:}


\section*{Explanations:}

A interruption program has to start with a interruption pointer ( \(\square \square \square\) ) and ends with API 03 IRET. I instruction has to be used with API 03 IRET, API 04 EI, and API 05 DI. See Chapter 2.9 for pointers of all DVP series PLCs.

\section*{Program Example:}

Ladder diagram:


Instruction code: Operation:
\begin{tabular}{lll} 
EI & & Enabling interruption \\
LD & X1 & Loading A contact of X1 \\
OUT & Y1 & Driving Y1 coil \\
\(:\) & & \\
DI & & Disabling interruption
\end{tabular}
\begin{tabular}{lll}
\hline FEND & & Main program ends \\
\hline I001 & & Interruption pointer \\
\hline LD & X2 & Loading in A contact of X2 \\
OUT & Y2 & Driving Y2 coil \\
\(:\) & & \\
IRET & & Interruption return \\
\hline
\end{tabular}

\subsection*{4.1 Step Ladder Instructions [STL], [RET]}
\begin{tabular}{|c|c|c|c|}
\hline Mnemonic & Function & Program steps & Controllers \\
\hline STL & Step Transition Ladder Start & 1 & \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline ES & EX & SS & SA & SX & SC & EH2 & SV & EH3 & SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Operand & S0 ~S1023 \\
\hline
\end{tabular}

\section*{Explanations:}

STL Sn constructs a step. When STL instruction appears in the program, the program will enter a step ladder diagram status controlled by steps. The initial status has to start from SO ~S9. RET instruction indicates the end of a step ladder diagram starting from S0 ~ S9 and the bus returns to a normal ladder diagram instruction. SFC uses the step ladder diagram composed of STL/RET to complete the action of a circuit. The No. of S cannot be repeated.


\section*{Explanations:}

RET indicates the end of a step. There has to be a RET instruction in the end of a series of steps. One PLC program can be written in maximum 10 steps ( SO ~ S 9 ) and every step should end with a RET.

\section*{Program Example:}

Ladder diagram:


SFC:


\subsection*{4.2 Sequential Function Chart (SFC)}

In automation, we always need electric control to work with mechanical control for an automation control. The sequential control can be divided into several orderly steps (or stages). Each step has its actions that should be completed and the transition from one step to another normally requires some criteria. The action of the last step finishes when all criteria is true and the beginning of the next step will clear the actions of the last step. This is the concept of designing a sequential function chart (SFC).

\section*{Features:}
1. No sequential design is required for constant step actions, and PLC will automatically execute the interlocking and dual outputs among all status. An easy sequential design is the only thing required to make the machine work normally.
2. The actions in SFC are easy to understand, adjust for a trial operation, detect the errors and maintain.
3. SFC is a type of diagram editing. The structure of a SFC looks like a flow chart. Every No. of the step relay S inside the PLC represents a step, equal to every processing procedure in a flow chart. When the current procedure is completed, the program will move to the next step according to the set transition criteria. Therefore, you can repeat the cycle and obtain the result you desire.
4. See the SFC chart in the right hand side: The initial step S0 transfers to a general purpose step S 21 by making the status transition condition X0 condition true. S21 transfer to S22 or jumps to S24 by making X1 or X2 true. In step S25, X6 will be true and the chart will return to S 0 to complete a cycle. The

SFC:


S24


S25


SO cycle and be repeated to reach a cyclic control.
5. Next are some basic icons for drawing SFC in WPLSoft SFC editor.
\begin{tabular}{|c|l|}
\hline LAD & \begin{tabular}{l} 
Ladder diagram mode. The icon indicates that the internal editing program is a general ladder \\
diagram, not a step ladder program.
\end{tabular} \\
\hline\(\square\) & Initial step in SFC. Applicable for S0 ~ S9. \\
\hline\(\square\) & General step. Applicable for S10 ~ S1023. \\
\hline\(\square\) & \begin{tabular}{l} 
Step jumps. Used for a step to jump to another non-adjacent step. \\
(Jumping up/down to non-adjacent steps in the same sequence, returning to initial step, or \\
jumping among different sequences.)
\end{tabular} \\
\hline\(\square\) & Transition condition between steps.
\end{tabular}
\begin{tabular}{|c|l|}
\hline+1 & Alternative convergence. More than 2 steps transfer to the same step by transition condition. \\
\hline 1 & \begin{tabular}{l} 
Simultaneous divergence. The same step transfers to more than 2 steps by the same transition \\
condition.
\end{tabular} \\
\hline & \begin{tabular}{l} 
Simultaneous convergence. More than 2 steps transfer to the same step by a single transition \\
condition.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.3 How does a Step Ladder Instruction Work?}

STL instruction is used for designing the syntax of a sequential function chart (SFC), making the program designing similar to drawing a flow chart and allowing a more explicit and readable program. From the figure in the left hand side below, we can see very clearly the sequence to be designed, and we can convert the sequence into the step ladder diagram in the right hand side.
RET instruction has to be written at the end of every step sequence, representing the end of a sequence. There can be more than one step sequence in a program. Therefore, we have to write in RET at the end of every step sequence. There is no limitation on the times of using RET which is used together with S0 ~ S9.
If there is no RET instruction at the end of a step sequence, errors will be detected by WPL editor.

1. Actions of Step Ladder:

A step ladder is composed of many steps and every step controls an action in the sequence. The step ladder has to:
a) Drive the output coil
b) Designate the transition condition
c) Designate which step will take over the control from the current step

Example:


Explanation:
When S10 \(=\mathrm{On}, \mathrm{Y} 0\) and Y 1 will be On. When \(\mathrm{X} 0=\mathrm{On}\), S20 will be On and Y 10 will be On. When S10 \(=\mathrm{Off}, \mathrm{Y} 0\) will be Off and Y 1 will be On.
2. Timing Diagram of Step Ladder:

When the status contact \(\mathrm{Sn}=\mathrm{On}\), the circuit will be activated. When \(\mathrm{Sn}=\mathrm{Off}\), the circuit will be inactivated. The actions will delay for 1 scan time.


Executing the timing diagram below. After the status of S10 and S12 are transferred (taking place simultaneously), and after a delay of 1 scan time, Y10 will be Off and Y11 will be On. There will not be overlapping outputs.

3. Repeated Use of Output Coil:
a) You can use output coils of the same No. in different steps.
b) See the diagram in the right. There can be the same output device (YO) among different statuses. YO will be On when S10 or S20 is On. Such as right diagram, there is the same output device Y 0 in the different state. No matter S 10 or S 20 is On, Y0 will be On.
c) Y0 will be Off when S10 is transferring to S20. After S20 is On, Y0 will output again. Therefore in this case, Y0 will be On when S10 or S20 is On.
d) Normally in a ladder diagram, avoid repeated use of an output coil. The No. of output coil used by a step should also avoid being used when the step ladder diagram returns to a general ladder diagram.
4. Repeated Use of Timer:

The timers in EH2/SV series MPU are the same as general output points and can be repeatedly used in different steps. This is one of the features of the step ladder diagram. However, in a general ladder diagram, it is better not be repeatedly use the output coil. Also avoid using the No. of the output coil used by a step after the step ladder diagram returns to a general ladder diagram.
Note: See the figure in the right. The timers in ES/EX/SS/SA/ SXISC series MPU can be used repeatedly in non-adjacent steps.

5. Transfer of Step:

SET Sn and OUT Sn instructions are used to enable (or transfer to) another step. When the control power is shifted to another step, the status of the previous step \(S\) and the action of the output point will be cleared. Due to that there can be many step control sequences (i.e. the step ladder diagram starting with \(\mathrm{SO} \sim \mathrm{S} 9\) ) co-existing in the program. The transfer of a step can take place in the same step sequence, or be transferred to different step sequence. Therefore, there are some slight differences regarding how to use SET Sn and OUT Sn. See the explanations below.

SET Sn Used for driving the next step in the same sequence. After the transition, all output from the previous status will be cleared.


When SET S12 instruction is executed S10 will transfer to S12, and S10 and all its outputs (Y10) will be cleared.

If M1014 is used, and it is On, the transfer of the steps will be prohibited, and the states of the steps remain unchanged.


If M1040 is On, SET S12 instruction will not be executed, the state of S 10 unchanged, and Y 10 will be On.

OUT Sn Used for returning to the initial step in the same step sequence. Also for jumping up/down to non-adjacent steps in the same sequence, or separating steps in different sequences. After the transition, all output from the previous status will be cleared.
(1) Returning to the initial step in the same sequence.
(2) Jumping up/down to non-adjacent steps in the same sequence.

SFC:


S25 returns to the initial step SO by using OUT.

Ladder diagram:



If M1014 is used, and M1040 is On, the steps in the same sequence will be cleared to Off. Ladder diagram:

6. Cautions for Driving Output Point:

See the figure below. After the step point and once LD or LDI instructions are written into the second line, the bus will not be able to connect directly to the output coil, and errors will occur in the compilation of the ladder diagram. You have to correct the diagram into the diagram in the right hand side for a correct compilation.

7. Restrictions on Using Some Instructions:

The program of every step is the same as a general ladder diagram, in which you can use all kinds of series/parallel circuits or instructions. However, there are restrictions on some of the instructions.
Basic instructions applicable in a step
\begin{tabular}{|l|l|l|l|c|}
\hline & Instruction & \begin{tabular}{c} 
LD/LDI/LDP/LDF \\
AND/ANI/ANDP/ANDF \\
Step
\end{tabular} & \begin{tabular}{c} 
ANB/ORB \\
OR/ORI/ORP/ORF \\
INV/OUT/SET/RST
\end{tabular} & MPS/MRD/MPP
\end{tabular} MC/MCR
- DO NOT use MC/MCR instruction in the step.
- DO NOT use STL instruction in a general subroutine or interruption subroutine.
- You can still use CJ instruction in STL instruction, but this will make the actions more complicated. We do not recommend you do so.
- The position of MPS/MRD/MPP instruction:

Ladder diagram:

\begin{tabular}{lll} 
Instruction code: & Explanation: \\
STL & Sn & MPS/MRD/MPP instruction cannot \\
LD & X0 & \begin{tabular}{l} 
be used directly on the new bus. \\
You have to execute LD or LDI
\end{tabular} \\
MPS & & instruction first before applying \\
AND & X1 & MPS/MRD/MPP. \\
OUT & Y1 & \\
MRD & & \\
AND & X2 & \\
OUT & M0 & \\
MPP & & \\
AND & X3 & \\
OUT & Y2 &
\end{tabular}
8. Other Points to Note:

The instruction used for transferring the step (SET S \(\square\) or OUT S \(\square\) ) can only be executed after all the relevant outputs and actions in the current status are completed. See the figure below. The executed results by the PLC are the same, but if there are many conditions or actions in S 10 , it is recommended that you modify the diagram in the left hand side into the diagram in the right hand side. SET S20 is only executed after all relevant outputs and actions are completed, which is a more explicit sequence.


Make sure to add RET instruction after STL at the end of
 the step ladder diagram.


\subsection*{4.4 Things to Note for Designing a Step Ladder Program}
1. The first step in the SFC is called the "initial step", S0 ~ S9. Use the initial step as the start of a sequence and end a complete sequence with RET instruction.
2. If STL instruction is not in use, step \(S\) can be a general-purpose auxiliary relay.
3. When STL instruction is in use, the No. of step S cannot be repeated.
4. Types of sequences:

Single sequence: There is only one sequence without alternative divergence, alternative convergence, simultaneous divergence and simultaneous convergence in a program.

Complicated single sequence: There is only one sequence with alternative divergence, alternative convergence, simultaneous divergence and simultaneous convergence in a program.
Multiple sequences: There are more than one sequence in a program, maximum 10 sequences, \(\mathrm{S} 0 \sim \mathrm{~S} 9\). 5. Separation of sequence: Multiple sequences are allowed to be written into the step ladder diagram.
a) See the diagram in the right hand side. There are two sequences S0 and S1. The program writes in S0 ~ S30 first and S1 ~ S43 next.
b) You can designate a step in the sequence to jump to any step in another sequence.
c) When the condition below S 21 is true, the sequence will jump to step S42 in sequence S 1 , which is called "separating the step".

6. Restrictions on diverging sequence: See 4.5 for example
a) You can use maximum 8 diverged steps in a divergence sequence.
b) You can use maximum 16 loops in multiple divergence sequences or in simultaneous sequences combined into one sequence.
c) You can designate a step in the sequence to jump to any step in another sequence.
7. Reset of the step and the inhibiting output:
a) Use ZRST instruction to reset a step to be Off.
b) Make M1034 \(=\) On to inhibit output Y .
8. Latched step:

The On/Off status of the latched step will be memorized when the power of the PLC is switched off. When the PLC is re-powered, the status before the power-off will be recovered and the execution will resume. Please be aware of the area for the latched steps.
9. Special auxiliary relays and special registers: See 4.6refer to chapter 4.6 IST instruction for more details.
\begin{tabular}{|c|l|}
\hline Device No. & \multicolumn{1}{|c|}{ Function } \\
\hline M1040 & Disabling step. Disabling all the shifting of steps when On. \\
\hline M1041 & Starting step. Flag for IST instruction. \\
\hline M1042 & Enabling pulses. Flag for IST instruction. \\
\hline M1043 & Zero return completed. Flag for IST instruction. \\
\hline M1044 & Zero point condition. Flag for IST instruction. \\
\hline M1045 & Disabling all output reset. Flag for IST instruction. \\
\hline M1046 & Setting STL status as On. On when any of the steps is On. \\
\hline M1047 & Enabling STL monitoring \\
\hline D1040 & On status of step No. 1 \\
\hline D1041 & On status of step No. 2 \\
\hline D1042 & On status of step No. 3 \\
\hline D1043 & On status of step No. 4 \\
\hline D1044 & On status of step No. 5 \\
\hline D1045 & On status of step No. 6 \\
\hline D1046 & On status of step No. 7 \\
\hline D1047 & On status of step No. 8 \\
\hline
\end{tabular}

\subsection*{4.5 Types of Sequences}

Single Sequence: The basic type of sequences
The first step in a step ladder diagram is called the initial step, which can be S0~S9. The steps following the initial step are general steps, which can be S10 ~ S1023. If you are using IST instruction, S10 ~ S19 will become the steps for zero return.

\section*{a) Single sequence without divergence and convergence}

After a sequence is completed, the control power on the steps will be given to the initial step.

Step ladder diagram


SFC:


\section*{b) Jumping Sequence}
1. The control power over the step is transferred to a certain step on top.
2. The control power over the step is transferred to the step in another sequence.


\section*{c) Reset Sequence}

See the diagram in the right hand side. When the condition at S50 is true, S 50 will be reset and the sequence will be completed at


\section*{Complicated Single Sequence:}

Including simultaneous divergence, alternative divergence, simultaneous convergence and alternative convergence.

\section*{a) Structure of simultaneous divergence}

When the condition at the current step is true, the step can be transferred to many steps. See the diagrams below. When X0 = On, S20 will be simultaneously transferred to S21, S22, S23 and S24.

Ladder diagram:


SFC:


\section*{b) Structure of alternative divergence}

When the individual condition at the current status is true, the step will be transferred to another individual step.
See the diagrams below. When \(\mathrm{X0}=\mathrm{On}, \mathrm{S} 20\) will be transferred to S 30 ; when \(\mathrm{X} 1=\mathrm{On}, \mathrm{S} 20\) will be transferred to S 31 ; when \(\mathrm{X} 2=\mathrm{On}, \mathrm{S} 20\) will be transferred to S 32 .

Ladder diagram:


SFC:


\section*{c) Structure of the simultaneous convergence}

See the ladder diagram below. A continuous STL instruction represents a simultaneous convergence. When the condition is true after a continuous output, the step will be transferred to the next step. In the simultaneous convergence, only when several conditions are true will the transfer be allowed.

Ladder diagram:


SFC:


\section*{d) Structure of alternative convergence}

See the diagrams below. Depending on the condition of the input signal of which of S30, S40 and S50 becomes true first, the first one will be first transferred to S60.

Ladder diagram:


SFC:


\section*{Examples of alternative divergence \& alternative convergence:}

Ladder diagram:


SFC:


Examples of simultaneous divergence \& simultaneous convergence:

Ladder diagram:


SFC:


\section*{Example of the simultaneous divergence \& alternative convergence:}

Ladder diagram:


SFC:


\section*{Combination Example 1:}
(Including alternative divergence/convergence and simultaneous divergence/convergence)
Ladder diagram:


SFC:


\section*{Combination Example 2:}
(Including alternative divergence/convergence and simultaneous divergence/convergence)

Ladder diagram:



\section*{Restrictions on Divergence Sequence:}
1. You can use maximum 8 divergence steps in a divergence sequence. As the diagram below, there are maximum 8 diverged steps S30 ~ S37 after step S20.
2. You can use maximum 16 loops in multiple divergence sequences or in simultaneous sequences combined into one sequence. As the diagram below, there are 4 steps diverged after S40, 7 steps diverged after S41, and 5 steps diverged after S42. There are maximum 16 loops in this sequence.
3. You can designate a step in the sequence to jump to any step in another sequence.


\subsection*{4.6 IST Instruction}
\begin{tabular}{|c||c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 60 & IST & S \(D_{1}\left(D_{2}\right.\) & Initial State \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & \multirow[t]{4}{*}{IST: 7 steps} \\
\hline S & * & * & * & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{1}\) & & & & * & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & & & * & & & & & & & & & & & & \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}\) : Start device in the designated operation mode \(\quad \mathbf{D}_{1}\) : The smallest No. of designated step in auto mode
\(\mathbf{D}_{2}\) : The biggest No. of designated step in auto mode

\section*{Explanations:}
1. \(S\) will occupy 8 consecutive points.
2. Range of \(\mathbf{D}_{1}\) and \(\mathbf{D}_{2}\) : for SA/SX/SC/EH2/SV/EH3/SV2 S20 ~ S899; for ES/EX/SS S20 ~S127; \(\mathbf{D}_{\mathbf{2}}>\mathbf{D}_{\mathbf{1}}\).
3. See the specifications of each model for their range of use.
4. IST instruction can only be used once in the program.
5. Flags: M1040 ~ M1047. See remarks for more details.
6. IST instruction is a handy instruction specifically for the initial status of step ladder control procedure to accommodate special auxiliary relay.

\section*{Program Example 1:}
1. Use of IST instruction
\begin{tabular}{|l|l|l|l|}
\hline M 1000 \\
\hline \(1 \longmapsto\) & IST & X10 & S20 \\
\hline
\end{tabular}
S X10: Individual operation
X14: Continuous operation
X11: Zero return
X15: Zero return enabled switch
X12: Step operation
X16: Start switch
X13: One cycle operation
X17: Stop switch
2. When IST instruction is being executed, the following special auxiliary relays will switch automatically.

M1040: Operation forbidden
M1041: Operation starts
M1042: Pulse output enabled
M1047: STL monitor enabled

SO: Initiates manual operation
S1: Initiates zero return
S2: Initiates auto operation
3. \(\mathrm{S} 10 \sim \mathrm{~S} 19\) are for zero return and cannot be used as general steps. When \(\mathrm{S} 0 \sim \mathrm{~S} 9\) are in use, \(\mathrm{S} 0 \sim \mathrm{~S} 2\) represent manual operation mode, zero return mode and auto operation mode. Therefore, in the program, you have to write the circuit of the three steps in advance.
4. When switched to S 1 (zero return) mode, any On in S10 ~ S19 will result in no zero return.
5. When switched to S 2 (auto operation) mode, any On of the \(S\) in \(\mathbf{D}_{\mathbf{1}} \sim \mathbf{D}_{2}\) or \(\mathrm{M} 1043=\) On will result in no auto operation.

\section*{Program Example 2:}
1. Robot arm control (by IST instruction):
a) Motion request: Separate the big ball and small ball and move them to different boxes. Configure the control panel for the control.
b) Motions of the robot arm: descending, clipping ball, ascending, right shifting, releasing ball, ascending, left shifting.
c) I/O devices:

2. Operation modes:

Manual operation: Turn On/Off of the load by a single button.
Zero return: Press the zero return button to automatically zero-return the machine.
Auto operation:
a) Single step operation: Press "auto start" button for every one step forward.
b) One cycle operation: Press "auto start" button at the zero point. After a cycle of auto operation, the operation will stops at the zero point. Press "auto stop" button in the middle of the operation to stop the operation and press "auto start" to restart the operation. The operation will resume until it meets the zero point.
c) Continuous operation: Press "auto start" button at the zero point to resume the operation. Press "auto stop" to
operate until it meets the zero point.
3. The control panel:

a) Ball size sensor \(X 0\).
b) Robot arm: left limit X 1 , big ball right limit X 2 , small ball right limit X 3 , upper limit X 4 , lower limit X 5 .
c) Robot arm: ascending Y0, descending Y1, right shifting Y2, left shifting Y3, clipping Y4.

\section*{Start Circuit}


\section*{Manual Operation Mode}


\section*{Zero Return Mode}

SFC:


Ladder Diagram:


\section*{Auto Operation Modes}

SFC:


Ladder Diagram:


\subsection*{5.1 List of Instructions}

For applicable models, ES includes ES/EX/SS; SA includes SA/SXISC; EH includes EH2/SV/EH3/SV2.
ESIEXISS series MPU does not support pulse execution type instructions ( P instruction).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{instruction} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{10}{*}{\[
\begin{aligned}
& 0 \\
& \hline 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 . \\
& \hline
\end{aligned}
\]} & 00 & CJ & - & \(\checkmark\) & Conditional Jump & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 01 & CALL & - & \(\checkmark\) & Call Subroutine & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 02 & SRET & - & - & Subroutine Return & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 03 & IRET & - & - & Interrupt Return & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 04 & El & - & - & Enable Interrupts & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 05 & DI & - & - & Disable Interrupts & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 06 & FEND & - & - & The End of The Main Program (First End) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 07 & WDT & - & \(\checkmark\) & Watchdog Timer Refresh & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 08 & FOR & - & - & Start of a FOR-NEXT Ioop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 09 & NEXT & - & - & End of a FOR-NEXT loop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline \multirow{10}{*}{} & 10 & CMP & DCMP & \(\checkmark\) & Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 11 & ZCP & DZCP & \(\checkmark\) & Zone Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 12 & MOV & DMOV & \(\checkmark\) & Move & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 13 & SMOV & - & \(\checkmark\) & Shift Move & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 14 & CML & DCML & \(\checkmark\) & Compliment & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 15 & BMOV & - & \(\checkmark\) & Block Move & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 16 & FMOV & DFMOV & \(\checkmark\) & Fill Move & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 17 & XCH & DXCH & \(\checkmark\) & Exchange & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 18 & BCD & DBCD & \(\checkmark\) & Binary Coded Decimal & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 19 & BIN & DBIN & \(\checkmark\) & Binary & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow{12}{*}{} & 20 & ADD & DADD & \(\checkmark\) & Addition & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 21 & SUB & DSUB & \(\checkmark\) & Subtraction & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 22 & MUL & DMUL & \(\checkmark\) & Multiplication & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 23 & DIV & DDIV & \(\checkmark\) & Division & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 24 & INC & DINC & \(\checkmark\) & Increment & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 25 & DEC & DDEC & \(\checkmark\) & Decrement & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 26 & WAND & DAND & \(\checkmark\) & Logical Word AND & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 27 & WOR & DOR & \(\checkmark\) & Logical Word OR & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 28 & WXOR & DXOR & \(\checkmark\) & Logical Exclusive OR & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 29 & NEG & DNEG & \(\checkmark\) & 2's Complement (Negative) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 114 & MUL16 & MUL32 & \(\checkmark\) & 16-bit/32-bit Multiplication & - & - & - & \(\checkmark\) & 7 & 13 \\
\hline & 115 & DIV16 & DIV32 & \(\checkmark\) & 16-bit/32-bit Division & - & - & - & \(\checkmark\) & 7 & 13 \\
\hline \multirow{10}{*}{} & 30 & ROR & DROR & \(\checkmark\) & Rotation Right & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 31 & ROL & DROL & \(\checkmark\) & Rotation Left & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 32 & RCR & DRCR & \(\checkmark\) & Rotation Right with Carry & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 33 & RCL & DRCL & \(\checkmark\) & Rotation Left with Carry & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 34 & SFTR & - & \(\checkmark\) & Bit Shift Right & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 35 & SFTL & - & \(\checkmark\) & Bit Shift Left & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 36 & WSFR & - & \(\checkmark\) & Word Shift Right & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 37 & WSFL & - & \(\checkmark\) & Word Shift Left & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 38 & SFWR & - & \(\checkmark\) & Shift Register Write & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 39 & SFRD & - & \(\checkmark\) & Shift Register Read & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline \multirow{10}{*}{} & 40 & ZRST & - & \(\checkmark\) & Zero Reset & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 41 & DECO & - & \(\checkmark\) & Decode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 42 & ENCO & - & \(\checkmark\) & Encode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 43 & SUM & DSUM & \(\checkmark\) & Sum of Active Bits & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 44 & BON & DBON & \(\checkmark\) & Check Specified Bit Status & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 45 & MEAN & DMEAN & \(\checkmark\) & Mean & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 46 & ANS & - & - & Timed Annunciator Set & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 47 & ANR & - & \(\checkmark\) & Annunciator Reset & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 48 & SQR & DSQR & \(\checkmark\) & Square Root & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 49 & FLT & DFLT & \(\checkmark\) & Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{instruction} & \multirow[t]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{10}{*}{} & 50 & REF & - & \(\checkmark\) & Refresh & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 51 & REFF & - & \(\checkmark\) & Refresh and Filter Adjust & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 52 & MTR & - & - & Input Matrix & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 53 & - & DHSCS & - & High Speed Counter Set & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 54 & - & DHSCR & - & High Speed Counter Reset & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 55 & - & DHSZ & - & High Speed Zone Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 56 & SPD & - & - & Speed Detection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 57 & PLSY & DPLSY & - & Pulse Y Output & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 58 & PWM & - & - & Pulse Width Modulation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 59 & PLSR & DPLSR & - & Pulse Ramp & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline \multirow{10}{*}{} & 60 & IST & - & - & Initial State & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 61 & SER & DSER & \(\checkmark\) & Search a Data Stack & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 62 & ABSD & DABSD & - & Absolute Drum Sequencer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 63 & INCD & - & - & Incremental Drum Sequencer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 64 & TTMR & - & - & Teaching Timer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 65 & STMR & - & - & Special Timer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 66 & ALT & - & \(\checkmark\) & Alternate State & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 67 & RAMP & DRAMP & - & Ramp Variable Value & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 68 & DTM & - & - & Data Transform and Move & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 69 & SORT & DSORT & - & Sort Tabulated Data & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & 21 \\
\hline \multirow[t]{8}{*}{} & 70 & TKY & DTKY & - & Ten Key Input & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 71 & HKY & DHKY & - & Hexadecimal Key Input & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 72 & DSW & - & - & Digital Switch & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 73 & SEGD & - & \(\checkmark\) & Seven Segment Decoder & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 74 & SEGL & - & - & Seven Segment with Latch & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 75 & ARWS & - & - & Arrow Switch & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 76 & ASC & - & - & ASCII Code Conversion & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 77 & PR & - & - & Print (ASCII Code Output) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline \multirow{11}{*}{} & 78 & FROM & DFROM & \(\checkmark\) & Read CR Data in Special Modules & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 79 & TO & DTO & \(\checkmark\) & Write CR Data into Special Modules & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 80 & RS & - & - & Serial Communication Instruction & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 81 & PRUN & DPRUN & \(\checkmark\) & Parallel Run & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 82 & ASCI & - & \(\checkmark\) & Converts Hex to ASCII & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 83 & HEX & - & \(\checkmark\) & Converts ASCII to Hex & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 84 & CCD & - & \(\checkmark\) & Check Code & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 85 & VRRD & - & \(\checkmark\) & Volume Read & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 86 & VRSC & - & \(\checkmark\) & Volume Scale & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 87 & ABS & DABS & \(\checkmark\) & Absolute Value & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 88 & PID & DPID & - & PID Control Loop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline \multirow{11}{*}{\begin{tabular}{l}
0 \\
0 \\
0.0 \\
0 \\
0 \\
0 \\
0 \\
\hline 0 \\
0 \\
0 \\
0
\end{tabular}} & 89 & PLS & - & - & Rising-edge Output & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 90 & LDP & - & - & Rising-edge Detection Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 91 & LDF & - & - & Falling-edge Detection Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 92 & ANDP & - & - & Rising-edge Series Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 93 & ANDF & - & - & Falling-edge Series Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 94 & ORP & - & - & Rising-edge Parallel Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 95 & ORF & - & - & Falling-edge Parallel Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 96 & TMR & - & - & 16-bit Timer & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 4 & - \\
\hline & 97 & CNT & DCNT & - & 16-bit / 32-bit Counter & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 4 & 6 \\
\hline & 98 & INV & - & - & Inverting Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 99 & PLF & - & - & Falling-edge Output & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline \multirow[t]{7}{*}{} & 100 & MODRD & - & - & Read Modbus Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 101 & MODWR & - & - & Write Modbus Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 102 & FWD & - & - & Forward Running of VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 103 & REV & - & - & Reverse Running of VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 104 & STOP & - & - & Stop VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 105 & RDST & - & - & Read VFD-A Status & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 106 & RSTEF & - & - & Reset Abnormal VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{instruction} & \multirow[t]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow[t]{5}{*}{} & 107 & LRC & - & \(\checkmark\) & Checksum LRC Mode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 108 & CRC & - & \(\checkmark\) & Checksum CRC Mode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 113 & ETHRW & - & - & Reading/Writing through Ethernet & - & - & - & \(\checkmark\) & 9 & - \\
\hline & 150 & MODRW & - & - & Read/Write Modbus Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 206 & ASDRW & - & - & ASDA servo drive R/W & - & - & - & \(\checkmark\) & 7 & - \\
\hline \multirow{16}{*}{} & 110 & - & DECMP & \(\checkmark\) & Floating Point Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 111 & - & DEZCP & \(\checkmark\) & Floating Point Zone Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 112 & - & DMOVR & \(\checkmark\) & Move Floating Point Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 116 & - & DRAD & \(\checkmark\) & Angle \(\rightarrow\) Radian & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 117 & - & DDEG & \(\checkmark\) & Radian \(\rightarrow\) Angle & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 118 & - & DEBCD & \(\checkmark\) & Float to Scientific Conversion & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 119 & - & DEBIN & \(\checkmark\) & Scientific to Float Conversion & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 120 & - & DEADD & \(\checkmark\) & Floating Point Addition & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 121 & - & DESUB & \(\checkmark\) & Floating Point Subtraction & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 122 & - & DEMUL & \(\checkmark\) & Floating Point Multiplication & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 123 & - & DEDIV & \(\checkmark\) & Floating Point Division & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 124 & - & DEXP & \(\checkmark\) & Exponent of Binary Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 125 & - & DLN & \(\checkmark\) & Natural Logarithm of Binary Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 126 & - & DLOG & \(\checkmark\) & Logarithm of Binary Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 127 & - & DESQR & \(\checkmark\) & Floating Point Square Root & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 128 & - & DPOW & \(\checkmark\) & Floating Point Power Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{14}{*}{} & 129 & INT & DINT & \(\checkmark\) & Float to Integer & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 130 & - & DSIN & \(\checkmark\) & Sine & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 131 & - & DCOS & \(\checkmark\) & Cosine & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 132 & - & DTAN & \(\checkmark\) & Tangent & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 133 & - & DASIN & \(\checkmark\) & Arc Sine & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 134 & - & DACOS & \(\checkmark\) & Arc Cosine & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 135 & - & DATAN & \(\checkmark\) & Arc Tangent & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 136 & - & DSINH & \(\checkmark\) & Hyperbolic Sine & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 137 & - & DCOSH & \(\checkmark\) & Hyperbolic Cosine & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 138 & - & DTANH & \(\checkmark\) & Hyperbolic Tangent & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 172 & - & DADDR & \(\checkmark\) & Addition of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 173 & - & DSUBR & \(\checkmark\) & Subtraction of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 174 & - & DMULR & \(\checkmark\) & Multiplication of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 175 & - & DDIVR & \(\checkmark\) & Division of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{16}{*}{\[
\begin{aligned}
& \stackrel{\varrho}{0} \\
& \stackrel{1}{5}
\end{aligned}
\]} & 109 & SWRD & - & \(\checkmark\) & Read Digital Switch & - & - & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 143 & DELAY & - & \(\checkmark\) & Delay Instruction & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 144 & GPWM & - & - & General PWM Output & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 145 & FTC & - & - & Fuzzy Temperature Control & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 146 & CVM & - & - & Valve Control & - & - & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 147 & SWAP & DSWAP & \(\checkmark\) & Byte Swap & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 148 & MEMR & DMEMR & \(\checkmark\) & Read File Register & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 149 & MEMW & DMEMW & \(\checkmark\) & Write File Register & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 151 & PWD & - & - & Detection of Input Pulse Width & - & - & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 152 & RTMU & - & - & Start of the Measurement of Execution Time of I Interruption & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 153 & RTMD & - & - & End of the Measurement of the Execution Time of I Interruption & - & - & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 154 & RAND & DRAND & \(\checkmark\) & Random Number & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 168 & MVM & DMVM & \(\checkmark\) & Move the Designated Bit & - & - & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 176 & MMOV & - & \(\checkmark\) & Magnify Move & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 177 & GPS & - & - & GPS data receiving & - & - & - & \(\checkmark\) & 5 & - \\
\hline & \multicolumn{11}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{instruction} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{7}{*}{\[
\begin{aligned}
& \frac{\varrho}{\mathbb{D}} \\
& \stackrel{1}{5}
\end{aligned}
\]} & 179 & WSUM & DWSUM & \(\checkmark\) & Get the Sum & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 196 & HST & - & \(\checkmark\) & High Speed Timer & - & - & \(\checkmark\) & & 3 & - \\
\hline & 202 & SCAL & - & \(\checkmark\) & Proportional Value Calculation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 203 & SCLP & - & \(\checkmark\) & Parameter Proportional Value Calculation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 205 & CMPT & DCMPT & \(\checkmark\) & Compare table & - & - & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 206 & ASDRW & - & - & ASDA servo drive R/W & - & - & - & \(\checkmark\) & 7 & - \\
\hline & 207 & CSFO & - & - & Catch speed and proportional output & - & - & - & \(\checkmark\) & 7 & - \\
\hline \multirow{13}{*}{\[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\]} & 155 & - & DABSR & - & Read the Absolute Position from a Servo Motor & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 156 & ZRN & DZRN & - & Zero Return & - & - & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 157 & PLSV & DPLSV & - & Adjustable Speed Pulse Output & - & - & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 158 & DRVI & DDRVI & - & Drive to Increment & - & - & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 159 & DRVA & DDRVA & - & Drive to Absolute & - & - & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 191 & - & DPPMR & - & 2-Axis Relative Point to Point Motion & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 192 & - & DPPMA & - & 2-Axis Absolute Point to Point Motion & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 193 & - & DCIMR & - & 2-Axis Relative Position Arc Interpolation & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 194 & - & DCIMA & - & 2-Axis Absolute Position Arc Interpolation & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 195 & - & DPTPO & - & Single-Axis Pulse Output by Table & - & - & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 197 & - & DCLLM & - & Close Loop Position Control & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 198 & - & DVSPO & - & Variable Speed Pulse Output & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 199 & - & DICF & \(\checkmark\) & Immediately Change Frequency & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{7}{*}{} & 160 & TCMP & - & \(\checkmark\) & Time Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 161 & TZCP & - & \(\checkmark\) & Time Zone Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 162 & TADD & - & \(\checkmark\) & Time Addition & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 163 & TSUB & - & \(\checkmark\) & Time Subtraction & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 166 & TRD & - & \(\checkmark\) & Time Read & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 167 & TWR & - & \(\checkmark\) & Time Write & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 169 & HOUR & DHOUR & - & Hour Meter & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { तo } \\
& \frac{0}{0} \\
& \hline 0
\end{aligned}
\]} & 170 & GRY & DGRY & \(\checkmark\) & BIN \(\rightarrow\) Gray Code & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 171 & GBIN & DGBIN & \(\checkmark\) & Gray Code \(\rightarrow\) BIN & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow{11}{*}{\[
\begin{aligned}
& \text { 肴 } \\
& \text { 荡 }
\end{aligned}
\]} & 180 & MAND & - & \(\checkmark\) & Matrix 'AND' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 181 & MOR & - & \(\checkmark\) & Matrix 'OR' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 182 & MXOR & - & \(\checkmark\) & Matrix 'XOR' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 183 & MXNR & - & \(\checkmark\) & Matrix 'XNR' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 184 & MINV & - & \(\checkmark\) & Matrix Inverse Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 185 & MCMP & - & \(\checkmark\) & Matrix Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 186 & MBRD & - & \(\checkmark\) & Read Matrix Bit & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 187 & MBWR & - & \(\checkmark\) & Write Matrix Bit & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 188 & MBS & - & \(\checkmark\) & Matrix Bit Displacement & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 189 & MBR & - & \(\checkmark\) & Matrix Bit Rotation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 190 & MBC & - & \(\checkmark\) & Matrix Bit Status Counting & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline \multirow{9}{*}{} & 215 & LD\& & DLD\& & - & \(\mathrm{S}_{1}\) \& \(\mathrm{S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 216 & LD| & DLD| & - & \(\mathrm{S}_{1} \mid \mathrm{S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 217 & \(L^{\text {d }}\) & DLD^ & - & \(\mathrm{S}_{1} \wedge \mathrm{~S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 218 & AND\& & DAND\& & - & \(\mathrm{S}_{1} \& \mathrm{~S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 219 & AND| & DAND| & - & \(\mathrm{S}_{1} \mid \mathrm{S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 220 & AND^ & DAND^ & - & \(\mathrm{S}_{1} \wedge \mathrm{~S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 221 & OR\& & DOR\& & - & \(\mathrm{S}_{1} \& \mathrm{~S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 222 & OR| & DOR| & - & \(\mathrm{S}_{1} \mid \mathrm{S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 223 & \(\mathrm{OR}^{\wedge}\) & DOR^ & - & \(\mathrm{S}_{1} \wedge \mathrm{~S}_{2}\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{\(P\) instruction} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{18}{*}{Contact Type Comparison Instruction} & 224 & LD= & DLD= & - & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 225 & LD> & DLD> & - & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 226 & LD< & DLD< & - & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 228 & LD<> & DLD<> & - & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 229 & LD<= & DLD<= & - & \(\mathrm{S}_{1} \leq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 230 & LD>= & DLD>= & - & \(\mathrm{S}_{1} \geq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 232 & AND= & DAND= & - & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 233 & AND> & DAND> & - & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 234 & AND< & DAND< & - & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 236 & AND<> & DAND<> & - & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 237 & AND<= & DAND<= & - & \(\mathrm{S}_{1} \leq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 238 & AND>= & DAND>= & - & \(\mathrm{S}_{1} \geq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 240 & OR= & DOR= & - & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 241 & OR> & DOR> & - & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 242 & OR< & DOR< & - & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 244 & OR<> & DOR<> & - & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 245 & OR<= & DOR<= & - & \(\mathrm{S}_{1} \leq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 246 & OR>= & DOR>= & - & \(\mathrm{S}_{1} \geq \mathrm{S}_{2}\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow[b]{9}{*}{} & 266 & BOUT & DBOUT & - & Output Specified Bit of a Word & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 267 & BSET & DBSET & - & Set ON Specified Bit of a Word & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 268 & BRST & DBRST & - & Reset Specified Bit of a Word & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 269 & BLD & DBLD & - & Load NO Contact by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 270 & BLDI & DBLDI & - & Load NC Contact by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 271 & BAND & DBAND & - & Connect NO Contact in Series by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 272 & BANI & DBANI & - & Connect NC Contact in Series by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 273 & BOR & DBOR & - & Connect NO Contact in Parallel by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 274 & BORI & DBORI & - & Connect NC Contact in Parallel by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow{16}{*}{} & 275 & - & FLD= & - & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 276 & - & FLD> & - & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 277 & - & FLD< & - & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 278 & - & FLD<> & - & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 279 & - & FLD<= & - & \(\mathrm{S}_{1} \leqq \mathrm{~S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 280 & - & FLD>= & - & \(\mathrm{S}_{1} \geqq \mathrm{~S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 281 & - & FAND= & - & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 282 & - & FAND> & - & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 283 & - & FAND< & - & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 284 & - & FAND<> & - & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 285 & - & FAND<= & - & \(\mathrm{S}_{1} \leqq \mathrm{~S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 286 & - & FAND>= & - & \(\mathrm{S}_{1} \geqq \mathrm{~S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 287 & - & FOR= & - & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 288 & - & FOR> & - & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 289 & - & FOR< & - & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 290 & - & FOR<> & - & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline \multirow{10}{*}{} & 291 & - & FOR<= & - & \(\mathrm{S}_{1} \leqq \mathrm{~S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 292 & - & FOR>= & - & \(\mathrm{S}_{1} \geqq \mathrm{~S}_{2}\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 296 & LDZ> & DLDZ> & - & \(\left|S_{1}-S_{2}\right|>\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 297 & LDZ>= & DLDZ>= & - & \(\left|S_{1}-S_{2}\right| \geqq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 298 & LDZ< & DLDZ< & - & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 299 & LDZ<= & DLDZ<= & - & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 300 & LDZ= & DLDZ= & - & \(\left|S_{1}-S_{2}\right|=\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 301 & LDZ<> & DLDZ<> & - & \(\left|S_{1}-S_{2}\right| \neq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 302 & ANDZ> & DANDZ> & - & \(\left|S_{1}-S_{2}\right|>\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 303 & ANDZ>= & DANDZ>= & - & \(\left|S_{1}-S_{2}\right| \geqq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{instruction} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{10}{*}{} & 304 & ANDZ< & DANDZ< & - & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 305 & ANDZ<= & DANDZ<= & - & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 306 & ANDZ= & DANDZ= & - & \(\left|S_{1}-S_{2}\right|=\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 307 & ANDZ<> & DANDZ<> & - & \(\left|S_{1}-S_{2}\right| \neq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 308 & ORZ> & DORZ> & - & \(\left|S_{1}-S_{2}\right|>\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 309 & ORZ>= & DORZ>= & - & \(\left|S_{1}-S_{2}\right| \geqq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 310 & ORZ< & DORZ< & - & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 311 & ORZ<= & DORZ<= & - & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 312 & ORZ= & DORZ= & - & \(\left|S_{1}-S_{2}\right|=\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 313 & ORZ<> & DORZ<> & - & \(\left|S_{1}-S_{2}\right| \neq\left|S_{3}\right|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}

\subsection*{5.2 Composition of Application Instruction}
- An application instruction has two parts: the instruction and operands.

Instruction: The function of the instruction
Operands: Devices for processing the operations of the instruction
The instruction part of an application instruction usually occupies 1 step, and one operand occupies 2 or 4 steps depending on the instruction is a 16 -bit or 32 -bit one.
- Format of an application instruction:

(1) API No.
(2) Indication of if there is a 16 -bit or 32-bit instruction. If there is a 32 -bit instruction, the column will be marked with " \(D\) ".
(3) Mnemonic of the application instruction
(4) Indication of if there is a pulse execution type instruction. If there is a pulse instruction, the column will be marked with "P".
(5) Operands
(6) Function of the application instruction
(7) DVP-PLC applicable to the application instruction. ES includes ES/EX/SS, SA includes SA/SX/SC, EH2 includes EH2/SV, and EH3 includes EH3/SV2.
8. Steps occupied by the 16-bit/32-bit/pulse execution instruction
(9) DVP-PLC applicable to the pulse/16-bit/32-bit instruction
(10) Column marked with * and in grey refers to \(\mathrm{E}, \mathrm{F}\) index register modification is applicable.
(11) Column marked with * is the device applicable for the operand

Device name
(13) Device type

Input of application instruction:
Some application instructions are only composed of the instruction part (mnemonic), e.g. EI, DI, WDT.... Most application instructions are composed of the instruction part and many operands.

The application instructions for DVP-PLC are represented as API 00 ~ API 246. Every application instruction has its own mnemonic. For example, the mnemonic of API 12 is MOV. If you are using the ladder diagram editing software (WPLSoft) to input API 12 into the program, you only have to enter "MOV". If you are using the handheld programming panel (HPP) to input API 12 into the program, you will have to enter the API No. " 12 ".
Different application instructions designate different operands. Take MOV instruction for example:


MOV instruction is to move the operand designated in \(\mathbf{S}\) to the operand designated in \(\mathbf{D}\).
\(\mathbf{S} \quad\) Source operand: If there are more than 1 source operands, they will be represented as \(\mathbf{S}_{1}, \mathbf{S}_{2}, \ldots\). Destination operand: If there are more than 1 destination operands, they will be represented as
D \(\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots\)

If the operand can only be constant \(\mathrm{K} / \mathrm{H}\) or a register, it will be represented as \(\mathbf{m}, \mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}}, \mathbf{n}, \mathbf{n}_{\mathbf{1}}, \mathbf{n}_{\mathbf{2}}, \ldots\).
- Length of operand (16-bit instruction or 32-bit instruction)

Depending on the contents in the operand, the length of an operand can be 16-bit or 32 -bit. Therefore, a 16 -bit instruction is for processing 16-bit operands, and 32-bit instruction is for processing 32-bit operands. The 32 -bit instruction is indicated by adding a " \(D\) " before the 16-bit instruction.

\section*{16-bit MOV instruction}


32-bit DMOV instruction
\begin{tabular}{|c|l|l|l|}
\hline X1 & DMOV & D10 & D20 \\
\hline
\end{tabular}

When \(\mathrm{X} 1=\mathrm{On}\), the content in (D11, D10) will be sent to (D21, D20).
- Continuous execution instruction and pulse execution instruction

Continuous execution and pulse execution are the two types of execution for an application instruction. Due to that the execution time required will be shorter when the instruction is not executer, the pulse execution instructions are used more to shorten the scan period. Instructions marked with a " \(P\) " following the mnemonic are pulse execution instruction. Some instructions are mostly used as pulse execution type, e.g. INC, DEC, the kind of displacement instructions.

\section*{Pulse execution instruction}


Continuous execution instruction


When X0 goes from Off to On, MOVP instruction will be executed once and the instruction will not be executed again in the scan period.

In every scan period when X1 = On, MOV instruction will be executed once.

In the two figures, when \(\mathrm{X} 0, \mathrm{X} 1=\) Off, the instruction will not be executed, and the content in operand \(\mathbf{D}\) will remain unchanged.

\section*{- Designation of operands}
1. Bit devices \(X, Y, M\), and \(S\) can be combined into word device, storing values and data for operaions in the form of \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS in an application instruction.
2. Data register \(D\), timer \(T\), counter \(C\) and index register \(E, F\) are designated by general operands.
3. A data register is usually in 16 bits, i.e. of the length of 1 register \(D\). A designated 32 -bit data register refers to 2 consecutive register Ds.
4. If an operand of a 32-bit instruction designates D0, the 32-bit data register composed of (D1, D0) will be occupied. D1 is the higher 16 bits; D0 is the lower 16 bits. The same rule also apply to timer \(\mathrm{T}, 16\)-bit timers and C0 ~ C199.
5. When the 32-bit counters \(\mathrm{C} 200 \sim \mathrm{C} 255\) are used as data registers, they can only be designataed by the operands of 32-bit instructions.

\section*{- Format of operand}
1. \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\), and S can only \(\mathrm{On} / \mathrm{Off}\) a single point and are defined as bit devices.
2. 16-bit (or 32-bit) devices T, C, D, and registers \(E, F\) are defined as word devices.
3. You can place Kn ( \(\mathrm{n}=1\) refers to 4 bits. For 16 -bit instruction, \(\mathrm{n}=\mathrm{K} 1 \sim \mathrm{~K} 4\); for 32 -bit instruction, \(\mathrm{n}=\mathrm{K} 1 \sim \mathrm{~K} 8\) ) before bit devices \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\) and S to make it a word device for performing word-device operations. For example, K1M0 refers to 8 bits, MO \(\sim M\).


When \(\mathrm{XO}=\mathrm{On}\), the contents in \(\mathrm{MO} \sim \mathrm{M} 7\) will be moved to bit0 \(\sim 7\) in D10 and bit8 \(\sim 15\) will be set to " 0 ".
- Data processing of word devices combined from bit devices
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ 16-bit instruction } \\
\hline \multicolumn{2}{|l|}{ Designated value: K-32,768 ~ K32,767 } \\
\hline \multicolumn{2}{|l|}{ Values for designated K1 ~K4 } \\
\hline K1 (4 bits) & \(0 \sim 15\) \\
\hline K2 (8 bits) & \(0 \sim 255\) \\
\hline K3 (12 bits) & \(0 \sim 4,095\) \\
\hline K4 (16 bits) & \(-32,768 \sim+32,767\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{ 32-bit instruction } \\
\hline Designated value: K-2,147,483,648 ~ K2,147,483,647 \\
\hline \multicolumn{2}{|l|}{ Values for designated K1 ~ K8 } \\
\hline K1 (4 bits) & \(0 \sim 15\) \\
\hline K2 (8 bits) & \(0 \sim 255\) \\
\hline K3 (12 bits) & \(0 \sim 4,095\) \\
\hline K4 (16 bits) & \(0 \sim 65,535\) \\
\hline K5 (20 bits) & \(0 \sim 1,048,575\) \\
\hline K6 (24 bits) & \(0 \sim 167,772,165\) \\
\hline K7 (28 bits) & \(0 \sim 268,435,455\) \\
\hline K8 (32 bits) & \(-2,147,483,648 \sim+2,147,483,647\) \\
\hline
\end{tabular}
- Flags
1. General flags
a) The flags listed below are for indicating the operational result of the application instruction.

M1020: zero flag
M1021: borrow flag

M1022: carry flag
M1029: execution of instruction is completed

All flags will turn On or Off according to the operational result of an instruction. For example, the execution result of operation instructions ADD/SUB/MUL/DVI will affect the status of M1020 ~M1022. When the instruction is not executed, the On/Off status of the flag will be held. The status of the four flags relates to many instructions. See relevant instructions for more details.
b) Example of M1029

When the contact of DSW (Digital Switch) instruction is On, 4 output points will automatically act in cycle at the frequency of 0.1 second in order to read the set value of the digital switch. If the contact goes Off during the execution, the action will be disabled. When it is On again, the disabled action will be re-executed. If you do not wish the action to be disabled, you can take the circuit below as a reference.


When \(\mathrm{XO}=\mathrm{On}\), DSW will be enabled.
When X0 = Off, MO will be Off only when DSW completes a cycle and M1029 \(=\) On.

\section*{5 Categories \& Use of Application Instructions}

\section*{2. Error Operation Flags}

Errors occur during the execution of the instruction when the combination of application instructions is incorrect or the devices designated by the operand exceed their range. Other than errors, the flags listed in the table below will be On, and error codes will also appear.
\begin{tabular}{|c|l|}
\hline Device & \multicolumn{1}{c|}{ Explanation } \\
\hline M1067 & When operational errors occur, M1067 will be On. D1067 displays the error code. D1069 \\
D1067 & displays the step where the error occurs. Other errors occurring will update the contents in \\
D1069 & D1067 and D1069. M1067 will be Off when the error is eliminated. \\
\hline M1068 & When operational errors occur, M1068 will be On. D1068 displays the step where the error \\
D1068 & \begin{tabular}{l} 
occurs. Other errors occurring wil not update the content in D1068. You have to use RST \\
instruction to reset M1068 to Off; otherwise M1068 will keep being On.
\end{tabular} \\
\hline
\end{tabular}
3. Flags for expanding functions

Some application instructions can use some special flags to expand their functions or complete special functions. For example, the communication instruction RS can use M1161 to switch between 8-bit and 16-bit transmission mode.
- Times of using instructions

There are limitation on the times of using some instructions in the program. However, you can use index register modification in the operands to expand the functions of the instruction.
1. Can be used only once in the program:
\begin{tabular}{|l|l|}
\hline API 58 PWM (ES series MPU) & API 60 IST (ES/SA/EH2/EH3/SV/SV2 series MPU) \\
\hline API 74 SEGL (ES series MPU) & API 155 DABSR (SC/EH2/EH3 series MPU) \\
\hline
\end{tabular}
2. Can be used only twice in the program:
\begin{tabular}{|l|l|}
\hline API 57 PLSY (ES series MPU) & API 59 PLSR (ES series MPU) \\
\hline API 74 SEGL (EH2/EH3/SVISV2 series MPU) & API 77 PR (SA/EH2/EH3/SV/SV2 series MPU) \\
\hline
\end{tabular}
3. Can be used only 4 times in the program:
```

API 169 HOUR (SA series MPU)

```
4. Can be used only 8 times in the program:

API 64 TTMR (SA series MPU)
5. API 53 DHSCS and API 54 DHSCR together can be used only maximum 4 times in the program (ES series MPU).
6. API 53 DHSCS, API 54 DHSCR, and API 55 DHSZ together can be used only maximum 6 times in the program (SA series MPU).
- There is no limitation on the times of using the instructions listed below, but there are limitations on the times of executing the same instruction at the same time.
1. Instructions which can be executed only once: API 52 MTR (SA/EH2/EH), API 56 SPD (ES/SA/EH2/EH3), API 69 SORT (SA/EH2/EH3), API 70 TKY (SA/EH2/EH3), API 71 HKY (SA/EH2/EH3), API 72 DSW (SA), API 74 SEGL (SA), and API 151 PWD (EH2/EH3). API 75 ARWS, API 80 RS, API 100 MODRD, API 101 MODWR, API 102 FWD, API 103 REV, API 104 STOP, API 105 RDST, API 106 RSTEF, and API 150 MODRW (ES/SA/EH2/EH3/SV/SV2 supports the instructions above).
2. Instructions which can be executed only twice: API 58 PWM (SA), API 72 DSW (EH2/EH3/SV/SV2).
3. Instructions which can be executed only 4 times: API 57 PLSY (EH2/EH3/SV/SV2), API 58 PWM (EH2/EH3/SV/SV2), API 169 HOUR (EH2/EH3/SV/SV2).
4. Instructions which can be executed only 8 times: API 64 TTMR (EH2/EH3/SV/SV2).
5. In SA series MPU, there is on limitation on the times of using the high-speed output instructions PLSY, PWM and PLSR, bit only one high-speed output instruction will be enabled in every scan.
6. In EH2/EH3/SV/SV2 series MPU, there is no limitation on the times of using hardware high-speed counter instructions DHSCS, DHSCR and DHSZ, but when the three instructions are enabled at the same time, DHSCS will occupy 1 memory unit, DHSCR 1 memory unit, and DHSZ 2 memory units. The total memeory units occupied by the three instructions cannot be more than 8 units. If there are more than 8 memory units occupied, the PLC system will execute the instruction that is first scanned and enabled and ignore the rest.

\subsection*{5.3 Handling of Numeric Values}
- Devices only with On/Off status are called bit devices, e.g. X, Y, M and S. Devices used exclusively for storing numeric values are called word devices, e.g. T, C, D, E and F. Bit device plus a specific bit device (place a digit before the bit device in Kn ) can be used in the operand of an application instruction in the form of numeric value.
- \(\mathrm{n}=\mathrm{K} 1\) ~ K4 for a 16-bit value; \(\mathrm{n}=\mathrm{K} 1\) ~ K8 for a 32-bit value. For example, K2M0 refers to an 8-bit value composed of MO ~M7.

- K1M0, K2M0, and K3M0 are transmitted to 16 -bit registers and the vacant high bits will be filled in " 0 ". The same rule applied to when K1M0, K2M0, K3M0, K4M0, K5M0, K6M0, and K7M0 are transmitted to 32-bit registers and the vacant high bits will be filled in " 0 ".

\section*{5 Categories \& Use of Application Instructions}
- In the 16-bit (or 32-bit) operation, if the contents of the operand are designated as bit devices K1 ~ K3 (or K4~K7), the vacant high bits will be regarded as " 0 ". Therefore, the operation is a positive-value one.


The BCD value composed of \(\mathrm{X} 4 \sim \mathrm{X} 13\) will be converted to BIN value and sent to DO.
- You can choose any No. for bit devices, but please make the 1 s digit of \(X\) and \(Y\) " 0 ", e.g. \(X 0, X 10, X 20, \ldots Y 0, Y 10 \ldots\), and the \(1 s\) digit of \(M\) and \(S\) " 8 's multiple" (" 0 " is still the best choice), e.g. M0, M10, M20....
- Designating continuous device No.

Take data register D for example, continuous D refers to D0, D1, D2, D3, D4....
For bit devices with specifically designated digit, continuous No. refers to:
\begin{tabular}{|l|l|l|l|}
\hline K1X0 & K1X4 & K1X10 & K1X14... \\
\hline K2Y0 & K2Y10 & K2Y20 & Y2X30... \\
\hline K3M0 & K3M12 & K3M24 & K3M36... \\
\hline K4S0 & K4S16 & K4S32 & K4S48... \\
\hline
\end{tabular}

Please follow the No. in the table and do not skip No. in case confusion may occur. In addition, if you use K4Y0 in the 32-bit operation, the higher 16 bits will be regarded as " 0 ". For 32-bit data, please use K8Y0.

The operations in DVP-PLC are conducted in BIN integers. When the integer performs division, e.g. \(40 \div 3=13\) and the remainder is 1 . When the integer performs square root operations, the decimal point will be left out. Use decimal point operation instructions to obtain the decimal point.

Application instructions revelant to decimal point:
\begin{tabular}{|l|l|l|l|}
\hline API 49 (FLT) & API 110 (D ECMP) & API 111 (D EZCP) & API 112 (D MOVR) \\
\hline API 116 (D RAD) & API 117 (D DEG) & API 118 (D EBCD) & API 119 (D EBIN) \\
\hline API 120 (D EADD) & API 121 (D ESUB) & API 122 (D EMUL) & API 123 (D EDIV) \\
\hline API 124 (D EXP) & API 125 (D LN) & API 126 (D LOG) & API 127 (D ESQR) \\
\hline API 128 (D POW) & API 129 (INT) & API 130 (D SIN) & API 131 (D COS) \\
\hline API 132 (D TAN) & API 133 (D ASIN) & API 134 (D ACOS) & API 135 (D ATAN) \\
\hline API 136 (D SINH) & API 137 (D COSH) & API 138 (D TANH) & API 172 (D ADDR) \\
\hline API 173 (D SUBR) & API 174 (D MULR) & API 175 (D DIVR) & \\
\hline API 275~280 (FLD※) & API 281~286 (FAND※) & API \(287 \sim 292\) (FOR※) & \\
\hline
\end{tabular}

\section*{Binary Floating Point}

DVP-PLC represents floating points in 32 bits, following the IEEE754 standard:

\((-1)^{S} \times 2^{E-B} \times 1 . M\), in which \(B=127\)
Therefore, the range for the 32-bit floating point is \(\pm 2^{-126} \sim \pm 2^{+128}\), i.e. \(\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}\)
Example 1: Representing "23" in 32-bit floating point
Step 1: Convert " 23 " into a binary value: \(23.0=10111\)
Step 2: Normalize the binary value: \(10111=1.0111 \times 2^{4}\), in which 0111 is mantissa and 4 is exponent
Step 3: Obtain the exponent: \(\because E-B=4 \rightarrow E-127=4 \therefore E=131=100000112\)
Step 4: Combine the sign bit, exponent and mantissa into a floating point
\[
01000001101110000000000000000000_{2}=41 \mathrm{~B}_{2} 0000_{16}
\]

Example 2: Representing "-23.0" in 32-bit floating point
The steps required are the same as those in Example 1. The only difference is you have to alter the sign bit into " 1 ". DVP-PLC uses registers of 2 continuous No. to combine into a 32-bit floating point. For example, we use registers (D1, D0) for storing a binary floating point as below:


\section*{Decimal Floating Point}
- Since the binary floating point are not very user-friendly, we can convert it into a decimal floating point for use. Please be noted that the decimal point operation in DVP-PLC is still in binary floating point.
- The decimal floating point is represented by 2 continuous registers. The register of smaller No. is for the constant while the register of bigger No. is for the exponent.

Example: Storing a decimal floating point in registers (D1, D0)
Decimal floating point \(=\left[\right.\) constant D0] \(\times 10^{[\text {exponent D1 }]}\)
Constant D0 \(= \pm 1,000 \sim \pm 9,999\)
Exponent D1 \(=-41 \sim+35\)
The constant 100 does not exist in D0 due to 100 is represented as \(1,000 \times 10^{-1}\). The range of decimal floating point
is \(\pm 1175 \times 10^{-41} \sim \pm 3402 \times 10^{+35}\).
- The decimal floating point can be used in the following instructions:

D EBCD: Converting binary floating point to decimal floating point
D EBIN: Converting decimal floating point to binary floating point
- Zero flag (M1020), carry flag (M1021), carry flag (M1022) and the floating point operation instructions:

Zero flag: M1020 = On if the operational result is " 0 ".
Borrow flag: M1021 = On if the operational result exceeds the minimum unit.
Carry flag: M1022 = On if the absolute value of the operational result exceeds the range of use.

\subsection*{5.4 E, F Index Register Modification}

The index registers are 16 -it registers. There are 2 points of E, F in ES/EX/SS, 8 points E0 ~E3 and F0 ~F3 in SA/SXISC, and 16 points E0 ~E7 and F0 ~ F7 in EH2/SV/EH3 series MPU.
- E and F index registers are 16-bit data registers. They can be read and written.
- If you need a 32-bit register, you have to designate E. In this case, F will be covered up by E and cannot be used; otherwise, the contents in E may become incorrect. (We recommend you use MOVP instruction to reset the contents in D to 0 when the PLC is switched on.)
- Combination of \(E\) and \(F\) when you designate a 32-bit index register: (E0, F0), (E1, F1), (E2, F2), ... (E7, F7)

\[
\begin{aligned}
& \mathrm{E} 0=8 \quad \mathrm{~F} 0=14 \\
& 20+8=28 \quad 10+14=24 \\
& \text { Transmission } \quad \mathrm{K} 28 \rightarrow \mathrm{D} 24
\end{aligned}
\]

See the diagram in the left hand side. E, F index register modification refers to the content in the operand changes with the contents in \(E\) and \(F\).

For example, E0 = 8 and K20E0 represents constant K28 (20 \(+8)\). When the condition is true, constant K28 will be transmitted to register D24.

Devices modifiable in ES/EX/SS series MPU: P, X, Y, M, S, KnX, KnY, KnM, KnS, T, C, D.
Devices modifiable in SA/SXISC series MPU: P, X, Y, M, S, KnX, KnY, KnM, KnS, T, C, D
Devices modifiable in EH2/SV/EH3 series MPU: P, I, X, Y, M, S, K, H, KnX, KnY, KnM, KnS, T, C, D
\(E\) and \(F\) can modify the devices listed above but cannot modify themselves and Kn . K4M0E0 is valid and K0E0M0 is invalid. Grey columns in the table of operand at the beginning page of each application instruction indicate the operands modifiable by \(E\) and \(F\).

If you need to modify device P, I, X, Y, M, S, KnX, KnY, KnM, KnS, T, C and D by E, F, you have to select a 16-bit register, i.e. you can designate E or F . To modify constant K and H in a 32-bit instruction, you have to select a 32-bit register, i.e. you have to designate E .

When you use the instruction mode in WPLSoft to modify constant K and H , you have to use @, e.g.
"MOV K10@E0 D0F0"

\subsection*{5.5 Instruction Index}

For applicable models, ES includes ES/EXISS; SA includes SA/SXISC; EH2 includes EH2/SV; EH3 includes EH3/SV2.
ESIEXISS series MPU does not support pulse execution type instructions (P instruction).

Sorted by alphabetic order \& API No.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{\begin{tabular}{c|}
\(P\) \\
Instruction
\end{tabular}} & \multirow[t]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|r|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{32}{*}{A} & 87 & ABS & DABS & \(\checkmark\) & Absolute Value & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 62 & ABSD & DABSD & - & Absolute Drum Sequence & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 20 & ADD & DADD & \(\checkmark\) & Addition & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 66 & ALT & - & \(\checkmark\) & Alternate State & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 218 & AND\& & DAND\& & - & S1 \& S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 220 & AND^ & DAND^ & - & S1^S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 219 & AND| & DAND| & - & S1|S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 234 & AND< & DAND< & - & S1 < S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 237 & AND<= & DAND<= & - & \(\mathrm{S} 1 \leqq \mathrm{~S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 236 & AND<> & DAND<> & - & S1 \(=\) S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 232 & AND= & DAND= & - & \(\mathrm{S} 1=\mathrm{S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 233 & AND> & DAND> & - & S1 > S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 238 & AND>= & DAND>= & - & S1 \(\geqq\) S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 93 & ANDF & - & - & Falling-edge Series Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 92 & ANDP & - & - & Rising-edge Series Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 302 & ANDZ> & DANDZ> & - & S1-S2 |> |S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 303 & ANDZ>= & DANDZ>= & - & S1-S2| \(\geqq \mid\) S3 \(\mid\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 304 & ANDZ< & DANDZ< & - & S1-S2|<|S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 305 & ANDZ<= & DANDZ<= & - & S1-S2|§|S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 306 & ANDZ= & DANDZ= & - & S1-S2 | = | S3 | & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 307 & ANDZ<> & DANDZ<> & - & S1-S2| \({ }^{\text {| }}\) S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 47 & ANR & - & \(\checkmark\) & Annunciator Reset & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 46 & ANS & - & - & Timed Annunciator Set & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 75 & ARWS & - & - & Arrow Switch & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 76 & ASC & - & - & ASCII Code Conversion & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 82 & ASCI & - & \(\checkmark\) & Converts Hex to ASCII & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 206 & ASDRW & - & - & ASDA servo drive R/W & - & - & - & \(\checkmark\) & 7 & - \\
\hline & 155 & - & DABSR & - & Read the Absolute Position from a Servo Motor & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 134 & - & DACOS & \(\checkmark\) & Arc Cosine & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 172 & - & DADDR & \(\checkmark\) & Addition of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 133 & - & DASIN & \(\checkmark\) & Arc Sine & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 135 & - & DATAN & \(\checkmark\) & Arc Tangent & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline \multirow{5}{*}{B} & 271 & BAND & DBAND & - & Connect NO Contact in Series by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 272 & BANI & DBANI & - & Connect NC Contact in Series by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 18 & BCD & DBCD & \(\checkmark\) & Binary Coded Decimal & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 19 & BIN & DBIN & \(\checkmark\) & Binary & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 269 & BLD & DBLD & - & Load NO Contact by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{P
Instruction} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|r|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{8}{*}{B} & 270 & BLDI & DBLDI & - & Load NC Contact by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 15 & BMOV & - & \(\checkmark\) & Block Move & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 44 & BON & DBON & \(\checkmark\) & Check Specified Bit Status & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 273 & BOR & DBOR & - & Connect NO Contact in Parallel by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 274 & BORI & DBORI & - & Connect NC Contact in Parallel by Specified Bit & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 266 & BOUT & DBOUT & - & Output Specified Bit of a Word & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 268 & BRST & DBRST & - & Reset Specified Bit of a Word & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 267 & BSET & DBSET & - & Set ON Specified Bit of a Word & - & - & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow{15}{*}{C} & 01 & CALL & - & \(\checkmark\) & Call Subroutine & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 84 & CCD & - & \(\checkmark\) & Check Code & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 00 & CJ & - & \(\checkmark\) & Conditional Jump & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 14 & CML & DCML & \(\checkmark\) & Compliment & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 10 & CMP & DCMP & \(\checkmark\) & Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 205 & CMPT & DCMPT & \(\checkmark\) & Compare table & - & - & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 97 & CNT & DCNT & - & 16-bit / 32-bit Counter & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 4 & 6 \\
\hline & 108 & CRC & - & \(\checkmark\) & Checksum CRC Mode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 207 & CSFO & - & - & Catch speed and proportional output & - & - & - & \(\checkmark\) & 7 & - \\
\hline & 146 & CVM & - & - & Valve Control (*3) & - & - & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 194 & - & DCIMA & - & 2-Axis Absolute Position Arc Interpolation (*3) & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 193 & - & DCIMR & - & 2-Axis Relative Position Arc Interpolation (*3) & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 197 & - & DCLLM & - & Close Loop Position Control
\[
(* 3)
\] & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 131 & - & DCOS & \(\checkmark\) & Cosine & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 137 & - & DCOSH & \(\checkmark\) & Hyperbolic Cosine & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline \multirow{12}{*}{D} & 05 & DI & - & - & Disable Interrupts & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 23 & DIV & DDIV & \(\checkmark\) & Division & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 115 & DIV16 & DIV32 & \(\checkmark\) & 16-bit/32-bit Division & - & - & - & \(\checkmark\) & 7 & 13 \\
\hline & 25 & DEC & DDEC & \(\checkmark\) & Decrement & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 41 & DECO & - & \(\checkmark\) & Decode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 143 & DELAY & - & \(\checkmark\) & Delay Instruction & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 159 & DRVA & DDRVA & - & Drive to Absolute & - & - & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 158 & DRVI & DDRVI & - & Drive to Increment & - & - & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 72 & DSW & - & - & Digital Switch & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 68 & DTM & - & - & Data Transform and Move & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 117 & - & DDEG & \(\checkmark\) & Radian \(\rightarrow\) Angle & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 175 & - & DDIVR & \(\checkmark\) & Division of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{12}{*}{E} & 04 & El & - & - & Enable Interrupts & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 113 & ETHRW & - & - & Reading/Writing through Ethernet & - & - & - & \(\checkmark\) & 9 & - \\
\hline & 42 & ENCO & - & \(\checkmark\) & Encode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 120 & - & DEADD & \(\checkmark\) & Floating Point Addition & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 118 & - & DEBCD & \(\checkmark\) & Float to Scientific Conversion & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 119 & - & DEBIN & \(\checkmark\) & Scientific to Float Conversion & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 110 & - & DECMP & \(\checkmark\) & Floating Point Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 123 & - & DEDIV & \(\checkmark\) & Floating Point Division & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 122 & - & DEMUL & \(\checkmark\) & Floating Point Multiplication & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 127 & - & DESQR & \(\checkmark\) & Floating Point Square Root & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 121 & - & DESUB & \(\checkmark\) & Floating Point Subtraction & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 124 & - & DEXP & \(\checkmark\) & Exponent of Binary Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline\(P\) \\
Instruction
\end{tabular}} & \multirow[t]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|l|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline E & 111 & - & DEZCP & \(\checkmark\) & Floating Point Zone Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline \multirow{25}{*}{F} & 06 & FEND & - & - & The End of The Main Program (First End) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 49 & FLT & DFLT & \(\checkmark\) & Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 16 & FMOV & DFMOV & \(\checkmark\) & Fill Move & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 08 & FOR & - & - & Start of a FOR-NEXT loop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 78 & FROM & DFROM & \(\checkmark\) & Read CR Data in Special Modules & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 145 & FTC & - & - & Fuzzy Temperature Control & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 102 & FWD & - & - & Forward Running of VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 283 & - & FAND< & - & S1 < S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 285 & - & FAND<= & - & \(\mathrm{S} 1 \leqq \mathrm{~S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 284 & - & FAND<> & - & \(\mathrm{S} 1 \neq \mathrm{S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 281 & - & FAND= & - & \(\mathrm{S} 1=\mathrm{S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 282 & - & FAND> & - & S1 > S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 286 & - & FAND>= & - & \(\mathrm{S} 1 \geqq \mathrm{~S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 277 & - & FLD< & - & S1 < S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 279 & - & FLD<= & - & \(\mathrm{S} 1 \leqq \mathrm{~S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 278 & - & FLD<> & - & \(\mathrm{S} 1 \neq \mathrm{S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 275 & - & FLD= & - & \(\mathrm{S} 1=\mathrm{S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 276 & - & FLD> & - & S1 > S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 280 & - & FLD>= & - & \(\mathrm{S} 1 \geqq \mathrm{~S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 289 & - & FOR< & - & S1 < S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 291 & - & FOR<= & - & \(\mathrm{S} 1 \leqq \mathrm{~S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 290 & - & FOR<> & - & S1 \(=\) S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 287 & - & FOR= & - & \(\mathrm{S} 1=\mathrm{S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 288 & - & FOR> & - & \(\mathrm{S} 1>\mathrm{S} 2\) & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 292 & - & FOR>= & - & S1 \(\geqq\) S2 & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline \multirow{4}{*}{G} & 171 & GBIN & DGBIN & \(\checkmark\) & Gray Code \(\rightarrow\) BIN & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 177 & GPS & - & - & GPS data receiving & - & - & - & \(\checkmark\) & 5 & - \\
\hline & 144 & GPWM & - & - & General PWM Output & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 170 & GRY & DGRY & \(\checkmark\) & BIN \(\rightarrow\) Gray Code & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow{7}{*}{H} & 83 & HEX & - & \(\checkmark\) & Converts ASCII to Hex & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 71 & HKY & DHKY & - & Hexadecimal Key Input & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 169 & HOUR & DHOUR & - & Hour Meter & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 196 & HST & - & \(\checkmark\) & High Speed Timer & - & - & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 54 & - & DHSCR & - & High Speed Counter Reset & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 53 & - & DHSCS & - & High Speed Counter Set & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline & 55 & - & DHSZ & - & High Speed Zone Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline \multirow{7}{*}{1} & 24 & INC & DINC & \(\checkmark\) & Increment & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 63 & INCD & - & - & Incremental Drum Sequencer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 129 & INT & DINT & \(\checkmark\) & Float to Integer & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 98 & INV & - & - & Inverting Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 03 & IRET & - & - & Interrupt Return & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 60 & IST & - & - & Initial State & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 199 & - & DICF & \(\checkmark\) & Immediately Change Frequency & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{9}{*}{L} & 215 & LD\& & DLD\& & - & S1 \& S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 217 & LD^ & DLD^ & - & S1 ^ S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 216 & LD| & DLD| & - & S1|S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 226 & LD< & DLD< & - & S1 < S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 229 & LD<= & DLD<= & - & \(\mathrm{S} 1 \leqq \mathrm{~S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 228 & LD<> & DLD<> & - & S1 \(=\) S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 224 & LD= & DLD= & - & \(\mathrm{S} 1=\mathrm{S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 225 & LD> & DLD> & - & \(\mathrm{S} 1>\mathrm{S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 230 & LD>= & DLD>= & - & \(\mathrm{S} 1 \geqq \mathrm{~S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[t]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{P
Instruction} & \multirow[t]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|r|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{11}{*}{L} & 91 & LDF & - & - & Falling-edge Detection Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 90 & LDP & - & - & Rising-edge Detection Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 296 & LDZ> & DLDZ> & - & \(\mid\) S1-S2 | > | S3 | & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 297 & LDZ>= & DLDZ>= & - & \(|S 1-\mathrm{S} 2| \geqq|\mathrm{S} 3|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 298 & LDZ< & DLDZ< & - & \(\mid\) S1-S2 |<|S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 299 & LDZ<= & DLDZ<= & - & \(|S 1-\mathrm{S} 2| \leqq|\mathrm{S} 3|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 300 & LDZ= & DLDZ= & - & \(\mid\) S1-S2 | = |S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 301 & LDZ<> & DLDZ<> & - & | S1-S2 | \(\ddagger\) | S3 | & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 107 & LRC & - & \(\checkmark\) & Checksum LRC Mode & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 125 & - & DLN & \(\checkmark\) & Natural Logarithm of Binary Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 126 & - & DLOG & \(\checkmark\) & Logarithm of Binary Floating Point & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{25}{*}{M} & 180 & MAND & - & \(\checkmark\) & Matrix 'AND' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 190 & MBC & - & \(\checkmark\) & Matrix Bit Status Counting & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 189 & MBR & - & \(\checkmark\) & Matrix Bit Rotation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 186 & MBRD & - & \(\checkmark\) & Read Matrix Bit & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 188 & MBS & - & \(\checkmark\) & Matrix Bit Displacement & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 187 & MBWR & - & \(\checkmark\) & Write Matrix Bit & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 185 & MCMP & - & \(\checkmark\) & Matrix Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 45 & MEAN & DMEAN & \(\checkmark\) & Mean & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 148 & MEMR & DMEMR & \(\checkmark\) & Read File Register & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 149 & MEMW & DMEMW & \(\checkmark\) & Write File Register & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 184 & MINV & - & \(\checkmark\) & Matrix Inverse Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 176 & MMOV & - & \(\checkmark\) & Magnify Move & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 100 & MODRD & - & - & Read Modbus Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 150 & MODRW & - & - & Read/Write Modbus Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 101 & MODWR & - & - & Write Modbus Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 181 & MOR & - & \(\checkmark\) & Matrix 'OR' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 12 & MOV & DMOV & \(\checkmark\) & Move & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 52 & MTR & - & - & Input Matrix & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 22 & MUL & DMUL & \(\checkmark\) & Multiplication & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 114 & MUL16 & MUL32 & \(\checkmark\) & 16-bit/32-bit Multiplication & - & - & - & \(\checkmark\) & 7 & 13 \\
\hline & 168 & MVM & DMVM & \(\checkmark\) & Move the Designated Bit & - & - & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 183 & MXNR & - & \(\checkmark\) & Matrix 'XNR' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 182 & MXOR & - & \(\checkmark\) & Matrix 'XOR' Operation & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 112 & - & DMOVR & \(\checkmark\) & Move Floating Point Data & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 174 & - & DMULR & \(\checkmark\) & Multiplication of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow[t]{2}{*}{N} & 29 & NEG & DNEG & \(\checkmark\) & 2's Complement (Negative) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 09 & NEXT & - & - & End of a FOR-NEXT loop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline \multirow{12}{*}{0} & 221 & OR\& & DOR\& & - & S1 \& S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 223 & OR^ & DOR^ & - & S1^S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 222 & OR| & DOR| & - & S1|S2 & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 242 & OR< & DOR< & - & S1 < S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 245 & \(\mathrm{OR}<=\) & DOR<= & - & \(\mathrm{S} 1 \leqq \mathrm{~S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 244 & OR<> & DOR<> & - & S1 \(=\) S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 240 & OR= & DOR= & - & S1 = S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 241 & OR> & DOR> & - & \(\mathrm{S} 1>\mathrm{S} 2\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 246 & OR>= & DOR>= & - & S1 \(\geqq\) S2 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 95 & ORF & - & - & Falling-edge Parallel Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 94 & ORP & - & - & Rising-edge Parallel Connection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 308 & ORZ> & DORZ> & - & \(\mid\) S1-S2 | > | S3 | & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline\(P\) \\
Instruction
\end{tabular}} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|r|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{5}{*}{0} & 309 & ORZ>= & DORZ>= & - & \(\mid\) S1-S2| \(\geqq \mid\) S3 | & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 310 & ORZ< & DORZ< & - & \(\mid\) S1-S2 |<|S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 311 & ORZ<= & DORZ<= & - & \(|\mathrm{S} 1-\mathrm{S} 2| \leqq|\mathrm{S} 3|\) & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 312 & ORZ= & DORZ= & - & \(\mid\) S1-S2 |= |S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline & 313 & ORZ<> & DORZ<> & - & \(\mid\) S1-S2 | \(\ddagger\) |S3| & - & - & - & \(\checkmark\) & 5 & 9 \\
\hline \multirow{14}{*}{P} & 88 & PID & DPID & - & PID Control Loop & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 99 & PLF & - & - & Falling-edge Output & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 89 & PLS & - & - & Rising-edge Output & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 59 & PLSR & DPLSR & - & Pulse Ramp & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 157 & PLSV & DPLSV & - & Adjustable Speed Pulse Output & - & - & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 57 & PLSY & DPLSY & - & Pulse Y Output & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 77 & PR & - & - & Print (ASCII Code Output) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 81 & PRUN & DPRUN & \(\checkmark\) & Parallel Run & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 151 & PWD & - & - & Detection of Input Pulse Width & - & - & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 58 & PWM & - & - & Pulse Width Modulation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 128 & - & DPOW & \(\checkmark\) & Floating Point Power Operation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & _ & 13 \\
\hline & 192 & - & DPPMA & - & 2-Axis Absolute Point to Point Motion (*3) & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 191 & - & DPPMR & - & 2-Axis Relative Point to Point Motion (*3) & - & - & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline & 195 & - & DPTPO & - & Single-Axis Pulse Output by Table (*3) & - & - & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{15}{*}{R} & 67 & RAMP & DRAMP & - & Ramp Variable Value & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 154 & RAND & DRAND & \(\checkmark\) & Random Number & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 33 & RCL & DRCL & \(\checkmark\) & Rotation Left with Carry & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 32 & RCR & DRCR & \(\checkmark\) & Rotation Right with Carry & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 105 & RDST & - & - & Read VFD-A Status & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 50 & REF & - & \(\checkmark\) & Refresh & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 51 & REFF & - & \(\checkmark\) & Refresh and Filter Adjust & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 103 & REV & - & - & Reverse Running of VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 31 & ROL & DROL & \(\checkmark\) & Rotation Left & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 30 & ROR & DROR & \(\checkmark\) & Rotation Right & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 80 & RS & - & - & Serial Communication Instruction & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 106 & RSTEF & - & - & Reset Abnormal VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 153 & RTMD & - & - & End of the Measurement of the Execution Time of I Interruption & - & - & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 152 & RTMU & - & - & Start of the Measurement of Execution Time of I Interruption & - & - & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 116 & - & DRAD & \(\checkmark\) & Angle \(\rightarrow\) Radian & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline \multirow{13}{*}{S} & 202 & SCAL & - & \(\checkmark\) & Proportional Value Calculation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 203 & SCLP & - & \(\checkmark\) & Parameter Proportional Value Calculation & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 73 & SEGD & - & \(\checkmark\) & Seven Segment Decoder & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 74 & SEGL & - & - & Seven Segment with Latch & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 61 & SER & DSER & \(\checkmark\) & Search a Data Stack & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 39 & SFRD & - & \(\checkmark\) & Shift Register Read & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 35 & SFTL & - & \(\checkmark\) & Bit Shift Left & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 34 & SFTR & - & \(\checkmark\) & Bit Shift Right & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 38 & SFWR & - & \(\checkmark\) & Shift Register Write & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 13 & SMOV & - & \(\checkmark\) & Shift Move & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 69 & SORT & DSORT & - & Sort Tabulated Data & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & 21 \\
\hline & 56 & SPD & - & - & Speed Detection & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 48 & SQR & DSQR & \(\checkmark\) & Square Root & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Category} & \multirow[b]{2}{*}{API} & \multicolumn{2}{|r|}{Mnemonic} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Function} & \multicolumn{4}{|c|}{Applicable to} & \multicolumn{2}{|r|}{STEPS} \\
\hline & & 16-bit & 32-bit & & & ES & SA & EH2 & EH3 & 16-bit & 32-bit \\
\hline \multirow{10}{*}{S} & 02 & SRET & - & - & Subroutine Return & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 65 & STMR & - & - & Special Timer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 104 & STOP & - & - & Stop VFD-A & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 21 & SUB & DSUB & \(\checkmark\) & Subtraction & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 43 & SUM & DSUM & \(\checkmark\) & Sum of Active Bits & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline & 147 & SWAP & DSWAP & \(\checkmark\) & Byte Swap & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & 5 \\
\hline & 109 & SWRD & - & \(\checkmark\) & Read Digital Switch & - & - & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 130 & - & DSIN & \(\checkmark\) & Sine & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 136 & - & DSINH & \(\checkmark\) & Hyperbolic Sine & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 173 & - & DSUBR & \(\checkmark\) & Subtraction of Floating-point Numbers & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 13 \\
\hline \multirow{12}{*}{T} & 162 & TADD & - & \(\checkmark\) & Time Addition & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 160 & TCMP & - & \(\checkmark\) & Time Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 11 & - \\
\hline & 70 & TKY & DTKY & - & Ten Key Input & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 96 & TMR & - & - & 16-bit Timer & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 4 & - \\
\hline & 79 & TO & DTO & \(\checkmark\) & Write CR Data into Special Modules & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 166 & TRD & - & \(\checkmark\) & Time Read & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 163 & TSUB & - & \(\checkmark\) & Time Subtraction & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & - \\
\hline & 64 & TTMR & - & - & Teaching Timer & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 167 & TWR & - & \(\checkmark\) & Time Write & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 3 & - \\
\hline & 161 & TZCP & - & \(\checkmark\) & Time Zone Compare & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 132 & - & DTAN & \(\checkmark\) & Tangent & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline & 138 & - & DTANH & \(\checkmark\) & Hyperbolic Tangent & - & - & \(\checkmark\) & \(\checkmark\) & - & 9 \\
\hline \multirow{3}{*}{V} & 85 & VRRD & - & \(\checkmark\) & Volume Read & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 86 & VRSC & - & \(\checkmark\) & Volume Scale & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline & 198 & - & DVSPO & - & Variable Speed Pulse Output & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & 17 \\
\hline \multirow{7}{*}{W} & 26 & WAND & DAND & \(\checkmark\) & Logical Word AND & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 07 & WDT & - & \(\checkmark\) & Watchdog Timer Refresh & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 1 & - \\
\hline & 27 & WOR & DOR & \(\checkmark\) & Logical Word OR & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 37 & WSFL & - & \(\checkmark\) & Word Shift Left & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 36 & WSFR & - & \(\checkmark\) & Word Shift Right & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & - \\
\hline & 179 & WSUM & DWSUM & \(\checkmark\) & Get the Sum & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline & 28 & WXOR & DXOR & \(\checkmark\) & Logical Exclusive OR & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 7 & 13 \\
\hline X & 17 & XCH & DXCH & \(\checkmark\) & Exchange & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & 9 \\
\hline \multirow{3}{*}{Z} & 11 & ZCP & DZCP & \(\checkmark\) & Zone Compare & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 156 & ZRN & DZRN & - & Zero Return & - & - & \(\checkmark\) & \(\checkmark\) & 9 & 17 \\
\hline & 40 & ZRST & - & \(\checkmark\) & Zero Reset & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & 5 & - \\
\hline
\end{tabular}


\section*{Operands:}

S: The destination pointer of conditional jump

\section*{Explanations:}
1. Operand \(\mathbf{S}\) can designate \(P\).
2. \(P\) can be modified by index register E, F.
3. In ES/EX/SS series models: Operand S can designate P0 ~ P63.
4. In SA/SX/SC/EH/EH2/SV series models: Operand S can designate P0 ~ P255.
5. When the user does not wish a particular part of PLC program in order to shorten the scan time and execute dual outputs, CJ instruction or CJP instruction can be adopted.
6. When the program designated by pointer P is prior to CJ instruction, WDT timeout will occur and PLC will stop running. Please use it carefully.
7. CJ instruction can designate the same pointer \(P\) repeatedly. However, CJ and CALL cannot designate the same pointer P; otherwise an error will occur.
8. Actions of all devices while conditional jumping is being executed.
a) \(\mathrm{Y}, \mathrm{M}\) and S remain their previous status before the conditional jump takes place.
b) Timer 10 ms and 100ms that is executing stops.
c) Timer T192 ~ T199 that execute the subroutine program will continue and the output contact executes normally.
d) The high-speed counter that is executing the counting continues counting and the output contact executes normally.
e) The ordinary counters stop executing.
f) If the "reset instruction" of the timer is executed before the conditional jump, the device will still be in the reset status while conditional jumping is being executed.
g) Ordinary application instructions are not executed.
h) The application instructions that are being executed, i.e. API 53 DHSCS, API 54 DHSCR, API 55 DHSZ, API 56 SPD, API 57 PLSY, API 58 PWM, API 59 PLSR, API 157 PLSV, API 158 DRVI, API 159 DRVA, continue being executed

\section*{Program Example 1:}
1. When \(\mathrm{XO}=\mathrm{On}\), the program automatically jumps from address 0 to N (the designated label P 1 ) and keeps its execution. The addresses between 0 and N will not be executed.
2. When \(\mathrm{XO}=\mathrm{Off}\), as an ordinary program, the program keeps on executing from address 0 . CJ instruction will not be executed at this time.


\section*{Program Example 2:}
1. \(C J\) instruction can be used in the following 5 conditions between MC and MCR instructions.
a) Without MC ~MCR.
b) From without MC to within MC. Valid in the loop P1 as shown in the figure below.
c) In the same level N , inside of \(\mathrm{MC} \sim \mathrm{MCR}\).
d) From within MC to without MCR.
e) Jumping from this MC \(\sim\) MCR to another MC \(\sim M C R^{1}\).
2. Actions in ES/EXISS series models V4.7 (and below): When \(C J\) instruction is used between MC and MCR, it can only be applied without MC \(\sim\) MCR or in the same \(N\) layer of MC \(\sim\) MCR. Jumping from this MC \(\sim\) MCR to another MC ~ MCR will result in errors, i.e. a) and c) as stated above can ensure correct actions; others will cause errors.
3. When MC instruction is executed, PLC will push the status of the switch contact into the self-defined stack in PLC. The stack will be controlled by the PLC, and the user cannot change it. When MCR instruction is executed, PLC will obtain the previous status of the switch contact from the top layer of the stack. Under the conditions as stated in b), d) and e), the times of pushing-in and obtaining stack may be different. In this case, the maximum stack available to be pushed in is 8 and the obtaining of stacks cannot resume once the stack becomes empty. Thus, when using CALL or CJ instructions, the user has to be aware of the pushing-in and obtaining of stacks.


\footnotetext{
\({ }^{1}\) This function is only available in ES/EX/SS series models \(V 4.9\) (and above) and \(S A / S X / S C / E H / E H 2 / S V\) series models.
}

\section*{Program Example 3:}
1. The states of each device
\begin{tabular}{|c|c|c|c|}
\hline Device & Contact state before CJ is executed & Contact state when CJ is being executed & Output coil state when CJ is being executed \\
\hline \multirow{2}{*}{Y, M, S} & M1, M2, M3 Off & M1, M2, M3 Off \(\rightarrow\) On & Y1 \({ }^{* 1}\), M20, S1 Off \\
\hline & M1, M2, M3 On & M1, M2, M3 On \(\rightarrow\) Off & Y1 \({ }^{* 1}\), M20, S1 On \\
\hline \multirow[b]{2}{*}{\(10 \mathrm{~ms}, 100 \mathrm{~ms}\) Timer ES/SA/EH} & M4 Off & M4 Off \(\rightarrow\) On & Timer T0 is not enabled. \\
\hline & M4 On & M4 On \(\rightarrow\) Off & Timer TO immediately stops and is latched. MO On \(\rightarrow\) Off, T0 is reset as 0 . \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
\(1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}\) \\
Timer *2 (accumulative) \\
SA/EH
\end{tabular}} & M6 Off & M6 Off \(\rightarrow\) On & Timer T240 is not enabled. \\
\hline & M6 On & M6 On \(\rightarrow\) Off & Once the timer function is enabled and when met with CJ instruction, all accumulative timers will stop timing and stay latched. MO On \(\rightarrow\) Off. T240 remains unchanged. \\
\hline \multirow[b]{2}{*}{\(\mathrm{C} 0 \sim \mathrm{C} 234{ }^{*}\)} & M7, M10 Off & M10 On/Off trigger & Counter does not count. \\
\hline & M7 Off, M10 On/Off trigger & M10 On/Off trigger & Counter C0 stops counting and stays latched. After MO goes Off, C0 resumes its counting. \\
\hline \multirow[b]{2}{*}{Application instruction} & M11 Off & M11 Off \(\rightarrow\) On & Application instructions are not executed. \\
\hline & M11 On & M11 On \(\rightarrow\) Off & The skipped application instructions are not executed, but API 53 ~ 59, API 157 ~ 159 keep being executed. \\
\hline
\end{tabular}
*1: Y1 is a dual output. When M0 is Off, M1 will control Y1. When M0 is On, M12 will control Y1.
*2: When the timers (T192 ~ T199, applicable in SA/EH series MPU) used by a subroutine re driven and encounter the execution of CJ instruction, the timing will resume. After the timing target is reached, the output contact of the timer will be On.
*3: When the high-speed counters (C235 ~ C255) are driven and encounter the execution of CJ instruction, the counting will resume, as well as the action of the output points.
2. Y 1 is a dual output. When \(\mathrm{M} 0=\mathrm{Off}, \mathrm{Y} 1\) is controlled by M 1 . When \(\mathrm{M} 0=\mathrm{On}, \mathrm{Y} 1\) is controlled by M 12 .

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & \multicolumn{19}{|c|}{Function} \\
\hline 01 & CALL & P & \multicolumn{7}{|c|}{(S)} & \multicolumn{6}{|c|}{Call Subroutine} & & & & & & & & & & & & & \\
\hline OP & \multicolumn{17}{|c|}{Range} & \multicolumn{11}{|c|}{Program Steps} \\
\hline (S) & \multicolumn{5}{|l|}{P0 ~ P255} & & & & & & & & & & & & & \multicolumn{11}{|l|}{CALL, CALLP: 3 steps} \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}

S: The pointer of call subroutine.

\section*{Explanations:}
1. Operand \(S\) can designate \(P\).
2. \(P\) can be modified by index register \(E, F\).
3. In ES/EX/SS series models: Operand S can designate P0 ~ P63.
4. In SA/SX/SC/EH/EH2/SV series models: Operand S can designate P0 ~ P255.
5. Edit the subroutine designated by the pointer after FEND instruction.
6. The number of pointer \(P\), when used by CALL, cannot be the same as the number designated by \(C J\) instruction.
7. If only CALL instruction is in use, it can call subroutines of the same pointer number with no limit on times.
8. Subroutine can be nested for 5 levels including the initial CALL instruction. (If entering the sixth level, the subroutine won't be executed.)
\begin{tabular}{|c|c|ll|}
\hline API & Mnemonic & & Function \\
\cline { 3 - 4 } 02 & SRET & Subroutine Return & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \hline OP & \multicolumn{1}{|c|}{ Descriptions } & \multicolumn{1}{c|}{ Program Steps } \\
\hline N/A & \begin{tabular}{l} 
Automatically returns to the step immediately following the \\
CALL instruction which activated the subroutine
\end{tabular} & SRET: 1 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\left\lvert\, \begin{array}{l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}\right.
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand. No contact to drive the instruction is required.
2. The subroutine will return to main program by SRET after the termination of subroutine and execute the sequence program located at the next step to the CALL instruction.

\section*{Program Example 1:}

When \(\mathrm{X0} 0=\mathrm{On}\), CALL instruction is executed and the program jumps to the subroutine designated by P2. When SRET instruction is executed, the program returns to address 24 and continues its execution.


\section*{Program Example 2:}
1. When X 10 goes from Off to On, its rising-edge trigger executes CALL P10 instruction and the program jumps to the subroutine designated by P10.
2. When X11 is On, CALL P11 is executed and the program jumps to the subroutine designated by P11.
3. When X 12 is On, CALL P12 is executed and the program jumps to the subroutine designated by P12.
4. When X 13 is On, CALL P13 is executed and the program jumps to the subroutine designated by P13.
5. When X14 is On, CALL P14 is executed and the program jumps to the subroutine designated by P14. When SRET is executed, the program returns to the previous P ※ subroutine and continues its execution.
6. After SRET instruction is executed in P10 subroutine, returning to the main program.

\begin{tabular}{|c|c|ll|}
\hline API & Mnemonic & & Function \\
\cline { 1 - 3 } 03 & IRET & Interrupt Return & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline OP & \multicolumn{1}{|c|}{ Descriptions } & Program Steps \\
\hline N/A & \begin{tabular}{l} 
IRET ends the processing of an interruption subroutine and \\
returns to the execution of the main program.
\end{tabular} & IRET: 1 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand. No contact to drive the instruction is required.
2. Interruption return refers to interrupt the subroutine.
3. After the interruption is over, returning to the main program from IRET to execute the next instruction where the program was interrupted.
\begin{tabular}{|c|c|ll|}
\hline API & Mnemonic & & Function \\
\cline { 1 - 3 } 04 & El & Enable Interrupts & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline OP & \multicolumn{1}{|c|}{ Descriptions } & \multicolumn{1}{c|}{ Program Steps } \\
\hline N/A & \begin{tabular}{l} 
See more details of the explanation on this instruction in DI \\
(Disable Interruption) instruction.
\end{tabular} & steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{|c} 
EH3 \\
SV2
\end{tabular} \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand. No contact to drive the instruction is required.
2. The pulse width of the interruption signal should be \(>200\) us.
3. See DI instruction for the range of the No. of I for all models.
4. See DI instruction for more details about M1050 ~ M1059, M1280 ~ M1299.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & \multicolumn{23}{|c|}{Function} \\
\hline 05 & \multicolumn{2}{|l|}{DI} & \multicolumn{23}{|l|}{Disable Interrupts} \\
\hline OP & \multicolumn{14}{|c|}{Descriptions} & \multicolumn{11}{|c|}{Program Steps} \\
\hline N/A & \multicolumn{14}{|l|}{When the special auxiliary relay M1050 ~ M1059, M1280 ~ M1299 for disabling interruption is driven, the corresponding interruption request will not be executed even in the range allowed for interruptions.} & \multicolumn{11}{|l|}{DI: 1 step} \\
\hline & \multicolumn{8}{|c|}{PULSE} & \multicolumn{8}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & ES Ex & EX SS & SA & SX & SC E & EH & Sv & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand. No contact to drive the instruction is required.
2. El instruction allows interrupting subroutine in the program, e.g. external interruption, timed interruption, and high-speed counter interruption.
3. In the program, using interruption subroutine between EI and DI instruction is allowed. However, you can choose not to use DI instruction if there is no interruption-disabling section in the program.
4. When M1050 ~ M1059 are the special auxiliary relays to drive disabling interruption in ES/SA, or M1280 ~ M1299 are the special auxiliary relays to drive disabling interruption in \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV}\), the corresponding interruptions will not be executed even in the area allowed for interruptions.
5. Pointer for interruption (I) must be placed after FEND instruction.
6. Other interruptions are not allowed during the execution of interruption subroutine.
7. When many interruptions occur, the priority is given to the firstly executed interruption. If several interruptions occur simultaneously, the priority is given to the interruption with the smaller pointer No.
8. The interruption request occurring between DI and El instructions that cannot be executed immediately will be memorized and will be executed in the area allowed for interruption.
9. The time interruptions in ES/SA will not be memorized.
10. When using the interruption pointer, DO NOT repeatedly use the high-speed counter driven by the same \(X\) input contact.
11. When immediate I/O is required during the interruption, write REF instruction in the program to update the status of I/O.

\section*{Program Example:}

During the operation of PLC, when the program scans to the area between El and DI instructions and X1 \(=\) Off \(\rightarrow\) On or \(\mathrm{X} 2=\mathrm{Off} \rightarrow \mathrm{On}\), interruption subroutine \(A\) or \(B\) will be executed. When the subroutine executes to IRET, the program will return to the main program and resumes its execution.


\section*{Remarks:}
1. No. of interruption pointer I in ES/EX/SS:
a) External interruptions: (I001, X0), (I101, X1), (I201, X2), (I301, X3) 4 points \(^{2}\).
b) Time interruptions: I6 \(\square \square\), 1 point ( \(\square \square=10 \sim 99\), time base \(=1 \mathrm{~ms}\) ) (support V5.7 and above)
c) Communication interruption for receiving specific words (I150) (support V5.7 and above)
2. No. of interruption pointer I in SA/SX/SC:
a) External interruptions: (I001, X0), (I101, X1), (I201, X2), (I301, X3), (I401, X4), (I501, X5) 6 points.
b) Time interruptions: \(16 \square \square, 17 \square \square 2\) points. ( \(\square \square=1 \sim 99 \mathrm{~ms}\), time base \(=1 \mathrm{~ms}\) )
c) High-speed counter interruptions: IO10, IO20, I030, IO40 4 points. (used with API 53 DHSCS instruction to generate interruption signals)
d) Communication interruption for receiving specific words .(I150)
e) The order for execution of interruption pointer I: high-speed counter interruption, external interruption, time interruption and communication interruption for receiving specific words.
f) Among the following 6 interruption No., (I001, IO10), (I101, IO20), (I201, I030), (I301, IO40), (I401, I050), (I501, 1060), the program allows the user to use only one of the two numbers in a pair. If the user uses the two numbers in the pair, grammar check errors may occur when the program is written into PLC.
3. No. of interruption pointer I in EH/EH2/SV:
a) External interruptions: (IO0 \(\square, \mathrm{XO}\) ), (I10 \(\square, \mathrm{X} 1)\), (I20 \(\square, \mathrm{X} 2),(\mathrm{I} 30 \square, \mathrm{X} 3)\), (I40 \(\square, \mathrm{X} 4)\) ) (I50 \(\square, \mathrm{X} 5) 6\) points. ( \(\square=0\) designates interruption in falling-edge, \(\square=1\) designates interruption in rising-edge)
b) Time interruptions: I6 \(\square \square, 17 \square \square, 2\) points. ( \(\square \square=1 \sim 99 \mathrm{~ms}\), time base \(=1 \mathrm{~ms}\) )
\[
\text { I8 } \square \square 1 \text { point. ( } \square \square=1 \sim 99 \mathrm{~ms} \text {, time base }=0.1 \mathrm{~ms} \text { ) }
\]
c) High-speed counter interruptions: IO10, IO20, IO30, I040, 1050, 10606 points. (used with API 53 DHSCS instruction to generate interruption signals)
d) When pulse output interruptions I110, I120 (triggered when pulse output is finished), I130, I140 (triggered when

\footnotetext{
\({ }^{2}\) Input points occupied by external interruptions cannot be used for inputs of high-speed counters; otherwise grammar check errors may occur when the program is written in PLC.
}
the first pulse output starts) are executed, the currently executed program is interrupted and jumps to the designated interruption subroutine.
e) Communication interruption: I150, I160, I170
f) Frequency measurement card interruption: I180
g) The order for execution of interruption pointer I: external interruption, time interruption, high-speed counter interruption, pulse interruption, communication interruption and frequency measurement card interruption.
4. No. of interruption pointer I in EH3/SV2:
a) External interruptions: (I00 \(\square, \mathrm{XO}\) ), (I10 \(\square, \mathrm{X} 1)\), (I20 \(\square, \mathrm{X} 2),(I 30 \square, \mathrm{X} 3),(I 40 \square, \mathrm{X} 4),(I 50 \square, \mathrm{X} 5),(I 60 \square, \mathrm{X} 6)\), (I70 \(\square, \mathrm{X} 7\) ), (I90 \(\square\), X10), (I91 \(\square\), X11), (I92 \(\square\), X12), (I93 \(\square, \mathrm{X} 13\) ), (I94 \(\square, \mathrm{X} 14\) ), (I95 \(\square, \mathrm{X} 15)\) ) (I96 \(\square, \mathrm{X} 16)\), (I97 \(\square\), X17) 16 points. ( \(\square=0\) designates interruption in falling-edge, \(\square=1\) designates interruption in rising-edge)
b) Time interruptions: \(16 \square \square, 17 \square \square\), 2 points. ( \(\square \square=2 \sim 99 \mathrm{~ms}\), time base \(=1 \mathrm{~ms}\) )
\[
\text { I8 } \square \square 1 \text { point. ( } \square \square=1 \sim 99 \mathrm{~ms} \text {, time base }=0.1 \mathrm{~ms})
\]
c) High-speed counter interruptions: IO10, IO20, I030, IO40, 1050, 10606 points. (used with API 53 DHSCS instruction to generate interruption signals)
d) When pulse output interruptions \(1110, I 120\) (triggered when pulse output is finished), \(I 130, I 140\) (triggered when the first pulse output starts) are executed, the currently executed program is interrupted and jumps to the designated interruption subroutine.
e) Communication interruption: I150, I151,I153 , I160, I161, I163, I170
f) The order for execution of interruption pointer I: external interruption, time interruption, high-speed counter interruption, pulse interruption, and communication interruption.
5. "Disable interruption" flags in ES/EX/SS:
\begin{tabular}{|c|l|}
\hline Flag & Function \\
\hline M1050 & Disable external interruption I001 \\
\hline M1051 & Disable external interruption I101 \\
\hline M1052 & Disable external interruption I201 \\
\hline M1053 & Disable external interruption I301 \\
\hline M1056 & Disable time interruption I6 \(\square\) \\
\hline
\end{tabular}
6. "Disable interruption" flags in SA/SX/SC:
\begin{tabular}{|c|l|}
\hline Flag & Function \\
\hline M1050 & Disable external interruption I001 \\
\hline M1051 & Disable external interruption I101 \\
\hline M1052 & Disable external interruption I201 \\
\hline M1053 & Disable external interruption I301 \\
\hline M1054 & Disable external interruption I401 \\
\hline M1055 & Disable external interruption I501 \\
\hline M1056 & Disable time interruption I6 \(\square\) \\
\hline M1057 & Disable time interruption I7 \(\square\) \\
\hline M1059 & Disable high-speed counter interruption I010 ~ IO60 \\
\hline
\end{tabular}
7. "Disable interruption" flags in EH/EH2/SV/EH3/SV2:
\begin{tabular}{|c|c|}
\hline Flag & Function \\
\hline M1280 & Disable external interruption \(100 \square\) \\
\hline M1281 & Disable external interruption 110 \(\square\) \\
\hline M1282 & Disable external interruption \(120 \square\) \\
\hline M1283 & Disable external interruption \(130 \square\) \\
\hline M1284 & Disable external interruption \(140 \square\) \\
\hline M1285 & Disable external interruption \(150 \square\) \\
\hline M1286 & Disable time interruption 16 \(\square \square\) \\
\hline M1287 & Disable time interruption 17 \(\square \square\) \\
\hline M1288 & Disable time interruption 18 \(\square \square\) \\
\hline M1289 & Disable high-speed counter interruption 1010 \\
\hline M1290 & Disable high-speed counter interruption IO20 \\
\hline M1291 & Disable high-speed counter interruption 1030 \\
\hline M1292 & Disable high-speed counter interruption 1040 \\
\hline M1293 & Disable high-speed counter interruption 1050 \\
\hline M1294 & Disable high-speed counter interruption 1060 \\
\hline M1295 & Disable pulse output interruption I110 \\
\hline M1296 & Disable pulse output interruption I120 \\
\hline M1297 & Disable pulse output interruption I130 \\
\hline M1298 & Disable pulse output interruption I140 \\
\hline M1299 & Disable communication interruption 1150 \\
\hline M1300 & Disable communication interruption 1160 \\
\hline M1301 & Disable communication interruption 1170 \\
\hline M1302 & Disable frequency measurement card interruption I180 \\
\hline M1340 & Generate interruption 1110 after CH0 pulse is sent \\
\hline M1341 & Generate interruption 1120 after CH1 pulse is sent \\
\hline M1342 & Generate interruption 1130 when CH 0 pulse is being sent \\
\hline M1343 & Generate interruption I140 when CH 1 pulse is being sent \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline API & Mnemonic & \\
\cline { 1 - 1 } 06 & FEND & The End of The Main Program (First End) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \hline OP & \multicolumn{1}{|c|}{ Descriptions } & \multicolumn{1}{|c|}{ Program Steps } \\
\hline N/A & No contact to drive the instruction is required. & FEND: 1 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] \\
\hline
\end{tabular}

\section*{Explanations:}
1. This instruction denotes the end of the main program. It has the same function as that of END instruction when being executed by PLC.
2. CALL must be written after FEND instruction and add SRET instruction in the end of its subroutine. Interruption program has to be written after FEND instruction and IRET must be added in the end of the service program.
3. If several FEND instructions are in use, place the subroutine and interruption service programs between the final FEND and END instruction.
4. After CALL instruction is executed, executing FEND before SRET will result in errors in the program.
5. After FOR instruction is executed, executing FEND before NEXT will result in errors in the program.

\section*{CJ Instruction Program Flow:}


\section*{CALL Instruction Program Flow:}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{4}{|l|}{Mnemonic} & \multicolumn{23}{|c|}{Function} \\
\hline 07 & WDT & & & & \multicolumn{7}{|l|}{Watchdog Timer Refresh} & & & & & & & & & & & & & & & & \\
\hline OP & \multicolumn{16}{|c|}{Descriptions} & \multicolumn{11}{|c|}{Program Steps} \\
\hline N/A & \multicolumn{27}{|c|}{WDT, WDTP: 1 steps} \\
\hline & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC EH & H SV & \[
\begin{array}{|l}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l}
\mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand.
2. The watchdog timer in DVP series PLCs is used for monitoring the operation of the PLC system.
3. WDT instruction can be used to reset Watch Dog Timer. If the PLC scan time (from step 0 to END or when FEND instruction is executed) exceeds 200 ms , PLC ERROR LED will flash. The user will have to turn off PLC and back On again. PLC will determine RUN/STOP status by RUN/STOP switch. If there is no RUN/STOP switch, PLC will return to STOP status automatically.
4. When to use WDT:
a) When errors occur in the PLC system.
b) When the executing time of the program is too long, resulting in the scan time being larger than the content in D1000, the user can improve the problem by the following two methods.
- Using WDT instruction


■ Using the set value in D1000 (default value: 200 ms ) to change the time for watchdog.

\section*{Program Example:}

Assume the scan time of the program is 300 ms , divide the program into two parts and place WDT instruction in the middle of the two parts, making scan time of the first half and second half of the program being less than 200 ms .

\begin{tabular}{|c|c|c|l|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 08 & FOR & S & Start of a FOR-NEXT Loop \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{FOR: 3 steps}} \\
\hline S & & & & & * & * & * & * & * & * & * & * & * & * & * & & \\
\hline
\end{tabular}

\section*{Operands:}

S: The number of repeated nested loops

\section*{Explanations:}
1. No contact to drive the instruction is required.
2. See the specifications of each model for their range of use.
\begin{tabular}{|c|c|ll|}
\hline API & Mnemonic & & Function \\
\cline { 3 - 4 } 09 & NEXT & End of a FOR-NEXT Loop & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline OP & Descriptions & \multicolumn{1}{c|}{ Program Steps } \\
\hline N/A & & NEXT: 1 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
|SV2| & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand. No contact to drive the instruction is required.
2. FOR instruction indicates FOR ~ NEXT loops executing back and forth \(N\) times before escaping for the next execution.
3. \(\quad \mathrm{N}=\mathrm{K} 1 \sim \mathrm{~K} 32,767\). N is regarded as K 1 when \(\mathrm{N} \leq 1\).
4. When FOR~NEXT loops are not executed, the user can use the CJ instruction to escape the loops.
5. Error will occur when
a) NEXT instruction is before FOR instruction.
b) FOR instruction exists but NEXT instruction does not exist.
c) There is NEXT instruction after FEND or END instruction.
d) The number of instructions between FOR ~ NEXT differs.
6. FOR~NEXT loops can be nested for maximum five levels. Be careful that if there are too many loops, the increased PLC scan time may cause timeout of watchdog timer and error. Users can use WDT instruction to modify this problem.

\section*{Program Example 1:}

After program A has been executed for 3 times, it will resume its execution after NEXT instruction. Program B will be executed for 4 times whenever program \(A\) is executed once. Therefore, program \(B\) will be executed \(3 \times 4=12\) times in total.


\section*{Program Example 2:}

When X 7 = Off, PLC will execute the program between FOR ~NEXT. When \(\mathrm{X} 7=\mathrm{On}, \mathrm{CJ}\) instruction jumps to P6 and avoids executing the programs between FOR ~ NEXT.


\section*{Program Example 3:}

When the programs between FOR ~ NEXT are not to be executed, the user can adopt CJ instruction for a jumping.
When the most inner FOR ~ NEXT loop is in the status of X1 = On, CJ instruction executes jumping to P0 and skips the execution on PO.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & & erands & & Function \\
\hline 10 & D & CMP & P & (S1) & (S2) D & Compare & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{12}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & & KnM & KnS & S & T & C & D & E & F & \multicolumn{12}{|l|}{\multirow[t]{4}{*}{CMP, CMPP: 7 steps DCMP, DCMPP: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & * & & * & * & * & * & * & * & * & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & & & & & & \\
\hline D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & & SX & SC & EH SV & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{ES Ex} & EX & SS & S & \multicolumn{2}{|l|}{SC} & EH & \[
\mathrm{sv}
\] & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{SV \(\begin{aligned} & \text { EH3 } \\ & \text { SV2 }\end{aligned}\)} \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(\mathbf{S}_{1}\) : Comparison Value \(1 \quad \mathbf{S}_{2}\) : Comparison Value 2 D: Comparison result}

\section*{Explanations:}
1. If \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) are used in device \(F\), only 16-bit instruction is applicable.
2. Operand D occupies 3 consecutive devices.
3. See the specifications of each model for their range of use.
4. The contents in \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are compared and the result will be stored in \(\mathbf{D}\).
5. The two comparison values are compared algebraically and the two values are signed binary values. When b15 \(=1\) in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.

\section*{Program Example:}
1. Designate device \(Y 0\), and operand \(D\) automatically occupies \(Y 0, \mathrm{Y} 1\), and Y 2 .
2. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{CMP}\) instruction will be executed and one of \(\mathrm{Y} 0, \mathrm{Y} 1\), and Y 2 will be On. When \(\mathrm{X} 10=\mathrm{Off}, \mathrm{CMP}\) instruction will not be executed and Y0, Y1, and Y2 remain their status before X10 \(=\) Off.
3. If the user need to obtain a comparison result with \(\geq \leq\), and \(\neq\), make a series parallel connection between \(\mathrm{YO} \sim\) Y2.

4. To clear the comparison result, use RST or ZRST instruction.

\begin{tabular}{|c||c|c|c|ccc|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{|c|}{ Operands } & & Function \\
\hline 11 & D & ZCP & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & S & D & Zone Compare
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Lower bound of zone comparison \(\quad \mathbf{S}_{2}\) : Upper bound of zone comparison \(\mathbf{S}\) : Comparison value
D: Comparison result

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and \(\mathbf{S}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. The content in \(\mathbf{S}_{1}\) should be smaller than the content in \(\mathbf{S}_{\mathbf{2}}\).
3. Operand D occupies 3 consecutive devices.
4. See the specifications of each model for their range of use.
5. \(\quad \mathbf{S}\) is compared with its \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and the result is stored in \(\mathbf{D}\).
6. When \(\mathbf{S}_{1}>\mathbf{S}_{2}\), the instruction performs comparison by using \(\mathbf{S}_{1}\) as the lower/upper bound.
7. The two comparison values are compared algebraically and the two values are signed binary values. When b15 \(=1\) in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.

\section*{Program Example:}
1. Designate device M0, and operand D automatically occupies M0, M1 and M2.
2. When \(\mathrm{XO}=\mathrm{On}, \mathrm{ZCP}\) instruction will be executed and one of \(M 0, \mathrm{M} 1\), and M 2 will be On. When \(\mathrm{X0}=\mathrm{Off}, \mathrm{ZCP}\) instruction will not be executed and \(\mathrm{M} 0, \mathrm{M} 1\), and M 2 remain their status before \(\mathrm{X} 0=\mathrm{Off}\).

3. To clear the comparison result, use RST or ZRST instruction.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & & Function \\
\hline 12 & D & MOV & P & (S) D & Move & \\
\hline
\end{tabular}


Operands:
S: Source of data
D: Destination of data

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. When this instruction is executed, the content of \(\mathbf{S}\) will be moved directly to \(\mathbf{D}\). When this instruction is not executed, the content of \(\mathbf{D}\) remains unchanged.
4. If the operation result refers to a 32-bit output, (i.e. application instruction MUL and so on), and the user needs to move the present value in the 32-bit high-speed counter, DMOV instruction has to be adopted.

\section*{Program Example:}
1. MOV instruction has to be adopted in the moving of 16-bit data.
a) When \(\mathrm{X0} 0=\mathrm{Off}\), the content in D 10 will remain unchanged. If \(\mathrm{X0}=\mathrm{On}\), the value K 10 will be moved to D10 data register.
b) When \(\mathrm{X} 1=\mathrm{Off}\), the content in D10 will remain unchanged. If \(\mathrm{X} 1=\mathrm{On}\), the present value T 0 will be moved to D10 data register.
2. DMOV instruction has to be adopted in the moving of 32-bit data.

When X2 = Off, the content in (D31, D30) and (D41, D40) will remain unchanged. If \(\mathrm{X} 2=\mathrm{On}\), the present value of (D21, D20) will be sent to (D31, D30) data register. Meanwhile, the present value of \(C 235\) will be moved to (D41, D40) data register.

\begin{tabular}{|c||c|c|c|ccc|cc|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{|c|}{ Operands } & & Function \\
\hline 13 & & SMOV & P & S & \(\mathrm{m}_{1}\) & \(\mathrm{~m}_{2}\) & D & n \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & & nM & KnS & T & C & & D & E & & F & \multicolumn{11}{|l|}{\multirow[t]{6}{*}{SMOV, SMOVP: 11 steps}} \\
\hline S & & & & & & & & * & * & & * & * & * & * & & * & * & & * & & & & & & & & & & & \\
\hline \(\mathrm{m}_{1}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{m}_{2}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & * & & * & * & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH S & SV & \[
\begin{array}{|l|l}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & & & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}\) : Source of data \(\quad \mathbf{m}_{1}\) : Start digit to be moved of the source data \(\mathbf{m}_{2}\) : Number of digits (nibbles) to be moved of the source data \(\quad \mathbf{D}\) : Destination device \(\quad \mathbf{n}\) : Start digit of the destination position for the moved digits

\section*{Explanations:}
1. This instruction is able to re-allocate or combine data. When the instruction is executed, \(\mathbf{m}_{\mathbf{2}}\) digits of contents starting from digit \(\mathbf{m}_{1}\) (from high digit to low digit) of \(\mathbf{S}\) will be sent to \(\mathbf{m}_{\mathbf{2}}\) digits starting from digit \(\mathbf{n}\) (from high digit to low digit) of \(\mathbf{D}\).
2. Range: \(\mathbf{m}_{\mathbf{1}}=1 \sim 4 ; \mathbf{m}_{\mathbf{2}}=1 \sim \mathbf{m}_{\mathbf{1}} ; \mathbf{n}=\mathbf{m}_{\mathbf{2}} \sim 4\)
3. See the specifications of each model for their range of use.
4. M 1168 is designated by SMOV working mode. When M1168 \(=\) On, the program is in BIN mode. When M1168 = Off, the program is in BCD mode.

\section*{Program Example 1:}
1. When M1168 = Off (in BCD mode) and \(\mathrm{XO}=\mathrm{On}\), the \(4^{\text {th }}\) (thousand) and \(3^{\text {rd }}\) (hundred) digit of the decimal value in D10 start to move to the \(3^{\text {rd }}\) (hundred) and \(2^{\text {nd }}\) (ten) digit of the decimal value in D20. \(10^{3}\) and \(10^{\circ}\) of D20 remain unchanged after this instruction is executed.
2. When the BCD value exceeds the range of \(0 \sim 9,999\), PLC will determine an operation error and will not execute the instruction. M1067, M1068 = On and D1067 records the error code OE18 (hex).


D10(BIN 16 bits)
Auto conversion
D10(BCD 4 digits)
D 20 (BCD 4 digits)
Auto conversion
D20(BIN 16 bits)

Before the execution, assume D10 \(=\mathrm{K} 1234\) and \(\mathrm{D} 20=\mathrm{K} 5678\). After the execution, D10 will remain unchanged and D20 will become K5128.

\section*{Program Example 2:}

When M1168 = On (in BIN mode) and SMOV instruction is in use, D10 and D20 will not be converted in BCD format but be moved in BIN format (4 digits as a unit).


Before the execution, assume D10 \(=\mathrm{H} 1234\) and D20 \(=\mathrm{H} 5678\). After the execution, D10 will remain unchanged and D20 will become H5128.

\section*{Program Example 3:}
1. This instruction can be used to combine the DIP switches connected to the input terminals with interrupted No.
2. Move the \(2^{\text {nd }}\) right digit of the DIP switch to the \(2^{\text {nd }}\) right digit of D2, and the \(1^{\text {st }}\) left digit of the DIP switch to the \(1^{\text {st }}\) right digit of D 1 .
3. Use SMOV instruction to move the \(1^{\text {st }}\) digit of D1 to the \(3^{\text {rd }}\) digit of D2 and combine the two DIP switches into one.

\begin{tabular}{|r||c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
\\
\hline 14 & D & CML & P & S & D \\
& Compliment & Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & & K & H & KnX & KnY & & KnM & KnS & T & C & & D & E & F & \multicolumn{7}{|l|}{\multirow[t]{2}{*}{CML, CMLP: 5 steps DCML, DCMLP: 9 steps}} & & & & \\
\hline S & & & & & & * & * & * & * & & * & * & * & * & & * & * & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & * & & * & * & * & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & E & SV & EH3 & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source of data
D: Destination device

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction can be used for phase-reversed output.
4. Reverse the phase \((0 \rightarrow 1,1 \rightarrow 0)\) of all the contents in \(S\) and send the contents to \(\mathbf{D}\). Given that the content is a constant K , K will be automatically converted into a BIN value.

\section*{Program Example 1:}
1. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{b} 0 \sim \mathrm{~b} 3\) in D 1 will be phase-reversed and send to \(\mathrm{Y} 0 \sim \mathrm{Y} 3\).


\section*{Program Example 2:}

The loop below can also adopt CML instruction (see right below).


Normally on contact
\begin{tabular}{|c||c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 15 & & BMOV & P & S & D \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & BMOV, BMOVP: 7 steps \\
\hline S & & & & & & & * & * & * & * & * & * & * & & & \\
\hline D & & & & & & & & * & * & * & * & * & * & & & \\
\hline n & & & & & * & * & & & & & * & * & * & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start of source devices
D: Start of destination devices
n : Number of data to be moved

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathbf{1 \sim 5 1 2}\)
2. See the specifications of each model for their range of use.
3. The contents in n registers starting from the device designated by \(\mathbf{S}\) will be moved to n registers starting from the device designated by \(\mathbf{D}\). If \(n\) exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.

\section*{Program Example 1:}

When X10 = On, the contents in registers D0 ~ D3 will be moved to the 4 registers D20~D23.


\section*{Program Example 2:}
1. Assume the bit devices \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS are designated for moving, the number of digits of \(\mathbf{S}\) and \(\mathbf{D}\) has to be the same, i.e. their n has to be the same.
2. \(E S / E X / S S\) do not support the use of \(K n X, K n Y, K n M, K n S\) and \(E, F\) index register modification.

\begin{tabular}{|c|c|c|}
\hline M4 & \(\longrightarrow\) & Y4 \\
\hline M5 & \(\rightarrow\) & Y5 \\
\hline M6 & \(\rightarrow\) & Y6 \\
\hline M7 & \(\longrightarrow\) & Y7 \\
\hline
\end{tabular}

\section*{Program Example 3:}

To avoid coincidence of the device numbers to be moved designated by the two operands and cause confusion, please be aware of the arrangement on the designated device numbers.
1. When \(\mathbf{S}>\mathbf{D}\), the instruction is processed following the order (1) \(\rightarrow\) (2) \(\rightarrow\) (3)

2. In EH/EH2/SV/EH3/SV2, when \(\mathbf{S}<\mathbf{D}\), the instruction is processed following the order \((1) \rightarrow(2) \rightarrow\) (3)

3. In ESEX/SS/SA/SX/SC, when \(\mathbf{S}<\mathbf{D}\), avoid the number difference of " 1 " and the instruction is processed following the order (3) \(\rightarrow\) (2) \(\rightarrow\) (1). If the devices have the number difference of " 1 ", the contents in D11 ~ D13 will all be the content in D10.

\begin{tabular}{|c|c|c|}
\hline D10 & \(\rightarrow\) & D11 \\
\hline D11 & \(\xrightarrow{(2)}\) & D12 \\
\hline D12 & \(\xrightarrow{(1)}\) & D13 \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 16 & D & FMOV & P & S & D & n \\
Fill Move & \\
\hline
\end{tabular}


\section*{Operands:}
S: Source of data
D: Destination of data
n : Number of data to be moved

\section*{Explanations:}
1. If \(\mathbf{S}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. Range of \(\mathbf{n}: 1 \sim 512\) (16-bit, 32-bit instructions)
3. See the specifications of each model for their range of use.
4. The contents in n registers starting from the device designated by \(\mathbf{S}\) will be moved to n registers starting from the device designated by \(\mathbf{D}\). If \(n\) exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.
5. ES/EX/SS do not support the use of \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}\) and \(\mathrm{E}, \mathrm{F}\) index register modification.

\section*{Program Example:}

When \(\mathrm{X} 10=\mathrm{On}, \mathrm{K} 10\) will be moved to the 5 consecutive registers starting from D10.




\section*{Operands:}

\section*{\(D_{1}\) : Data to be exchanged \(1 \quad D_{2}\) : Data to be exchanged 2}

\section*{Explanations:}
1. If \(D_{1}\) and \(D_{2}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. The contents in the devices designated by \(\mathbf{D}_{1}\) and \(\mathbf{D}_{\mathbf{2}}\) will exchange.
4. Flag: M 1303 (designated by XCH working mode).

\section*{Program Example 1:}

When X0 \(=\) Off \(\rightarrow\) On, the contents in D20 and D40 exchange with each other.



\section*{Program Example 2:}

When X0 \(=\) Off \(\rightarrow\) On, the contents in D100 and D200 exchange with each other.


\section*{Remarks:}
1. ES/EX/SS do not support M1303.
2. As a 16-bit instruction, when the devices designated by \(D_{1}\) and \(D_{2}\) are the same and M1303 \(=O\) n, the upper and lower 8 bits of the designated devices exchange with each other.
3. As a 32-bit instruction, when the devices designated by \(D_{1}\) and \(D_{2}\) are the same and \(M 1303=O n\), the upper and lower 16 bits in the individual designated device exchange with each other.
4. When \(\mathrm{X0}=\mathrm{On}\) and \(\mathrm{M} 1303=\) On, the 16 -bit contents in D100 and those in D101 will exchange with each other.

5. When \(\mathrm{X} 0=\mathrm{ON}\) and \(\mathrm{M} 1303=\mathrm{ON}\), the high 8 bits and the low 8 bits in D0 are exchanged, the high 8 bits and the low 8 bits in D1 are exchanged., and the high 8 bits and the low 8 bits in D2 are exchanged.

\begin{tabular}{|c|c|c|c|c|l|l|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{3}{|c|}{ MPI } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 18 & D & BCD & P & S & D & Binary Coded Decimal \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & & KnX & Kn & & KnM & Kn & & T & & C & D & E & F & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{BCD, BCDP: 5 steps DBCD, DBCDP: 9 steps}} \\
\hline S & & & & & & & & & * & * & & * & * & & * & & & * & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & & & * & * & * & & & & & & & & & & & \\
\hline & & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & S & A & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & & X & SS & S & & S & & H & SV \(\begin{aligned} & \text { EH3 } \\ & \text { SV2 }\end{aligned}\) & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

Operands:
S: Source of data
D: Conversion result

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. Flags: M1067 (operation error); M1068 (operation error); D1067 (error code)
4. The content in \(\mathbf{S}\) (BIN value) is converted into BCD value and stored in \(\mathbf{D}\).
5. As a 16-bit (32-bit) instruction, when the conversion result exceeds the range of \(0 \sim 9,999(0 \sim 99,999,999)\), and M1067, M1068 = On, D1067 will record the error code 0E18 (hex).
6. The four arithmetic operations and applications in PLC and the execution of INC and DEC instructions are performed in BIN format. Therefore, if the user needs to see the decimal value display, simply use this instruction to convert the BIN value into BCD value.

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), the binary value of D 10 will be converted into BCD value, and the 1 s digit of the conversion result will be stored in K1Y0 (Y0 ~ Y3, the 4 bit devices).
\begin{tabular}{|l|l|l|}
\hline XO & BCD & D10 \\
\hline
\end{tabular}
2. When \(\mathrm{D} 10=001 \mathrm{E}(\mathrm{hex})=0030\) (decimal), the execution result will be: \(\mathrm{Y} 0 \sim \mathrm{Y} 3=0000(\mathrm{BIN})\).
\begin{tabular}{|c||c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
\\
\cline { 1 - 6 } 19 & D & BIN & P & S & D \\
& & Binary & Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & & KnM & KnS & T & & C & D & E & & \multicolumn{12}{|c|}{\multirow[t]{3}{*}{BIN, BINP: 5 steps DBIN, DBINP: 9 steps}} \\
\hline S & & & & & & & & * & * & & * & * & * & & * & * & * & & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & & * & * & * & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & & & & SC & EH & SV & EH3 & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}

\section*{S: Source of data \\ D: Conversion result}

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. Flags: M1067 (operation error); M1068 (operation error); D1067 (error code)
4. The content in \(\mathbf{S}\) (BCD value) is converted into BIN value and stored in \(\mathbf{D}\).
5. Valid range of \(\mathbf{S}: \operatorname{BCD}(0 \sim 9,999)\), DBCD ( \(0 \sim 99,999,999\) )
6. Provided the content in \(S\) is not a BCD value (in hex and any one of its digits does not fall in the range of \(0 \sim 9\) ), an operation error will occur. M1067, M1068 = On and D1067 records the error code 0E18 (hex).
7. Constant K and H will automatically be converted into BIN format. Thus, they do not need to adopt this instruction.

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{On}\), the BCD value of K 1 M 0 will be converted to BIN value and stored in D10.


\section*{Remarks:}

Explanations on BCD and BIN instructions:
1. When PLC needs to read an external DIP switch in BCD format, BIN instruction has to be first adopted to convert the read data into BIN value and store the data in PLC.
2. When PLC needs to display its stored data by a 7-segment display in BCD format, BCD instruction has to be first adopted to convert the data into \(B C D\) value and send the data to the 7 -segment display.
3. When \(\mathrm{X0}=\mathrm{On}\), the BCD value of K 4 X 0 is converted into BIN value and sent it to D100. The BIN value of D100 will then be converted into BCD value and sent to K4Y20.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ X0 } & \multicolumn{1}{|c|}{} \\
\hline & & BIN & K4X0 \\
\hline
\end{tabular}

\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & & Function \\
\hline 20 & D & ADD & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Addition \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & ADD, ADDP: 7 steps \\
\hline \(\mathrm{S}_{1}\) & & & & & * & * & * & * & * & * & * & * & * & * & * & DADD, DADDP: 13 steps \\
\hline \(\mathrm{S}_{2}\) & & & & & * & * & * & * & * & * & * & * & * & * & * & \\
\hline D & & & & & & & & * & * & * & * & * & * & * & * & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Summand
\(\mathbf{S}_{2}\) : Addend
D: Sum

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
4. This instruction adds \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) in BIN format and store the result in \(\mathbf{D}\).
5. The highest bit is symbolic bit \(0(+)\) and \(1(-)\), which is suitable for algebraic addition, e.g. \(3+(-9)=-6\).
6. Flag changes in binary addition

In 16-bit BIN addition,
a) If the operation result \(=0\), zero flag M1020 \(=\) On.
b) If the operation result \(<-32,768\), borrow flag M1021 \(=\) On.
c) If the operation result \(>32,767\), carry flag M1022 \(=\) On.

In 32-bit BIN addition,
a) If the operation result \(=0\), zero flag M1020 \(=\) On.
b) If the operation result \(<-2,147,483,648\), borrow flag M1021 \(=\) On.
c) If the operation result \(>2,147,483,647\), carry flag M1022 \(=\) On.

\section*{Program Example 1:}

In 16-bit BIN addition:
When \(\mathrm{X0}=\mathrm{On}\), the content in D0 will plus the content in D10 and the sum will be stored in D20.
\begin{tabular}{|l|l|l|l|l|}
\hline ADD & D0 & D10 & D20 \\
\hline
\end{tabular}

\section*{Program Example 2:}

In 32-bit BIN addition:
When \(\mathrm{X0} 0=\) On, the content in (D31, D30) will plus the content in (D41, D40) and the sum will be stored in (D51, D50). D30, D40 and D50 are low 16-bit data; D31, D41 and D51 are high 16-bit data.

\[
(\mathrm{D} 31, \mathrm{D} 30)+(\mathrm{D} 41, \mathrm{D} 40)=(\mathrm{D} 51, \mathrm{D} 50)
\]

\section*{Remarks:}

Flags and the positive/negative sign of the values:

\begin{tabular}{|c||c|c|c|c|c|cc|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{|c|}{ Operands } & \\
\hline 21 & D & SUB & P & \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & D & Subtraction \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Minuend
\(\mathbf{S}_{2}\) : Subtrahend
D: Remainder

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
4. This instruction subtracts \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) in BIN format and stores the result in \(\mathbf{D}\).
5. The highest bit is symbolic bit \(0(+)\) and \(1(-)\), which is suitable for algebraic subtraction.
6. Flag changes in binary subtraction

In 16-bit instruction:
a) If the operation result \(=0\), zero flag M1020 \(=\) On.
b) If the operation result \(<-32,768\), borrow flag M1021 \(=\) On.
c) If the operation result \(>32,767\), carry flag M1022 \(=\) On.

In 32-bit instruction:
a) If the operation result \(=0\), zero flag M1020 \(=\) On.
b) If the operation result \(<-2,147,483,648\), borrow flag M1021 \(=\) On.
c) If the operation result \(>2,147,483,647\), carry flag M1022 \(=\) On.
7. For flag operations of SUB instruction and the positive/negative sign of the value, see the explanations in ADD instruction on the previous page.

\section*{Program Example 1:}

In 16-bit BIN subtraction:
When \(\mathrm{X} 0=\mathrm{On}\), the content in D 0 will minus the content in D 10 and the remainder will be stored in D20.
\begin{tabular}{|l|l|l|l|l|}
\hline SUB & D0 & D10 & D20 \\
\hline
\end{tabular}

\section*{Program Example 2:}

In 32-bit BIN subtraction:
When \(\mathrm{X} 10=\) On, the content in (D31, D30) will minus the content in (D41, D40) and the remainder will be stored in (D51, D50). D30, D40 and D50 are low 16-bit data; D31, D41 and D51 are high 16-bit data.
\begin{tabular}{|l|l|l|l|l|}
\hline\(\times 10\) & DSUB & D30 & D40 & D50 \\
\hline
\end{tabular}
\((\mathrm{D} 31, \mathrm{D} 30)-(\mathrm{D} 41, \mathrm{D} 40)=(\mathrm{D} 51, \mathrm{D} 50)\)
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & & Function \\
\hline 22 & D & MUL & P & \(\mathbf{S}_{1}\) & \(\mathrm{~S}_{2}\) & D & Multiplication
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & & KM & KnS & T & C & & D & E & F & \multicolumn{11}{|l|}{\multirow[t]{4}{*}{MUL, DMULP: 7 steps DMUL, DMULP: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & * & & * & * & * & * & & * & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & * & & * & * & * & * & & * & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & * & & * & * & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH S & \multicolumn{2}{|l|}{\[
\begin{array}{l|l|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\]} & ES & & \multicolumn{2}{|l|}{SS} & S & SC & EH & SV & EH3
SV2 & ES & & SS & SA & S & SC & EH & \multicolumn{2}{|l|}{Sv \(\begin{aligned} & \text { EH3 } \\ & \text { SV2 }\end{aligned}\)} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{\mathbf{1}}\) : Multiplicand \(\quad \mathbf{S}_{2}\) : Multiplicator D : Product

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. If \(\mathbf{D}\) is used in device E , only 16 -bit instruction is applicable.
3. In 16-bit instruction, D occupies 2 consecutive devices.
4. In 32-bit instruction, D occupies 4 consecutive devices.
5. See the specifications of each model for their range of use.
6. This instruction multiplies \(\mathbf{S}_{1}\) by \(\mathbf{S}_{2}\) in BIN format and stores the result in \(\mathbf{D}\). Be careful with the positive/negative signs of \(\mathbf{S}_{1}, \mathbf{S}_{2}\) and \(\mathbf{D}\) when doing 16-bit and 32 -bit operations.
7. In 16-bit BIN multiplication,


16 -bit value \(\times 16\)-bit value \(=32\)-bit value
When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16-bit data. ES/EX/SS only stores low 16-bit data.
8. If the product of a 16 -bit multiplication must be a 16 -bit value (16-bit value \(\times 16\)-bit value \(=16\)-bit value), users have to use API 114 MUL16/MUL16P. Please refer to the explanation of API 114 MUL16/MUL16P for more information.
9. 32-bit BIN multiplication,


Symbol bit \(=0\) refers to a positive value.
Symbol bit = 1 refers to a negative value.
32 -bit value \(\times 32\)-bit value \(=64\)-bit value
When \(D\) serves as a bit device, it can designate K1 ~ K8 and construct a 32-bit result, occupying consecutive 2 groups of 32-bit data.
10. If the product of a 32-bit multiplication must be a 32 -bit value (32-bit value \(\times 32\)-bit value \(=32\)-bit value), users have to use API 114 MUL32/MUL32P. Please refer to the explanation of API 114 MUL32/MUL32P for more information.

\section*{Program Example:}

The 16 -bit D0 is multiplied by the 16 -bit D10 and brings forth a 32-bit product. The higher 16 bits are stored in D21 and the lower 16-bit are stored in D20. On/Off of the most left bit indicates the positive/negative status of the result value.

\begin{tabular}{|c||c|c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & & Function \\
\hline 23 & D & DIV & P & \(S_{1}\) & \(S_{2}\) & D & Division
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & DIV, DIVP: 7 steps \\
\hline \(\mathrm{S}_{1}\) & & & & & * & * & * & * & * & * & * & * & * & * & & DDIV, DDIVP: 13 steps \\
\hline \(\mathrm{S}_{2}\) & & & & & * & * & * & * & * & * & * & * & * & * & & \\
\hline D & & & & & & & & * & * & * & * & * & * & * & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \mathrm{EH} 3 \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|c|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} / 2
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Dividend \(\quad \mathbf{S}_{2}\) : Divisor \(\quad \mathbf{D}\) : Quotient and remainder

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. If \(\mathbf{D}\) is used in device E , only 16-bit instruction is applicable.
3. In 16-bit instruction, D occupies 2 consecutive devices.
4. In 32-bit instruction, \(\mathbf{D}\) occupies 4 consecutive devices.
5. See the specifications of each model for their range of use.
6. This instruction divides \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) in BIN format and stores the result in \(\mathbf{D}\). Be careful with the positive/negative signs of \(\mathbf{S}_{1}, \mathbf{S}_{2}\) and \(\mathbf{D}\) when doing 16-bit and 32 -bit operations.
7. This instruction will not be executed when the divisor is 0 . M1067 and M1068 will be On and D1067 records the error code 0E19 (hex).
8. In 16-bit BIN division,


When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16 -bit data and bringing forth the quotient and remainder. ES/EX/SS is able to bring forth only quotient without the remainder.

If users want to store the quotient of a 16-bit division (leave out the remainder), they have to use AP I115 DIV16/DIV16P. Please refer to the explanation of API 115 DIV16/DIV16P for more information.
9. In 32-bit BIN division,
\[
\text { Quotient } \quad \text { Remainder }
\]


When D serves as a bit device, it can designate K1 ~ K8 and construct a 32-bit result, occupying consecutive 2
groups of 32-bit data and bringing forth the quotient and remainder.
If users want to store the quotient of a 32-bit division (leave out the remainder), they have to use AP I115 DIV32/DIV32P. Please refer to the explanation of API 115 DIV32/DIV32P for more information.

\section*{Program Example:}

When X0 = On, D0 will be divided by D10 and the quotient will be stored in D20 and remainder in D21. On/Off of the highest bit indicates the positive/negative status of the result value.
\begin{tabular}{|c|c|c|c|c|}
\hline DIV & D0 & D10 & D20 \\
\hline & DIV & D0 & D10 & K4Y0 \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|c|l|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } \\
Operands & & Function \\
\hline 24 & D & INC & P & D
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & INC, INCP: 3 steps \\
\hline D & & & & & & & & * & * & * & * & * & * & * & * & DINC, DINCP: 5 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 & ES & EX & SS & SA & SX & SC & EH & SV & \[
\mathrm{EH} 3
\]
SV2 \\
\hline
\end{tabular}

\section*{Operands:}

D: Destination device

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. If the instruction is not a pulse execution one, the content in the designated device \(D\) will plus " 1 " in every scan period whenever the instruction is executed.
4. This instruction adopts pulse execution instructions (INCP, DINCP).
5. In 16-bit operation, 32,767 pluses 1 and obtains \(-32,768\). In 32 -bit operation, 2,147,483,647 pluses 1 and obtains -2,147,483,648.
6. The operation results will not affect M1020 ~ M1022.

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{Off} \rightarrow\) On, the content in D0 pluses 1 automatically.

\begin{tabular}{|c||c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & Operands \\
\hline 25 & D & DEC & P & D
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & Kn & & KnM & Kns & T & & & D & E & & \(F\) & \multicolumn{11}{|l|}{\multirow[t]{2}{*}{DEC, DECP: 3 steps DDEC, DDECP: 5 steps}} \\
\hline D & & & & & & & & & * & & * & * & * & & & * & * & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & S SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & E & EX & SS & SA & & & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & \[
s x
\] & \multicolumn{2}{|r|}{C E} & \multicolumn{2}{|l|}{\begin{tabular}{|c|c|c} 
EH3 \\
SV \\
SV2
\end{tabular}} \\
\hline
\end{tabular}

\section*{Operands:}

D: Destination device

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16-bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. If the instruction is not a pulse execution one, the content in the designated device \(D\) will minus " 1 " in every scan period whenever the instruction is executed.
4. This instruction adopts pulse execution instructions (DECP, DDECP).
5. In 16-bit operation, -32,768 minuses 1 and obtains 32,767. In 32-bit operation, -2,147,483,648 minuses 1 and obtains 2,147,483,647.
6. The operation results will not affect M1020 ~ M1022.

\section*{Program Example:}

When XO = Off \(\rightarrow\) On, the content in D0 minuses 1 automatically.
\begin{tabular}{|c|c|}
\hline DO & DECP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{6}{|c|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & \multicolumn{18}{|c|}{Function} \\
\hline 26 & W & \multicolumn{3}{|c|}{AND} & & P & \multicolumn{7}{|c|}{(S1) \(S_{2}\)} & \multicolumn{7}{|r|}{Logical Word AND} & \multicolumn{11}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & & X & Y & M & S & & K & H & KnX & & nY & KnM & KnS & T & & C & D & E & E & F & \multicolumn{11}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
WAND, WANDP: 7 steps \\
DAND, DANDP: 13 steps
\end{tabular}}} \\
\hline S & & & & & & & * & * & * & & * & * & * & * & & * & * & & * & * & & & & & & & & & & & \\
\hline S & & & & & & & * & * & * & & * & * & * & * & & * & * & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & * & * & * & * & & * & * & & * & * & & & & & & & & & & & \\
\hline & & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & ES & EX & SS & SA & SX & SC & C E & SV & \[
\begin{array}{l|l}
\mathrm{VE} 3 \\
\mathrm{EHV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & S & \multicolumn{2}{|l|}{SX} & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & E & EX & SS & SA & SX & SC & \multicolumn{3}{|l|}{\[
\begin{array}{l|l|l|}
\mathrm{EH} & \mathrm{SV} \\
& \mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source data device \(1 \quad \mathbf{S}_{2}\) : Source data device 2
D: Operation result

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction conducts logical AND operation of \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) and stores the result in \(\mathbf{D}\).
4. Operation rule: The corresponding bit of the operation result in \(\mathbf{D}\) will be " 0 " if any of the bits in \(\mathbf{S}_{1}\) or \(\mathbf{S}_{2}\) is " 0 ".

\section*{Program Example 1:}

When \(\mathrm{XO}=\mathrm{On}\), the 16 -bit DO and D 2 will perform WAND, logical AND operation, and the result will be stored in D4.



\section*{Program Example 2:}

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DAND, logical AND operation, and the result will be stored in (D41, D40).
\begin{tabular}{|l|l|l|l|l|}
\hline DAND & D10 & D20 & D40 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{6}{|c|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & \multicolumn{18}{|c|}{Function} \\
\hline 27 & W W & \multicolumn{3}{|c|}{OR} & & P & \multicolumn{7}{|c|}{(S1) \(\mathbf{S}_{2}\)} & \multicolumn{7}{|r|}{Logical Word OR} & \multicolumn{11}{|l|}{} \\
\hline > & & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & & X & Y & M & S & S & K & H & KnX & & KnY & KnM & KnS & S T & & C & D & & E & F & \multicolumn{11}{|l|}{\multirow[t]{4}{*}{WOR, WORP: 7 steps DOR, DORP: 13 steps}} \\
\hline S & & & & & & & * & * & * & & * & * & * & * & & * & * & & * & D & & & & & & & & & & & \\
\hline S & & & & & & & * & * & * & & * & * & * & & & * & * & & * & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & * & * & * & & * & * & * & & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & ES & EX & SS & SA & & S & EH & \[
\mathrm{SV}
\] & \[
\begin{array}{|l|l}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & \multicolumn{2}{|l|}{SA} & SX & Sc & EH & SV & \[
\begin{aligned}
& \hline \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & \multicolumn{2}{|l|}{SC EH} & \multicolumn{2}{|l|}{SV \(\begin{aligned} & \text { EH3 } \\ & \text { SV2 }\end{aligned}\)} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source data device 1
\(\mathbf{S}_{2}\) : Source data device 2
D: Operation result

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction conducts logical OR operation of \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) and stores the result in \(\mathbf{D}\).
4. Operation rule: The corresponding bit of the operation result in \(\mathbf{D}\) will be " 1 " if any of the bits in \(\mathbf{S}_{1}\) or \(\mathbf{S}_{2}\) is " 1 ".

\section*{Program Example 1:}

When \(\mathrm{XO}=\mathrm{On}\), the 16 -bit D0 and D2 will perform WOR, logical OR operation, and the result will be stored in D4.


\section*{Program Example 2:}

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DOR, logical OR operation, and the result will be stored in (D41, D40).


\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 28 & W & XOR & P & \(S_{1}\) & \(S_{2}\) & \(D\) & Logical Exclusive OR \\
\cline { 3 - 8 } & D & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & & KnM & KnS & T & C & D & & E & F & \multicolumn{11}{|l|}{\multirow[t]{4}{*}{WXOR, WXORP: 7 steps DXOR, DXORP: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & * & & * & * & * & * & * & & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & * & & * & * & * & * & * & & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & * & & & * & * & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|r|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC Er & \multicolumn{2}{|l|}{HV} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\]} & ES Ex & EX & SS & SA & SX & SC & \multicolumn{3}{|l|}{\[
\begin{array}{|l|l|l|}
\hline \mathrm{EH} \\
\mathrm{EH} & \mathrm{~Sv} & \mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source data device 1
\(\mathbf{S}_{2}\) : Source data device 2
D: Operation result

\section*{Explanations:}
1. If \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction conducts logical XOR operation of \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{2}\) and stores the result in \(\mathbf{D}\).
4. Operation rule: If the bits in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) are the same, the corresponding bit of the operation result in \(\mathbf{D}\) will be " 0 "; if the bits in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) are different, the corresponding bit of the operation result in \(\mathbf{D}\) will be " 1 ".

\section*{Program Example 1:}

When \(\mathrm{X0}=\mathrm{On}\), the 16 -bit D0 and D2 will perform WXOR, logical XOR operation, and the result will be stored in D4.


\section*{Program Example 2:}

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DXOR, logical XOR operation, and the result will be stored in (D41, D40).


\begin{tabular}{|c||c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & Operands \\
\hline 29 & D & NEG & P & D
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & & nX & KnY & & nM & Kn & & T & C & & D & E & & F & \multicolumn{11}{|l|}{\multirow[t]{2}{*}{NEG, NEGP: 3 steps DNEG, DNEGP: 5 steps}} \\
\hline D & & & & & & & & & & * & & * & * & & * & & & * & * & & * & & & & & & & & & & & \\
\hline & & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{11}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & X & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & E & & SS & SA & & & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}

D: Device to store 2's complement

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction converts a negative BIN value into an absolute value.
4. This instruction adopts pulse execution instructions (NEGP, DNEGP).

\section*{Program Example 1:}

When \(\mathrm{XO}=\mathrm{Off} \rightarrow\) On, the phase of every bit of the content in D10 will be reversed \((0 \rightarrow 1,1 \rightarrow 0)\) and pluses 1 . The result will then be stored in D10.


\section*{Program Example 2:}

Obtaining the absolute value of a negative value:
a) When the \(15^{\text {th }}\) bit of \(D 0\) is " 1 ", MO \(=O n\). (DO is a negative value).
b) When \(\mathrm{MO}=\mathrm{Off} \rightarrow \mathrm{On}\), NEG instruction will obtain 2 's complement of DO and further its absolute value.


\section*{Program Example 3:}

Obtaining the absolute value by the remainder of the subtraction. When \(\mathrm{X0} 0=\mathrm{On}\),
a) If \(\mathrm{DO}>\mathrm{D} 2, \mathrm{MO}=\mathrm{On}\).
b) If \(\mathrm{DO}=\mathrm{D} 2, \mathrm{M} 1=\mathrm{On}\).
c) If D0 \(<\mathrm{D} 2, \mathrm{M} 2=\mathrm{On}\).
d) D4 is then able to remain positive.


\section*{Remarks:}

Negative value and its absolute value
a) The sign of a value is indicated by the highest (most left) bit in the register. 0 indicates that the value is a positive one and 1 indicates that the value is a negative one.
b) NEG instruction is able to convert a negative value into its absolute value.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}
(D0=1)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular} \(\mathbf{0}|0| 1\).
(DO=0)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}\(|\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{6}{|c|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & & \multicolumn{17}{|c|}{Function} \\
\hline 30 & D & \multicolumn{3}{|c|}{ROR} & & P & \multicolumn{7}{|c|}{(D) n} & & \multicolumn{6}{|r|}{Rotation Right} & \multicolumn{11}{|l|}{} \\
\hline & & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & & X & Y & M & S & & K & H & Kn & X K & KnY & KnM & KnS & T & T & C & D & & E & F & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{ROR, RORP: 5 steps DROR, DRORP: 9 steps}} \\
\hline D & & & & & & & & & & & * & * & * & & & * & & & * & * & & & & & & & & & & & \\
\hline n & & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & ES & EX & SS & SA & S & X & \multicolumn{2}{|l|}{EH} & SV & ES & EX & SS & S & SA & SX & S & EH & SV & \begin{tabular}{|l|l|} 
EH3 \\
SV2
\end{tabular} & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\hline \mathrm{SV} & \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
D: Device to be rotated
n : Number of bits to be rotated in 1 rotation

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. If \(\mathbf{D}\) is designated as \(\mathrm{KnY}, \mathrm{KnM}\), and KnS , only K 4 (16-bit) and K 8 (32-bit) are valid.
3. Range of n: K1 ~ K16 (16-bit); K1 ~ K32 (32-bit)
4. See the specifications of each model for their range of use.
5. Flag: M1022 (carry flag)
6. This instruction rotates the device content designated by \(\mathbf{D}\) to the right for \(\mathbf{n}\) bits.
7. This instruction adopts pulse execution instructions (RORP, DRORP).

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{Off} \rightarrow\) On, the 16 bits (4 bits as a group) in D10 will rotate to the right, as shown in the figure below. The bit marked with \(※\) will be sent to carry flag M1022.

\begin{tabular}{|c|}
\hline API \\
\hline \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & & Function \\
\hline 31 \\
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{12}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & Kn & & KnM & KnS & T & & C & D & E & F & \multicolumn{12}{|l|}{\multirow[t]{3}{*}{ROL, ROLP: 5 steps
DROL, DROLP: 9 steps}} \\
\hline D & & & & & & & & & * & & * & * & * & & * & * & * & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & & & & & EH & SV & EH3 & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}

D: Device to be rotated \(\quad \mathbf{n}\) : Number of bits to be rotated in 1 rotation

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. If \(\mathbf{D}\) is designated as \(\mathrm{KnY}, \mathrm{KnM}\), and KnS , only K 4 (16-bit) and K 8 (32-bit) are valid.
3. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 16\) (16-bit); K1 ~ K32 (32-bit)
4. See the specifications of each model for their range of use.
5. Flag: M1022 (carry flag)
6. This instruction rotates the device content designated by \(\mathbf{D}\) to the left for \(\mathbf{n}\) bits.
7. This instruction adopts pulse execution instructions (ROLP, DROLP).

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{Off} \rightarrow\) On, the 16 bits (4 bits as a group) in D10 will rotate to the left, as shown in the figure below. The bit marked with \(※\) will be sent to carry flag M1022.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{6}{|c|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & & \multicolumn{17}{|c|}{Function} \\
\hline 32 & D & \multicolumn{3}{|c|}{RCR} & & P & \multicolumn{7}{|c|}{(D) n} & & \multicolumn{17}{|c|}{Rotation Right with Carry} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & & X & Y & M & S & & K & H & KnX & & \(n \mathrm{Y}\) & KnM & KnS & T & T & C & D & & E & F & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{RCR, RCRP: 5 steps DRCR, DRCRP: 9 steps}} \\
\hline D & & & & & & & & & & & * & * & * & & & * & & & * & * & & & & & & & & & & & \\
\hline n & & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & ES & EX & SS & SA & S & SC & \multicolumn{2}{|l|}{EH SV} &  & ES & EX & SS & \multicolumn{2}{|l|}{SA} & S & SC & EH & SV & \begin{tabular}{|l|l|} 
EH3 \\
SV2
\end{tabular} & E & EX & SS & SA & Sx & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\hline \mathrm{EH} 3 \\
\mathrm{sV} & \mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
D: Device to be rotated
n : Number of bits to be rotated in 1 rotation

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. If \(\mathbf{D}\) is designated as \(\mathrm{KnY}, \mathrm{KnM}\), and KnS , only K 4 (16-bit) and K 8 (32-bit) are valid.
3. Range of n: K1 ~ K16 (16-bit); K1 ~ K32 (32-bit)
4. See the specifications of each model for their range of use.
5. Flag: M1022 (carry flag)
6. This instruction rotates the device content designated by \(\mathbf{D}\) together with carry flag M 1022 to the right for \(\mathbf{n}\) bits.
7. This instruction adopts pulse execution instructions (RCRP, DRCRP).

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{Off} \rightarrow\) On, the 16 bits ( 4 bits as a group) in D10 together with carry flag M1022 (total 17 bits) will rotate to the right, as shown in the figure below. The bit marked with \(※\) will be sent to carry flag M1022.

\begin{tabular}{|c|c|c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\multicolumn{1}{c|}{ Function } \\
\cline { 1 - 5 } 33 & D & RCL & P & D & n \\
Rotation Left with Carry \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & & KM & KnS & T & C & & D & E & & & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{RCL, RCLP: 5 steps DRCL, DRCLP: 9 steps}} \\
\hline D & & & & & & & & & * & & * & * & * & * & & * & * & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & - SC & EH SV & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\hline \mathrm{VH3} & \mathrm{EH} 2 \\
\hline \text { SV2 }
\end{array}
\]} & ES Ex & EX & \multicolumn{2}{|l|}{S S} & Sx & \multicolumn{2}{|l|}{SC} & EH & SV \({ }_{\text {E }}\) & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}

D: Device to be rotated \(\quad \mathbf{n}\) : Number of bits to be rotated in 1 rotation

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. If \(\mathbf{D}\) is designated as \(\mathrm{KnY}, \mathrm{KnM}\), and KnS , only K 4 (16-bit) and K 8 (32-bit) are valid.
3. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 16\) (16-bit); K1 ~ K32 (32-bit)
4. See the specifications of each model for their range of use.
5. Flag: M1022 (carry flag)
6. This instruction rotates the device content designated by \(\mathbf{D}\) together with carry flag M1022 to the left for \(\mathbf{n}\) bits.
7. This instruction adopts pulse execution instructions (RCLP, DRCLP).

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{Off} \rightarrow\) On, the 16 bits (4 bits as a group) in D10 together with carry flag M1022 (total 17 bits) will rotate to the left, as shown in the figure below. The bit marked with \(※\) will be sent to carry flag M1022.



\section*{Operands:}
S: Start No. of the shifted device
D: Start No. of the device to be shifted
\(\mathbf{n}_{1}\) : Length of data to be shifted
\(\mathbf{n}_{2}\) : Number of bits to be shifted in 1 shift

\section*{Explanations:}
1. Range of \(\mathbf{n}_{1}\) : 1~ 1,024
2. Range of \(\mathbf{n}_{2}: 1 \sim \mathbf{n}_{1}\)
3. In ES/EX/SS, \(1 \leq \mathbf{n}_{\mathbf{2}} \leq \mathbf{n}_{\mathbf{1}} \leq 512\)
4. ES/EX/SS series MPU does not support E, F index register modification.
5. See the specifications of each model for their range of use.
6. This instruction shifts the bit device of \(\mathbf{n}_{\mathbf{1}}\) bits (desired length for shifted register) starting from \(\mathbf{D}\) to the right for \(\mathbf{n}_{\mathbf{2}}\) bits. \(\mathbf{S}\) is shifted into \(\mathbf{D}\) for \(\mathbf{n}_{\mathbf{2}}\) bits to supplement empty bits.
7. This instruction adopts pulse execution instructions (SFTRP).

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{Off} \rightarrow \mathrm{On}, \mathrm{MO} \sim \mathrm{M} 15\) will form 16 bits and shifts to the right ( 4 bits as a group).
2. The figure below illustrates the right shift of the bits in one scan.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & \multicolumn{4}{|c|}{Operands} & & Function \\
\hline 35 & SFTL & P & (S) & (D) & (n) & (n2) & Bit Shift Left & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{12}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & & nM & KnS & T & C & & D & E & F & & \multicolumn{11}{|l|}{SFTL, SFTLP: 9 steps} \\
\hline S & * & * & * & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & * & * & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{n}_{1}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{n}_{2}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX S & SS & SA & SX & SC & EH S & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & & & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
S: Start No. of the shifted device
D: Start No. of the device to be shifted \(\quad \mathbf{n}_{\mathbf{1}}\) : Length of data to be shifted
\(\mathbf{n}_{\mathbf{2}}\) : Number of bits to be shifted in 1 shift

\section*{Explanations:}
1. Range of \(\mathbf{n}_{1}: 1 \sim 1,024\)
2. Range of \(\mathbf{n}_{\mathbf{2}}: \mathbf{1 \sim} \mathbf{n}_{\mathbf{1}}\)
3. In ES/EX/SS, \(1 \leq \mathbf{n}_{\mathbf{2}} \leq \mathbf{n}_{\mathbf{1}} \leq 512\)
4. ES/EX/SS series MPU does not support E, F index register modification.
5. See the specifications of each model for their range of use.
6. This instruction shifts the bit device of \(\mathbf{n}_{1}\) bits (desired length for shifted register) starting from \(\mathbf{D}\) to the left for \(\mathbf{n}_{\mathbf{2}}\) bits. \(\mathbf{S}\) is shifted into \(\mathbf{D}\) for \(\mathbf{n}_{\mathbf{2}}\) bits to supplement empty bits.
7. This instruction adopts pulse execution instructions (SFTLP).

\section*{Program Example:}
1. When \(\mathrm{X} 0=\mathrm{Off} \rightarrow \mathrm{On}, \mathrm{MO} \sim \mathrm{M} 15\) will form 16 bits and shifts to the left ( 4 bits as a group).
2. The figure below illustrates the left shift of the bits in one scan.
\[
\begin{aligned}
& \text { (1) M15 ~ M12 } \rightarrow \text { carry } \\
& \text { (2) M11~M8 } \rightarrow \text { M15~M12 } \\
& \text { 3 M7 ~ M4 } \rightarrow \text { M11~M8 } \\
& \text { (4) M3 ~M0 } \rightarrow \mathrm{M} 7 \sim \mathrm{M} 4 \\
& \boldsymbol{\epsilon} \text { X3 ~ X0 } \rightarrow \mathrm{M} 3 \sim \mathrm{MO} \text { completed }
\end{aligned}
\]

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{5}{|l|}{Mnemonic} & \multicolumn{9}{|c|}{Operands} & \multicolumn{17}{|c|}{Function} \\
\hline 36 & \multicolumn{3}{|r|}{WSFR} & P & & \multicolumn{9}{|r|}{(S) \(\mathrm{n}_{1} \mathrm{n}_{2}\)} & \multicolumn{6}{|r|}{Word Shift Left} & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & & KnM & Kn & & T & C & C & D & E & & F & \multicolumn{11}{|l|}{\multirow[t]{5}{*}{WSFR, WSFRP: 9 steps}} \\
\hline S & & & & & & & & * & * & & * & * & & * & * & * & * & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & & * & * & * & * & & & & & & & & & & & & & & \\
\hline \(\mathrm{n}_{1}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{n}_{2}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{11}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & & SX SC & EH & sV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & E & & SS & S & & X & SC & EH & SV & \[
\begin{array}{|l|}
\mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & S & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
S: Start No. of the shifted device
D: Start No. of the device to be shifted
\(n_{1}\) : Length of data to be shifted
\(\mathbf{n}_{\mathbf{2}}\) : Number of words to be shifted in 1 shift

\section*{Explanations:}
1. The type of devices designated by \(\mathbf{S}\) and D has to be the same, e.g. \(\mathrm{K}_{n} \mathrm{X}, \mathrm{K}_{\mathrm{n}} \mathrm{Y}, \mathrm{K}_{\mathrm{n}} \mathrm{M}\), and \(\mathrm{K}_{\mathrm{n}} \mathrm{S}\) as a category and \(\mathrm{T}, \mathrm{C}\), and D as another category.
2. Provided the devices designated by \(S\) and \(D\) belong to \(K_{n}\) type, the number of digits of \(K_{n}\) has to be the same.
3. Range of \(\mathbf{n}_{\mathbf{1}}: 1 \sim 512\)
4. Range of \(\mathbf{n}_{\mathbf{2}}: \mathbf{1} \sim \mathbf{n}_{\mathbf{1}}\)
5. See the specifications of each model for their range of use.
6. This instruction shifts the stack data of \(\mathbf{n}_{\mathbf{1}}\) words starting from \(\mathbf{D}\) to the right for \(\mathbf{n}_{\mathbf{2}}\) words. \(\mathbf{S}\) is shifted into \(\mathbf{D}\) for \(\mathbf{n}_{\mathbf{2}}\) words to supplement empty words.
7. This instruction adopts pulse execution instructions (WSFRP)

\section*{Program Example 1:}
1. When \(\mathrm{XO}=\mathrm{Off} \rightarrow\) On, the 16 register stack data composed of D20 ~ D35 will shift to the right for 4 registers.
2. The figure below illustrates the right shift of the words in one scan.
(1) D23 ~ D20 \(\rightarrow\) carry
(2) D27~D24 \(\rightarrow\) D23~D20
3 D31~D28 \(\rightarrow\) D27~D24
(4) D35~D32 \(\rightarrow\) D31~D28
© D13 ~ D10 \(\rightarrow\) D35 ~ D32 completed
\begin{tabular}{|c|l|l|l|l|l|}
\(|x|\) & WSFRP & D10 & D20 & K16 & K4 \\
\hline 1 &
\end{tabular}
(5)

(4)
(3)
(2)
(1)

\section*{Program Example 2:}
1. When \(\mathrm{X0}=\mathrm{Off} \rightarrow \mathrm{On}\), the bit register stack data composed of \(\mathrm{Y} 10 \sim \mathrm{Y} 27\) will shift to the right for 2 digits.
2. The figure below illustrates the right shift of the words in one scan.
(1) Y17 ~ Y10 \(\rightarrow\) carry
(2) \(\mathrm{Y} 27 \sim \mathrm{Y} 20 \rightarrow \mathrm{Y} 17 \sim \mathrm{Y} 10\)
\(3 \mathrm{X} 27 \sim \mathrm{X} 20 \rightarrow \mathrm{Y} 27 \sim \mathrm{Y} 20\) completed

(3)

(2)
(1)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & Kn & nM & Kns & T & & C & D & E & & F & \multicolumn{11}{|l|}{WSFL, WSFLP: 9 steps} \\
\hline S & & & & & & & & * & * & & * & * & & & * & * & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & & & * & * & & & & & & & & & & & & & & \\
\hline \(\mathrm{n}_{1}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{n}_{2}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & & & A & & SC & EH & SV & \[
\begin{array}{|}
\text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
S: Start No. of the shifted device
D: Start No. of the device to be shifted
\(\mathbf{n}_{1}\) : Length of data to be shifted
\(\mathbf{n}_{\mathbf{2}}\) : Number of words to be shifted in 1 shift

\section*{Explanations:}
1. The type of devices designated by \(S\) and \(D\) has to be the same, e.g. \(K_{n} X, K_{n} Y, K_{n} M\), and \(K_{n} S\) as a category and \(\mathrm{T}, \mathrm{C}\), and D as another category.
2. Provided the devices designated by \(S\) and \(D\) belong to \(K_{n}\) type, the number of digits of \(K_{n}\) has to be the same.
3. Range of \(\mathbf{n}_{\mathbf{1}}: 1 \sim 512\)
4. Range of \(\mathbf{n}_{\mathbf{2}}: \mathbf{1} \sim \mathbf{n}_{\mathbf{1}}\)
5. See the specifications of each model for their range of use.
6. This instruction shifts the stack data of \(\mathbf{n}_{\mathbf{1}}\) words starting from \(\mathbf{D}\) to the left for \(\mathbf{n}_{\mathbf{2}}\) words. \(\mathbf{S}\) is shifted into \(\mathbf{D}\) for \(\mathbf{n}_{\mathbf{2}}\) words to supplement empty words.
7. This instruction adopts pulse execution instructions (WSFLP)

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{Off} \rightarrow \mathrm{On}\), the 16 register stack data composed of D20 ~D35 will shift to the left for 4 registers.
2. The figure below illustrates the left shift of the words in one scan.
```

(1) D35 ~ D32 -> carry
(2) D31 ~ D28 -> D35 ~ D32
3 D27 ~ D24 -> D31 ~ D28
4 D23 ~ D20 -> D27 ~ D24
5 D13 ~ D10 -> D23 ~ D20 completed

```


\begin{tabular}{|c|c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 38 & SFWR & \(P\) & S D D & Shift Register Write \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|r|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{10}{|c|}{Program Steps} \\
\hline & X & Y & M & S & K & & H & KnX & KnY & & nM & KnS & T & C & D & & E & F & \multicolumn{10}{|l|}{SFWR, SFWRP: 7 steps} \\
\hline S & & & & & * & & * & * & * & & * & * & * & * & & & * & * & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & * & & & & & & & & & & & & & & \\
\hline n & & & & & * & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & & ES & X SS & \multicolumn{2}{|l|}{SA} & SX & SC & \multicolumn{2}{|l|}{EH SV} & \[
\begin{array}{|l|}
\hline \mathrm{EH3} \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES Ex & EX & SS & \multicolumn{2}{|l|}{SA} & S & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & \[
\mathrm{ES}
\] & SS & SA & Sx & SC & & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Device of stack data written in
D: Start No. of stack data
n: Length of stack data

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathbf{2 \sim 5 1 2}\)
2. See the specifications of each model for their range of use.
3. Flag: M1022 (carry flag)
4. The stack data of \(\mathbf{n}\) words starting from \(\mathbf{D}\) are defined as "first-in, first-out" stack data and designate the first device as the pointer. When the instruction is executed, the content in the pointer pluses 1 , and the content in the device designated by \(\mathbf{S}\) will be written into the designated location in the "first-in, first-out" stack data designated by the pointer. When the content in the pointer exceeds \(\mathbf{n}-1\), this instruction will not process any new value written in and the carry flag M1022 \(=\) On.
5. This instruction adopts pulse execution instructions (SFWRP)

\section*{Program Example:}
1. Pointer D 0 is reset as 0 . When \(\mathrm{XO}=\mathrm{Off} \rightarrow \mathrm{On}\), the content in D 20 will be sent to D 1 and the content in pointer D0 becomes 1. After the content in D20 is changed, make \(\mathrm{X0}=\mathrm{Off} \rightarrow\) On again, and the content in D 2 will be sent to D2 and the content in D0 becomes 2 .
2. The figure below illustrates the shift and writing in 1~2 execution of the instruction.
(1) The content in D20 is sent to D1.
(2) The content in pointer D0 becomes 1.


\section*{Remarks:}

This instruction can be used together with API 39 SFRD for the reading/writing of "first-in, first-out" stack data.
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\multicolumn{1}{c|}{ Function } \\
\hline 39 & & SFRD & P & S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & Y & KM & KnS & T & & C & D & E & & & \multicolumn{11}{|l|}{\multirow[t]{4}{*}{SFRD, SFRDP: 7 steps}} \\
\hline S & & & & & & & & & * & & * & * & * & & * & * & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & & * & * & * & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & & SX & SC & E SV & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\hline & \text { SV2 } \\
\hline
\end{array}
\]} & ES Ex & \multicolumn{2}{|l|}{EX} & S & S & \(\times\) SC & & EH & Sv & \begin{tabular}{|c} 
EH3 \\
SV2
\end{tabular} & ES & & SS & A S & Sx & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start No. of stack data
D: Device of stack data read out
\(\mathbf{n}\) : Length of stack data

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathbf{2 \sim 5 1 2}\)
2. See the specifications of each model for their range of use.
3. Flag: M1020 (zero flag)
4. The stack data of \(\mathbf{n}\) words starting from \(\mathbf{S}\) are defined as "first-in, first-out" stack data. After the content in \(\mathbf{S}\) minuses 1 , the content in the device designated by \((\mathbf{S}+1)\) will be written into the location designated by \(\mathbf{D}\), and \((\mathbf{S}+\mathbf{n - 1}) \sim(\mathbf{S}+2)\) will all right shift for one register while the content in \((\mathbf{S}+\mathbf{n}-1)\) remains the same. When the content in \(\mathbf{S}\) equals 0, this instruction will not process any new value read out and the zero flag M1020 \(=0 n\).
5. This instruction adopts pulse execution instructions (SFRDP)

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{Off} \rightarrow \mathrm{On}\), the content in D1 will be sent to D 21 and D9~D2 will shift to the right for 1 register (content in D9 remains unchanged) and the content in D0 minus 1.
2. The figure below illustrates the shift and reading in 1~3 execution of the instruction.
(1) The content in D1 is sent to D21.
(2) D9 ~ D2 shift to the right for 1 register.
(3) The content in D0 minuses 1.


\section*{Remarks:}

This instruction can be used together with API 38 SFWR for the reading/writing of "first-in, first-out" stack data.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{4}{|l|}{Mnemonic} & \multicolumn{6}{|c|}{Operands} & \multicolumn{19}{|c|}{Function} \\
\hline 40 & \multicolumn{2}{|l|}{ZRST} & & P & \multicolumn{5}{|r|}{( \(D_{1}\) ( \(D_{2}\)} & & \multicolumn{8}{|l|}{Zero Reset} & & & & & & & & & & & \\
\hline & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & Kn & & KnM & KnS & T & C & & D & E & F & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{ZRST, ZRSTP: 5 steps}} \\
\hline D & & * & * & * & * & & & & & & & & & & & * & & & & & & & & & & & & & \\
\hline D & & * & * & & * & & & & & & & & * & * & & * & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & \multicolumn{2}{|l|}{EH S} & SV & & ES Ex & Ss & SA & SX & SC & & EH & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(\mathbf{D}_{1}\) : Start device of the range to be reset \\ \(\mathbf{D}_{2}\) : End device of the range to be reset}

\section*{Explanations:}
1. No. of operand \(D_{1} \leq\) No. of operand \(D_{2}\).
2. \(\quad D_{1}\) and \(D_{2}\) have to designate devices of the same type.
3. ES/EX/SS series MPU does not support E, F index register modification.
4. See the specifications of each model for their range of use.
5. When the instruction is executed, area from \(\mathbf{D}_{1}\) to \(\mathbf{D}_{2}\) will be cleared.
6. In ES/EX/SS, 16-bit counter and 32-bit counter cannot use ZRST instruction together.
7. In SA/EH, 16-bit counter and 32-bit counter can use ZRST instruction together.
8. When \(D_{1}>D_{2}\), only operands designated by \(D_{2}\) will be reset.

\section*{Program Example:}
1. When X0 \(=\) On, auxiliary relays M300 ~ M399 will be reset to Off.
2. When \(\mathrm{X} 1=\mathrm{On}, 16\) counters \(\mathrm{C} 0 \sim \mathrm{C} 127\) will all be reset (writing in 0 ; contact and coil being reset to Off).
3. When \(\mathrm{X} 10=\) On, timers \(\mathrm{T} 0 \sim \mathrm{~T} 127\) will all be reset (writing in 0 ; contact and coil being reset to Off).
4. When \(\mathrm{X} 2=\mathrm{On}\), steps \(\mathrm{S} 0 \sim \mathrm{~S} 127\) will be reset to Off.
5. When \(\mathrm{X} 3=\mathrm{On}\), data registers \(\mathrm{DO} \sim \mathrm{D} 100\) will be reset to 0 .
6. When \(\mathrm{X} 4=\mathrm{On}, 32\)-bit counters \(\mathrm{C} 235 \sim \mathrm{C} 254\) will all be reset. (writing in 0 ; contact and coil being reset to Off)


\section*{Remarks:}
1. Devices, e.g. bit devices \(Y, M, S\) and word devices \(T, C, D\), can use RST instruction.
2. API 16 FMOV instruction is also to send KO to word devices \(\mathrm{T}, \mathrm{C}, \mathrm{D}\) or bit registers \(\mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}\) for reset.

\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & Operands & Function \\
\hline 41 & DECO & P & (S) D & Decode \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & DECO, DECOP: 7 steps \\
\hline S & * & * & * & * & * & * & & & & & * & * & * & * & * & \\
\hline D & & * & * & * & & & & & & & * & * & * & * & * & \\
\hline n & & & & & * & * & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device to be decoded
D: Device for storing the decoded result
\(\mathbf{n}\) : Length of decoded bits

\section*{Explanations:}
1. Range of \(\mathbf{n}\) when \(\mathbf{D}\) is a bit device: \(\mathbf{1 \sim 8}\)
2. Range of \(\mathbf{n}\) when \(\mathbf{D}\) is a word device: \(1 \sim 4\)
3. ES/EX/SS series MPU does not support E, F index register modification.
4. See the specifications of each model for their range of use
5. The lower " \(\mathbf{n}\) " bits of \(\mathbf{S}\) are decoded and the results of " \(2^{\mathbf{n} "}\) bits are stored in \(\mathbf{D}\).
6. This instruction adopts pulse execution instructions (DECOP)

\section*{Program Example 1:}
1. When \(\mathbf{D}\) is used as a bit device, \(\mathbf{n}=1 \sim 8\). Errors will occur if \(\mathbf{n}=0\) or \(\mathbf{n}>8\).
2. When \(\mathbf{n}=8\), the maximum points to decode is \(2^{8}=256\) points. (Please be aware of the storage range of the devices after the decoding and do not use the devices repeatedly.)
3. When \(\mathrm{X} 10=\mathrm{Off} \rightarrow \mathrm{On}\), this instruction will decode the content in \(\mathrm{X0} \sim \mathrm{X} 2\) to \(\mathrm{M} 100 \sim \mathrm{M} 107\).
4. When the source of data is \(1+2=3\), set M 103 , the \(3^{\text {rd }}\) bit starting from M 100 , as 1 .
5. After the execution of this instruction is completed and X10 turns to Off, the content that has been decoded and output keeps acting.
\begin{tabular}{|c|c|c|c|c|} 
X10 & DECOP & D10 & D20 & K3 \\
\hline
\end{tabular}


\section*{Program Example 2:}
1. When \(\mathbf{D}\) is used as a word device, \(\mathrm{n}=1 \sim 4\). Errors will occur if \(\mathrm{n}=0\) or \(\mathrm{n}>4\).
2. When \(\mathbf{n}=4\), the maximum points to decode is \(2^{4}=16\) points.
3. When \(\mathrm{X} 10=\mathrm{Off} \rightarrow\) On, this instruction will decode \(\mathrm{b} 2 \sim \mathrm{~b} 0\) in D10 to b7 \(\sim \mathrm{b} 0\) in D20. b15 ~b8 that have not been used in D20 will all become 0 .
4. The lower 3 bits of D10 are decoded and stored in the lower 8 bits of D20. The higher 8 bits of D20 are all 0 .
5. After the execution of this instruction is completed and X10 turns to Off, the content that has been decoded and output keeps acting.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & \multicolumn{2}{|l|}{DECOP} & & D10 & & & & & K3 & & & \\
\hline b1 & & & & \multicolumn{10}{|c|}{D10} & & b0 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\
\hline \multicolumn{16}{|r|}{all be 0 ( \(\nabla_{7}\)} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline \multicolumn{16}{|l|}{b15 D20 b0} \\
\hline
\end{tabular}
\begin{tabular}{|c||c|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \\
\hline 42 & & ENCO & P & S & D \\
\cline { 2 - 7 } & & \(n\) & Encode & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & ENCO, ENCOP: 7 steps \\
\hline S & * & * & * & * & & & & & & & * & * & * & * & * & \\
\hline D & & & & & & & & & & & * & * & * & * & * & \\
\hline n & & & & & * & * & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\mathrm{EH} 3
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device to be encoded
D: Device for storing the encoded result
n: Length of encoded bits

\section*{Explanations:}
1. Range of \(\mathbf{n}\) when \(\mathbf{S}\) is a bit device: \(1 \sim 8\)
2. Range of \(\mathbf{n}\) when \(\mathbf{S}\) is a word device: \(1 \sim 4\)
3. ES/EX/SS series MPU does not support E, F index register modification.
4. See the specifications of each model for their range of use.
5. The lower " \(2^{\mathbf{n} "}\) bits of \(\mathbf{S}\) are encoded and the result is stored in \(\mathbf{D}\).
6. If several bits of \(\mathbf{S}\) are 1, the first bit that is 1 will be processed orderly from high bit to low bit.
7. If no bits of S is \(1, \mathrm{M} 1067, \mathrm{M} 1068=\mathrm{On}\) and D1067 records the error code 0E1A (hex).
8. This instruction adopts pulse execution instructions (ENCOP)

\section*{Program Example 1:}
1. When \(\mathbf{S}\) is used as a bit device, \(\mathbf{n}=1 \sim 8\). Errors will occur if \(\mathbf{n}=0\) or \(\mathbf{n}>8\).
2. When \(\mathbf{n}=8\), the maximum points to encode is \(2^{8}=256\) points.
3. When \(\mathrm{X} 10=\mathrm{Off} \rightarrow \mathrm{On}\), this instruction will encode the \(2^{3}\) bits data ( \(\mathrm{M} 0 \sim \mathrm{M} 7\) ) and store the result in the lower 3 bits \((b 2 \sim b 0)\) of \(D 0 . b 15 \sim b 3\) that have not been used in D0 will all become 0 .
4. After the execution of this instruction is completed and X 10 turns to Off , the content in D remains unchanged.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c}{ M7 } & \multicolumn{1}{c}{ M6 } & \multicolumn{1}{c}{ M5 } & \multicolumn{2}{c}{ M4 } & \multicolumn{2}{c}{ M3 } & \multicolumn{2}{c}{ M2 } & \multicolumn{2}{c}{ M1 } & \multicolumn{1}{c}{ M0 } \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
\end{tabular}


\section*{Program Example 2:}
1. When \(\mathbf{S}\) is used as a word device, \(\mathrm{n}=1 \sim 4\). Errors will occur if \(\mathrm{n}=0\) or \(\mathrm{n}>4\).
2. When \(\mathbf{n}=4\), the maximum points to decode is \(2^{4}=16\) points.
3. When \(\mathrm{X} 10=\mathrm{Off} \rightarrow\) On, this instruction will encode \(2^{3}\) bits \((\mathrm{bO} \sim \mathrm{b} 7)\) in D 10 and stores the result in the lower 3 bits (b2 ~ b0) of D20. b15 ~ b3 that have not been used in D20 will all become 0. b8 ~b15 of D10 are invalid data.
4. After the execution of this instruction is completed and X10 turns to Off, the content in D remains unchanged.
\begin{tabular}{|c|l|l|l|l|} 
X0 & ENCOP & D10 & D20 & K3 \\
\hline
\end{tabular}

Invalid data

\begin{tabular}{|c||c|c|c|ll|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & & KnM & KnS & T & C & & D & E & F & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{SUM, SUMP: 5 steps DSUM, DSUMP: 9 steps}} \\
\hline S & & & & & & * & * & * & * & & * & * & * & & & * & * & & & & & & & & & & & & \\
\hline D & & & & & & & & & * & & * & * & * & * & & * & * & * & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH S & SV & \[
\begin{array}{|l}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & & & E & SV & EH3 & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device
D: Destination device for storing counted value

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. Flag: M1020 (zero flag)
4. Among the bits of \(\mathbf{S}\), the total of bits whose content is " 1 " will be stored in \(\mathbf{D}\).
5. When all the 16 bits of \(\mathbf{S}\) are " 0 ", zero flag M1020 \(=\) On.
6. When 32- instruction is in use, D will occupy 2 registers.

\section*{Program Example:}

When \(\mathrm{X} 10=\) On, among the 16 bits of D0, the total of bits whose content is " 1 " will be stored in D2.

\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ MPI } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
Function \\
\hline 44 & D & BON & P & S D D & ( \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & KnY & & KnM & Kns & T & & C & D & E & F & & \multicolumn{11}{|l|}{\multirow[t]{4}{*}{BON, BONP: 7 steps DBON, DBONP: 13 steps}} \\
\hline S & & & & & & * & * & * & * & & * & * & * & & * & * & * & & & & & & & & & & & & & \\
\hline D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & * & & * & * & * & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|r|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV \({ }_{\text {E }}\) & \[
\begin{array}{|l|l}
\text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & & S & & x Sc & & EH & \multicolumn{2}{|l|}{\[
\begin{array}{l|l|}
\hline \text { SVH3 } \\
\text { SV2 }
\end{array}
\]} & ES Ex & & SS & SA & SX & \multicolumn{2}{|l|}{SC EH} & \multicolumn{2}{|l|}{\[
\begin{array}{|c|c|c|}
\hline \text { EH3 } \\
\hline \text { SV2 } \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device
D: Device for storing check result
\(\mathbf{n}\) : Bits specified for check

\section*{Explanations:}
1. If \(S\) is used in device \(F\), only 16-bit instruction is applicable.
2. Range of \(\mathbf{n}: 0 \sim 15\) (16-bit instruction); \(0 \sim 31\) (32-bit instruction)
3. See the specifications of each model for their range of use.
4. When the \(\mathbf{n}^{\text {th }}\) bit of \(\mathbf{S}\) is " 1 ", \(\mathrm{D}=\mathrm{On}\); when the \(\mathbf{n}^{\text {th }}\) bit of \(\mathbf{S}\) is " 0 ", \(\mathrm{D}=\mathrm{Off}\).

\section*{Program Example:}
1. When \(X 0=O n\), assume the \(15^{\text {th }}\) bit of \(D 0\) is " 1 ", and \(M O=O n\). Assume the \(15^{\text {th }}\) bit of \(D 0\) is " 0 ", and \(M 0=O f f\).
2. When XO goes Off, MO will remains in its previous status.
\begin{tabular}{|l|l|l|l|l|}
\hline XO & BON & DO & MO & K15 \\
\hline
\end{tabular}


\begin{tabular}{|c||c|c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & MEAN, MEANP: 7 steps \\
\hline S & & & & & & & * & * & * & * & * & * & * & & & ps \\
\hline D & & & & & & & & * & * & * & * & * & * & * & * & MEAN, DMEANP. 13 steps \\
\hline n & & & & & * & * & * & * & * & * & * & * & * & * & * & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|c|c|}
\mathrm{EH} 3 \\
\mathrm{Sy} 2
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device to obtain mean value
D: Destination device for storing mean value
\(\mathbf{n}\) : The number of consecutive source devices used

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device F , only 16 -bit instruction is applicable.
2. Range of \(\mathbf{n}: 1 \sim 64\)
3. In ES/EX/SS series models: Operand \(S\) cannot designate \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}, \mathrm{KnS}\).
4. ES/EX/SS series MPU does not support E, F index register modification.
5. See the specifications of each model for their range of use.
6. After the content of \(\mathbf{n}\) devices starting from \(\mathbf{S}\) are added up, the mean value of the result will be stored in \(\mathbf{D}\).
7. Remainders in the operation will be left out.
8. Provided the No. of designated device exceeds its normal range, only the No. within the normal range can be processed.
9. If \(\mathbf{n}\) falls without the range of \(1 \sim 64\), PLC will determine it as an "instruction operation error".

\section*{Program Example:}

When \(\mathrm{X} 10=\) On, the contents in \(3(\mathrm{n}=3)\) registers starting from D 0 will be summed and then divided by 3 . The obtained mean value will be stored in D10 and the remainder will be left out.

\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 46 & ANS & (S m D & Timed Annunciator Set \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & & H & Kn & & KnY & Kn & & Kn & & T & C & D & E & F & \multicolumn{9}{|l|}{ANS: 7 steps} \\
\hline S & & & & & & & & & & & & & & & & & * & & & & & & & & & & & & & \\
\hline m & & & & & & & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & & SS & SA & & S & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & S & S & S & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Timer for monitoring annunciator
m: Time setting
D: Annunciator device

\section*{Explanations:}
1. Range of S: for SA/SX/SC T0 ~ T191; for EH/EH2/SV/EH3/SV2 T0 ~T199.
2. \(\quad \mathbf{m}\) can designate \(\mathrm{K} 1 \sim \mathrm{~K} 32,767\) (unit: 100ms)
3. Range of D: for SA/SX/SC S896 ~ S1023; for EH/EH2/SV/EH3/SV2 S900 ~ S1023.
4. See the specifications of each model for their range of use.
5. Flags: M1048 (annunciator in action); M1049 (valid monitoring)
6. This instruction is used for enabling the annunciator.

\section*{Program Example:}

If X3 = On for more than 5 seconds, annuniciator point \(\mathrm{S} 999=\) On. Even X3 goes Off afterwards, S 999 will still keep On. However, T10 will be reset to Off and the present value \(=0\).
\begin{tabular}{|l|l|l|l|l|}
\hline X3 \\
\hline \(1 ト\) & ANS & T10 & K50 & S999 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|l|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \\
\hline 47 & & ANR & P & \\
Annunciator Reset & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline OP & Descriptions & Program Steps \\
\hline N/A & & ANR, ANRP: 1 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] \\
\hline
\end{tabular}

\section*{Explanations:}
1. No operand.
2. This instruction is used for resetting the annunciator.
3. When more than one annuciators are On, the annunciator of smaller number will be reset.
4. This instruction adopts pulse execution instructions (ANRP)

\section*{Program Example:}
1. If X 10 and \(\mathrm{X} 11=\mathrm{On}\) at the same time for more than 2 seconds, annuniciator point \(\mathrm{S} 910=\mathrm{On}\). Even X 10 and X11 go Off afterwards, S 910 will still keep On. However, T10 will be reset to Off and the present value \(=0\).
2. When X 10 and X 11 are On at the same time for less than 2 seconds, the present value of T 10 will be reset to 0 .
3. When X 3 goes from Off to On,

S896 ~ S1023 in SA/SXISX are able to reset the annunciators in action.
S900 ~ S1023 in EH/EH2/ SV/EH3/SV2 are able to reset the annunciators in action.
4. When X3 goes from Off to On again, the annunciator with secondary smaller No. will be reset.


\section*{Remarks:}
1. Flag:
a) M1048 (annunciator in action): When M1049 = On, any of the annunciators among S896~S1023 in SA/SX/SC or S900 ~ S1023 in EH/EH2/SV/EH3/SV2 starts output, M1048 will be On.
b) M1049 (valid monitoring): When M1049 = On, D1049 will automatically display the annuciator of the smallest number in action.
2. Application of annunciators:

I/O point configuration:

X0: Forward switch
X1: Backward switch
X2: Front position switch
X3: Back position switch
X4: Annunciatro reset button

Y0: Forward
Y1: Backward
Y2: Annunciator indicator

S910: Forward annunciator
S920: Backward annunciator

(1) M1048 and D1049 are valid only when M1049 = On.
(2) When \(\mathrm{YO}=\mathrm{On}\) for more than 10 seconds and the device fails to reach the frong position \(\mathrm{X} 2, \mathrm{~S} 910=\mathrm{On}\).
(3) When Y1 = On for more than 10 seconds and the device fails to reach the back position \(\mathrm{X} 3, \mathrm{~S} 920=\mathrm{On}\).
(4) When backward switch \(\mathrm{X} 1=\) On and backward device \(\mathrm{Y} 1=\mathrm{On}, \mathrm{Y} 1\) will go Off only when the device reaches the back position switch X3.
(5) Y2 will be On when any annunciator is enabled. Whenever X 4 is on, 1 annunciator in action will be reset. The reset starts from the annunciator with the smallest No.
\begin{tabular}{|c||c|c|c|cc|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
\hline 48 & D & SQR & P & S & D
\end{tabular} Square Root \(\quad\) Function
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & KnY & & KnM & KnS & T & C & & D & E & F & \multicolumn{11}{|l|}{\multirow[t]{3}{*}{SQR, SQRP: 5 steps DSQR, DSQRP: 9 steps}} \\
\hline S & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & \multicolumn{2}{|l|}{SX SC} & EH S & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\hline \mathrm{VH} & \mathrm{EH} \\
\text { SV2 }
\end{array}
\]} & & EX & SS & SA & A & SC & EH & SV & EH3
SV2 & Es & EX & SS & SA & SX & & EH & \multicolumn{2}{|l|}{\[
\begin{array}{c|c}
\hline \mathrm{EH} 3 \\
\mathrm{sV} \\
\mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device
D: Device for storing the result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1067 (instruction operation error)
3. This instruction performs a square root operation on \(\mathbf{S}\) and stores the result in \(\mathbf{D}\).
4. \(\mathbf{S}\) can only be a positive value. If \(\mathbf{S}\) is negative, PLC will regard it as an "instruction operation error" and will not execute this instruction. M1067 and M1068 = On and D1067 records the error code 0E1B (hex).
5. The operation result D should be integer only, and the decimal will be left out. Borrow flag M1021 = On.
6. When the operation result \(\mathbf{D}=0\), zero flag M1020 \(=\) On.

\section*{Program Example:}

When X10 = On, the instruction performs a square root on D0 and stores the result in D12.
\begin{tabular}{|l|l|l|l|}
\hline X 10 & SQR & D0 & D12 \\
\hline
\end{tabular}
\[
\sqrt{\mathrm{D} 0} \rightarrow \mathrm{D} 12
\]
\begin{tabular}{|c||c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & Function \\
\hline \multicolumn{2}{|c|}{} & D & FLT & P \\
& S & D & Convert BIN integer to binary floating point \\
\hline
\end{tabular}


\section*{Operands:}
S: Source device for conversion
D: Device for storing the conversion result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1081 (FLT instruction function switch); M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. D will occupy 2 consecutive devices
4. When M1081 is Off, BIN integer is converted into binary floating point value. At this time, S of the 16-bit instruction, FLT, occupies 1 register and D occupies 2 registers.
a) If the absolute value of the conversion result \(>\) max. floating value, carry flag M1022 \(=\) On.
b) If the absolute value of the conversion result \(<\min\). floating value, carry flag M1021 \(=\) On.
c) If the conversion result is 0 , zero flag M1020 \(=\) On.
5. When M1081 is On, binary floating point value is converted into BIN integer (digits after decimal point are left out). At this time, \(\mathbf{S}\) of the 16 -bit instruction, FLT, occupies 2 registers and D occupies 1 register (action same as that of INT instruction).
a) If the conversion result exceeds the range of BIN integer available in \(\mathbf{D}\) (for 16-bit: -32,768 \(\sim 32,767\); for 32-bit: \(-2,147,483,648 \sim 2,147,483,647\) ), D will obtain the maximum or minimum value and carry flag M1022 \(=\) On.
b) If any digits is left out during the conversion, borrow flag M1021 \(=\) On.
c) If \(\mathbf{S}=0\), zero flag M1020 \(=\) On.
d) After the conversion, \(\mathbf{D}\) stores the result in 16 bits.

\section*{Program Example 1:}
1. When M1081 = Off, the BIN integer is converted into binary floating point value.
2. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{D} 0(\mathrm{BIN}\) integer) is converted into D13 and D12 (binary floating point value).
3. When X11 = On, D1 and D0 (BIN integer) are converted into D21 and D20 (binary floating point value).
4. If \(\mathrm{D} 0=\mathrm{K} 10, \mathrm{X} 10\) will be On. The 32-bit value of the converted floating point will be H 41200000 and stored in 32-bit register D12 (D13).
5. If 32-bit register \(D 0(D 1)=K 100,000, X 11\) will be On. The 32-bit value of the converted floating point will be H47C35000 and stored in 32-bit register D20 (D21).


\section*{Program Example 2:}
1. When M1081 = On, the binary floating point value is converted into BIN integer (the decimal is left out).
2. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{D} 0\) and D1 (binary floating point value) are converted into D12 \((\mathrm{BIN}\) integer). If D0 \((\mathrm{D} 1)=\) H47C35000, the floating point value will be presented as 100,000. Due to that the value is larger than the value presentable by the 16-bit register D12, the result will be D12 \(=\mathrm{K} 32,767\) and \(\mathrm{M} 1022=\mathrm{On}\).
3. When \(\mathrm{X} 11=\mathrm{On}, \mathrm{D} 1\) and D0 (binary floating point value) are converted into D21 and D20 (BIN integer). If D0 (D1) \(=\mathrm{H} 47 \mathrm{C} 35000\), the floating point value will be presented as 100,000 . The result will be stored in the 32 -bit register D20 (D21).


\section*{Program Example 3:}

Please use this instruction to complete the following operation.


(1) D10 (BIN integer) is converted to D101 and D102 (binary floating point value).
(2) X 7 ~ X0 (BCD value) are converted to D200 (BIN value).
(3) D200 (BIN integer) is converted to D203 and D202 (binary floating point value).

4The result of K615 \(\div\) K10 is stored in D301 and D300 (binary floating point value).
(5) The result of binary decimal division (D101, D100) \(\div(\) D203, D202) is stored in D401 and D400 (binary floating point value).
(6) The result of binary decimal multiplication (D401, D400) \(\times(\mathrm{D} 301, \mathrm{D} 300)\) is stored in D21 and D20 (binary floating point value).
(7) D21 and D20 (binary floating point value) are converted to D31 and D30 (decimal floating point value).
(8) D21 and D20 (binary floating point value) are converted to D41 and D40 (BIN integer).


\section*{Operands:}

\section*{D: Start device to be I/O refreshed \\ \(\mathbf{n}\) : Number of items to be I/O refreshed}

\section*{Explanations:}
1. D must designate \(\mathrm{X} 0, \mathrm{X} 10, \mathrm{Y} 0, \mathrm{Y} 10\)...the points whose 1 s digit is " 0 ". See remarks for more details.
2. Range of \(\mathbf{n}: 8 \sim 256\) (has to be the multiple of 8 ).
3. See the specifications of each model for their range of use.
4. The status of all PLC input/output terminals will be updated after the program scans to END. When the program starts to scan, the status of the external input terminal is read and stored into the memory of the input point. The output terminal will send the content in the output memory to the output device after END instruction is executed. Therefore, this instruction is applicable when the latest input/output data are needed for the operation.
5. D has to be designated to be \(X 0, X 10, Y 0, Y 10 \ldots\) such forms whose \(1^{\text {st }}\) digit is " 0 ". Range of \(\mathbf{n}\) : \(8 \sim 256\) (must be 8's multiple); otherwise it will be regarded as an error. The range varies in different models. See Remarks for more details.

\section*{Program Example 1:}

When \(\mathrm{X0} 0=\mathrm{On}, \mathrm{PLC}\) will read the status of input points \(\mathrm{X0} \sim \mathrm{X} 17\) immediately and refresh the input signals without any input delay.
\begin{tabular}{|l|l|l|l|}
\hline \(\mathrm{X0}\) \\
\hline RH & REF & \(\mathrm{X0}\) & K 16 \\
\hline
\end{tabular}

\section*{Program Example 2:}

When \(\mathrm{X0} 0=\mathrm{On}\), the 8 output signal from \(\mathrm{YO} \sim \mathrm{Y} 7\) will be sent to output terminals and refreshed without having to wait for the END instruction for output.


\section*{Remarks:}

The instruction only process the I/O points X0 ~ X17 and Y0 ~ Y17 of ES/EX/SS/SA/SX/SC series MPU, namely \(\mathbf{n}=\) K 8 or \(\mathbf{n}=\mathrm{K} 16\).
\begin{tabular}{|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 51 & & REFF & P & n & Refresh and Filter Adjust \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{10}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & KnY & & KnM & KnS & T & & C & D & E & & & \multicolumn{10}{|l|}{REFF, REFFP: 3 steps} \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{8}{|r|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & , & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & \multicolumn{5}{|l|}{ES EX SS} & & & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & S & Sx & SC & EH & SV & \[
\mathrm{H} 3
\] \\
\hline
\end{tabular}

\section*{Operands:}
n: Response time (unit: ms)

\section*{Explanation:}
1. Range of \(\mathbf{n}\) : for \(S A / S X / S C, \mathbf{n}=K 0 \sim K 20\); for \(E H / E H 2 / S V / E H 3 / S V 2, \mathbf{n}=K 0 \sim K 60\).
2. To avoid interferences, \(X 0 \sim X 17\) of EH/EH2/SV/EH3/SV2 series MPU and X0 \(\sim\) X7 of SA/SXISC series MPU are equipped with digital filters on output terminals. Digital filters adjust the response time by REFF instruction. This instruction sets up \(\mathbf{n}\) directly in D1020 (adjusting the response time of X0 ~ X7) and D1021 (adjusting the response time of X10 ~ X17).
3. Rules for adjusting the reponse time of the filter at \(\mathrm{X0} \sim \mathrm{X} 17\) :
a) When the power of PLC turns from Off to On or the END instruction is being executed, the response time will be determined upon the contents in D1020 and D1021.
b) You can use MOV instruction in the program to move the time values to D1020 and D1021 and make adjustments in the next scan.
c) You can use REFF instruction to change the response time during the execution of the program. The changed response time will be move to D1020 and D1021 and you can make adjustments in the next scan.

\section*{Program Example:}
1. When the power of PLC turns from Off to On, the response time of X0 ~ X17 will be determined by the contents in D1020 and D1021.
2. When \(\mathrm{X} 20=\mathrm{On}, \mathrm{REFF} \mathrm{K} 5\) will be executed and the response time will be changed to 5 ms for the adjustment in the next scan.
3. When \(\mathrm{X} 20=\) Off, the REFF K20 will be executed and the response time will be changed to 20 ms for the adjustment in the next scan.


\section*{Remarks:}

When inserting an interruption subroutine in the program or using the high speed counter or API 56 SPD instruction, the corresponding signals at the input terminals will not delay and has nothing to do with this instruction.
\begin{tabular}{|c|c|c|ll|}
\hline API & Mnemonic & Operands & & Function \\
\hline 52 & MTR & S \(D_{1}\left(D_{2}\right)(n\) & Input Matrix & \\
\hline
\end{tabular}


\section*{Operands:}

S: Start device of matrix input \(\quad \mathbf{D}_{1}\) : Start device of matrix output \(\quad \mathbf{D}_{2}\) : Corresponding start device for matrix scan
n: Number of arrays in matrix scan

\section*{Explanations:}
1. S must designate \(X 0, X 10\)...the \(X\) points whose 1 st digit is " 0 " and occupies 8 consecutive points.
2. \(D_{1}\) must designate \(Y 0, Y 10 \ldots\) the \(Y\) points whose 1 st digit is " 0 " and occupies \(n\) consecutive points.
3. \(D_{2}\) must designate \(Y 0, M 0\). SO...the \(Y, M, S\) points whose 1st digit is " 0 ".
4. Range of \(\mathbf{n}: 2 \sim 8\).
5. See the specifications of each model for their range of use.
6. Flag: M1029 (execution of the instruction is completed).
7. \(\mathbf{S}\) is the start device No. of all input terminals connected to the matrix. Once \(\mathbf{S}\) is designated, the 8 points following the No. will be the input terminals in the matrix.
8. \(\quad D_{1}\) designate the start device No. of transistor output \(Y\) in the matrix scan.
9. This instruction occupies continuous 8 input devices starting from \(\mathbf{S}\). \(\mathbf{n}\) external output terminals starting from \(\mathbf{D}_{\mathbf{1}}\) read the 8 switches of \(\mathbf{n}\) arrays by matrix scan, obtaining \(8 \times \mathbf{n}\) multiple-matrix input points. The status of scanned switches will be stored in the devices starting from \(\mathbf{D}_{2}\).
10. Maximum 8 input switches can be parallelly connected in 8 arrays and obtaining 64 input points \((8 \times 8=64)\).
11. When the 8 -point 8 -array matrix inputs are in use, the reading time of each array is approximately 25 ms , totaling the reading of 8 arrays 200 ms , i.e. the input signals with On/Off speed of over 200 ms are not applicable in a matrix input.
12. The drive contact of this instruction uses normally On contact M1000.
13. Whenever this instruction finishes a matrix scan, M1029 will be On for one scan period.
14. There is no limitation on the number of times using the instruction, but only one instruction can be executed in a period of time.

\section*{Program Example:}
1. When PLC RUN, MRT instruction will start to be executed. The statuses of the external 2 arrays of 16 switches will be read in order and stored in the internal relays M10~M17, M20~M27.
\begin{tabular}{|c|l|l|l|l|l|} 
M1000 & \multicolumn{4}{|c|}{} \\
\cline { 1 - 3 } & MTR & X40 & Y40 & M10 & K2 \\
\hline
\end{tabular}
2. The figure below illustrates the external wiring of the 2-array matrix input loop constructed by \(\mathrm{X} 40 \sim \mathrm{X} 47\) and Y40 ~ Y41. The 16 switches correponds to the internal relays M10~M17, M20~M27. Should be used with MTR instruction.

3. See the figure above. The 8 points starting from \(X 40\) start to perform a matrix scan from \(\mathrm{Y} 40 \sim \mathrm{Y} 41(\mathrm{n}=2) . \mathbf{D}_{\mathbf{2}}\) designates that the start device No. of the read results is M10, indicating that the first array is read to M10 ~ M17 and the second array is read to M20 ~ M27.


Processing time of each array: approx. 25 ms


\section*{Operands:}
\(\mathbf{S}_{1}\) : Comparative value \(\quad \mathbf{S}_{2}\) : No. of high speed counter \(\quad \mathbf{D}\) : Comparison result

\section*{Explanations:}
1. \(\quad \mathbf{S}_{\mathbf{2}}\) has to designate the No. of high speed counters C235~C255. See remarks for more details.
2. \(\quad \mathbf{D}\) can designate \(I 0 \square 0 ; \square=1 \sim 6\). ES series MPU does not support this.
3. D of ES and SA series MPU does not support E, F index register modification.
4. See the specifications of each model for their range of use.
5. Flags: M1289 ~ M1294 are interruption disability of the high speed counters in EH/EH2/SV/EH3/SV2 series MPU. See Program Example 3 for more details.
6. The high speed counter inputs counting pulses from the corresponding external input terminals X0 ~ X17 by inserting an interruption. When the high speed counter designated in \(\mathbf{S}_{2}\) pluses 1 or minuses 1, DHSCS instruction will perform a comparison immediately. When the present value in the high speed counter equals the comparative value designated in \(\mathbf{S}_{1}\), device designated in \(\mathbf{D}\) will turn On. Even the afterward comparison results are unequal, the device will still be On.
7. If the devices specified as the device \(\mathbf{D}\) are \(\mathrm{Y} 0 \sim Y 17\), when the compare value and the present value of the high-speed counter are equal, the comparison result will immediately output to the external inputs Y0 ~ Y17, and other \(Y\) devices will be affected by the scan cycle. However, \(M, S\) devices are immediate output and will not be affected by the scan cycle.

\section*{Program Example 1:}

After PLC RUN and M0 = On, DHSCS instruction will be executed. When the present value in C235 changes from 99 to 100 or 101 to 100, Y10 will be On constantly.


\section*{Program Example 2:}

Differences between Y output of DHSCS instruction and general \(Y\) output:
a) When the present value in C249 changes from 99 to 100 or 101 to 100 , Y10 outputs immediately to the external output point by interruption and has nothing to do with the PLC scan time. However, the time will still be delayed by the relay ( 10 ms ) or transistor (10us) of the output module.
b) When the present value in C249 changes from 99 to 100 , the drive contact of C 249 will be On immediately. When the execution arrives at SET Y17, Y17 will still be affected by the scan time and will output after END instruction.


\section*{Program Example 3:}
1. High speed counter interruption:
a) Operand D of DHSCS instruction can designate \(10 \square 0, \square=1 \sim 6\), as the timing of interruption when the counting reaches its target.
b) ES/EXISS series MPU does not support high speed counter interruption.
c) SA/SXISC series MPU supports high speed counter interruption. However, when DHSCS instruction designates an I interruption, the designated high speed counter cannot be used in DHSCS, DHSCR, DHSZ instructions. Misuse of high speed counter will result in error.
d) For SA/SXISC series MPU, when the counting reaches the target, the interruption will occur. X0 is the counter for counting input and the interruption No. is 1010 (1 phase 2 inputs and A-B phase counter No. C246 ~ C254 can only designate I010). X1 designates I020; X2 designates I030; X3 designates IO40; X4 designates I050; X5 designates I060, totaling 6 points.
e) When the present value in C251 changes from 99 to 100 or 101 to 100 , the program will jump to 1010 and execute the interruption service subroutine.

2. In SA/SXISC series MPU, M1059 is "IO10 ~ I060 high speed counter interruption forbidden" flag.
3. In EH/EH2/SV/EH3/SV2 series MPU, M1289 ~ M1294 are the respectively for I010 ~ I 060 "high speed counter interruption forbidden flags", i.e. when M1294 = On, I060 interruption will be forbidden.
\begin{tabular}{|c|c|}
\hline Interruption pointer I No. & Interruption forbidden flag \\
\hline 1010 & M1289 \\
\hline 1020 & M1290 \\
\hline 1030 & M1291 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Interruption pointer I No. & Interruption forbidden flag \\
\hline 1040 & M1292 \\
\hline 1050 & M1293 \\
\hline 1060 & M1294 \\
\hline
\end{tabular}

\section*{Remarks:}
1. The output contact of the high speed counter and the comparative outputs of API 53 DHSCS, API 34 DHSCR and API 55 DHSZ instructions only perform comparison and contact outputs when there is a counting input. When using data operation instructions, e.g. DADD, DMOV, for changing the present value in the high speed counter or making the present value equals the set value, there will not be comparisons or comparative outputs because there is no counting inputs.
2. High speed counters supported by ES/EX/SS series MPU (total bandwidth: 20kHz):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{7}{|c|}{1-phase 1 input} & \multicolumn{3}{|l|}{1-phase 2 inputs} & \multicolumn{3}{|l|}{2-phase 2 inputs} \\
\hline Input & C235 & C236 & C237 & C238 & C241 & C242 & C244 & C246 & C247 & C249 & C251 & C252 & C254 \\
\hline X0 & U/D & & & & U/D & & U/D & U & U & U & A & A & A \\
\hline X1 & & U/D & & & R & & R & D & D & D & B & B & B \\
\hline X2 & & & U/D & & & U/D & & & R & R & & R & R \\
\hline X3 & & & & U/D & & R & S & & & S & & & S \\
\hline
\end{tabular}

U: Progressively increasing input
A: A phase input
S: Input started
D: Progressively decreasing input
B: B phase input
R: Input cleared
a) Input points \(\mathrm{X0} 0\) and X 1 can be planned as counters of higher speed (1 phase input can reach 20kHz). However, the total counting frequency of the two input points has to be smaller or equal 20 kHz . Provided the input is a 2-phas input signal, the counting frequency will be approximately 4 kHz . The frequency of the input points X 2 and X 3 (1-phase) can reach 10 kHz .
b) For ES/EX/SS series MPU, the uses of DHSCS instructio with DHSCR instruction cannot be more than 4 times.
3. High speed counters supported by SA/SX series MPU (total bandwidth: 40kHz):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{9}{|c|}{1-phase 1 input} & \multicolumn{3}{|l|}{1-phase 2 inputs} & \multicolumn{4}{|c|}{2-phase 2 inputs} \\
\hline Input & C235 & C236 & C237 & C238 & C239 & C240 & C241 & C242 & C244 & C246 & C247 & C249 & C251 & C252 & C253 & C254 \\
\hline X0 & U/D & & & & & & U/D & & U/D & U & U & U & A & A & B & A \\
\hline X1 & & U/D & & & & & R & & R & D & D & D & B & B & A & B \\
\hline X2 & & & U/D & & & & & U/D & & & R & R & & R & & R \\
\hline X3 & & & & U/D & & & & R & S & & & S & & & & S \\
\hline X4 & & & & & U/D & & & & & & & & & & & \\
\hline X5 & & & & & & U/D & & & & & & & & & & \\
\hline
\end{tabular}
U: Progressively increasing input
A: A phase input
S: Input started
D: Progressively decreasing input
B: B phase input
R: Input cleared
a) Input points X 0 and X 1 for 1-phase input can reach a frequency of 20 kHz and \(\mathrm{X} 2 \sim \mathrm{X} 5\) can reach 10 kHz . 2-phase input (X0, X1) C251, C252 and C254 can reach a frequency of 4 kHz and C 253 reach 4 kHz (only supports 4 times frequency counting).
b) Functions of the input point X 5 :
i) When M1260 = Off, C240 is the general U/D high speed counuter.
ii) When M1260 = On and C240 is enabled by DCNT instruction, X5 will be the shared reset signal for C235 ~ C239. The counter C240 will still receive the counting input signals from X5.
4. High speed counters supported by SC series MPU (total bandwidth: 130 kHz ):
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{11}{|c|}{1-phase 1 input} & \multicolumn{4}{|c|}{1-phase 2 inputs} & \multicolumn{4}{|c|}{2-phase inputs} \\
\hline Input & C235 & C236 & C237 & C238 & C239 & C240 & C241 & C242 & C243 & C244 & C245 & C246 & C247 & C249 & C250 & C251 & C252 & C254 & C255 \\
\hline X0 & U/D & & & & & & U/D & & & U/D & & U & U & U & & A & A & A & \\
\hline X1 & & U/D & & & & & R & & & R & & D & D & D & & B & B & B & \\
\hline X2 & & & U/D & & & & & U/D & & & & & R & R & & & R & R & \\
\hline X3 & & & & U/D & & & & R & & S & & & & S & & & & S & \\
\hline X4 & & & & & U/D & & & & & & & & & & & & & & \\
\hline X5 & & & & & & U/D & & & & & & & & & & & & & \\
\hline X10 & & & & & & & & & U/D & & & & & & U & & & & A \\
\hline X11 & & & & & & & & & & & U/D & & & & D & & & & B \\
\hline
\end{tabular}
U : Progressively increasing input
A: A phase input
S: Input started
D: Progressively decreasing input
B: B phase input
R: Input cleared
a) The functions of the high speed counters of input points \(X 0 \sim X 5\) are the same of those in SA/SX series MPU.
b) The input points of 1-phase input X 10 (C243), X11 (C245) and (X10, X11) C250 can reach a frequency of 100 kHz . The total bandwidth of X10 ~ X11 is 130 kHz . C255 of the 2-phase input (X10, X11) can reach a frequency of 50 kHz .
c) For SA/SXISC series MPU, the uses of DHSCS instruction with DHSCR instruction cannot be more than 6 times and the uses of DHSZ instruction cannot be more than 6 times as well. When DHSCR instruction designates I interruption, the designated high speed counter cannot be used in other DHSCS, DHSCR and DHSZ instructions.
d) The functions of X10 \(\sim\) X11 high speed counters in SC series MPU:
i) When X 10 and X 11 are set as 1-phase 1 input or 1-phase 2 inputs. The maximum frequency of a single phase can reach 100 kHz . When they are set as 2 -phase 2 inputs, the maximum frequency can reach 50 kHz .
ii) X 10 and X 11 can select rising-edge counting mode or falling-edge counting mode. X 10 is set by D1166 and X11 is set by D1167. K0: rising-edge counting. K1: falling-edge counting. K2: rising/falling edge counting (only supports X10).
iii) The counting up and down of C243 are determined by the On/Off of M1243. The counting up and down of C245 are determined by the On/Off of M1245. Rising-edge and falling-edge counting are not able to take place at the same time. The rising-edge trigger and falling-edge trigger of C250 are determined by the content (K0 or K1) of D1166. C255 can only be used in a 4 times frequency counting and you can only select rising-edge trigger.
iv) When C243 or C245 is in use, you will not be able to use C250 or C255, and vice versa.
v) High speed counter and high speed comparator:

vi) Explanations on high speed counter and high speed comparator:
(1) When DHSCS and DHSCR instructions use the high speed counter (C243/C245/C250/C255), they can only use the set values of 2 groups of high speed comparative instructions. Assume that a group of comparative instruction DHSCS D0 C243 Y10 is already in use, you can only set another group DHSCR D2 C243 Y10 or DHSCS D4 C245 Y10.
(2) When DHSZ instruction use the high speed counter (C243/C245/C250/C255), it can only use the set value of a group of comparators.
(3) The number of set values in a high-speed comparative instruction offered in SA/SX series MPU will not decrease becasus of the addition of the new high speed counters.
(4) If the high-speed comparative instruction DHSCS requires a high-speed reponse output, it is suggested that you use Y10 or Y11 for the output. If you use other general devices for the output, there will be delay of 1 scan period. For example, when in IOx0 interruption, C234 will correspond to IO20, C245 to IO40 and C250/C255 to IO60.
(5) The high-speed comparative instruction DHSCR can clear output devices and counter devices, but only the counters used by the same instruction, e.g. DHSCR K10 C243 C243. This function can only applied in the four special high speed counters C243, C245, C250 and C255.
e) Counting modes:
i) The 2-phase 2 inputs counting mode of the high speed counters in ES/EXISS (V5.5 and above) and SA/SXISC series MPU is set by special D1022 with normal frequency, double frequency and 4 times frequency modes. The contents in D1022 will be loaded in in the first scan when PLC is switched from STOP to RUN.
\begin{tabular}{|l|l|}
\hline Device No. & Function \\
\hline D1022 & Setting up the multiplied frequency of the counter \\
\hline D1022 \(=\) K1 & Normal frequency mode selected \\
\hline D1022 \(=\) K2 or 0 & Double frequency mode selected (default) \\
\hline D1022 \(=\) K4 & 4 times frequency mode selected \\
\hline
\end{tabular}
ii) Multiplied frequency mode ( \(\uparrow \downarrow\) indicates the occurrence of counting)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Counting mode} & Counting wave pattern \\
\hline \multirow{3}{*}{sındu! 乙 əseud-乙} &  &  \\
\hline &  &  \\
\hline &  &  \\
\hline
\end{tabular}
5. \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2\) series MPU supports high speed counters. C235 ~ C240 are program-interruption 1-phase high speed counter with a total bandwidth of 20 kHz , can be used alone with a counting frequency of up to 10 kHz . C241 ~ C254 are hardware high speed counter (HHSC). There are four HHSC in EH/EH2/SV/EH3/SV2 series MPU, HHSC0 ~ 3. The pulse input frequency of HHSC0 and HHSC1 can reach 200kHz and that of HHSC2 and HHSC3 can reach 20 kHz (1 phase or A-B phase). The pulse input frequency of HHSCO ~ 3 of 40EH2 series MPU can reach 200 kHz , among which:

C241, C246 and C251 share HHSC0
C242, C247 and C252 share HHSC1
C243, C248 and C253 share HHSC2
C244, C249 and C254 share HHSC3
a) Every HHSC can only be designated to one counter by DCNT instruction.
b) There are three counting modes in every HHSC (see the table below):
i) 1-phase 1 input refers to "pulse/direction" mode.
ii) 1-phase 2 inputs refers to "clockwise/counterclockwise (CW/CCW)" mode.
iii) 2-phase 2 inputs refers to "A-B phase" mode.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Counter type & \multicolumn{6}{|c|}{Program-interruption high speed counter} & \multicolumn{12}{|c|}{Hardware high speed counter} \\
\hline Type & \multicolumn{6}{|c|}{1-phase 1 input} & \multicolumn{4}{|c|}{1-phase 1 input} & \multicolumn{4}{|r|}{1-phase 2 inputs} & \multicolumn{4}{|r|}{2-phase 2 inputs} \\
\hline & C235 & C236 & C237 & C238 & C239 & C240 & C241 & C242 & C243 & C244 & C246 & C247 & C248 & C249 & C251 & C252 & C253 & C254 \\
\hline X0 & U/D & & & & & & U/D & & & & U & & & & A & & & \\
\hline X1 & & U/D & & & & & & & & & D & & & & B & & & \\
\hline X2 & & & U/D & & & & R & & & & R & & & & R & & & \\
\hline X3 & & & & U/D & & & S & & & & S & & & & S & & & \\
\hline X4 & & & & & U/D & & & U/D & & & & U & & & & A & & \\
\hline X5 & & & & & & U/D & & & & & & D & & & & B & & \\
\hline X6 & & & & & & & & R & & & & R & & & & R & & \\
\hline X7 & & & & & & & & S & & & & S & & & & S & & \\
\hline X10 & & & & & & & & & U/D & & & & U & & & & A & \\
\hline X11 & & & & & & & & & & & & & D & & & & B & \\
\hline X12 & & & & & & & & & R & & & & R & & & & R & \\
\hline X13 & & & & & & & & & S & & & & S & & & & S & \\
\hline X14 & & & & & & & & & & U/D & & & & U & & & & A \\
\hline X15 & & & & & & & & & & & & & & D & & & & B \\
\hline X16 & & & & & & & & & & R & & & & R & & & & R \\
\hline X17 & & & & & & & & & & S & & & & S & & & & S \\
\hline
\end{tabular}

U: Progressively increasing input
A: A phase input
S: Input started
B: Progressively decreasing input
B: B phase input
R: Input cleared
c) In EH2/SV/EH3/SV2 series MPU, there is no limitation on the times of using the hardware high speed counter related instructions, DHSCS, DHSCR and DHSZ. However, when these instructions are enabled at the same time, there will be some limitations. DHSCS instruction will occupy 1 group of settings, DHSCR 1 group of settings and DHSZ 2 groups of settings. There three instructions cannot occupy 8 groups of settings in total; otherwise the system will ignore the instructions which are not the first scanned and enabled.
d) The device used to set or reset a high-speed comparison in EH2/EH3/SV/SV2 should not be a special auxiliary relay, Besides, it can not be a device used by another applied instruction. The 20 devices starting upward from the device used by the applied instruction, and the 20 devices starting downward from the device used by the applied instruction also can not be used. For example, if DHSCS uses M100 to set a
high-speed comparison, CMP should not used M80~M120 to set a comparison.
e) System structure of the hardware high speed counters:
i) HHSCO ~ 3 have reset signals and start signals from external inputs. Settings in M1272, M1274, M1276 and M1278 are reset signals of HHSC0, HHSC1, HHSC2 and HHSC3. Settings in M1273, M1275, M1277 and M1279 are start signals of HHSCO, HHSC1, HHSC2 and HHSC3.
ii) If the external control signal inputs of \(R\) and \(S\) are not in use, you can set M1264/M1266/M1268/M1270 and M1265/M1267/M1269/M1271 as True and disable the input signals. The corresponding external inputs can be used again as general input points (see the figure below).
iii) When special \(M\) is used as a high speed counter, the inputs controlled by START and RESET will be affected by the scan time.

f) Counting modes:

Special D1225 ~ D1228 are for setting up different counting modes of the hardware high speed counters (HHSCO ~ 3) in EH/EH2/SV/EH3/SV2 series MPU. There are normal \(\sim 4\) times frequency for the counting and the default setting is double frequency.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Counting modes} & \multicolumn{2}{|c|}{Wave pattern} \\
\hline Type & Set value in special D & Counting up(+1) & Counting down(-1) \\
\hline \multirow[b]{2}{*}{1-phase 1 input} & \begin{tabular}{l}
1 \\
(Normal frequency)
\end{tabular} & \begin{tabular}{l}
U/D \(\square\) 4 \(\uparrow\) \\
U/D FLAG \(\qquad\)
\end{tabular} &  \\
\hline & \begin{tabular}{l}
2 \\
(Double frequency)
\end{tabular} & \begin{tabular}{l}
U/D \\
U/D FLAG
\(\qquad\)
\(\qquad\)
\end{tabular} &  \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
1-phase \\
2 inputs
\end{tabular}} & \begin{tabular}{l}
1 \\
(Normal frequency)
\end{tabular} &  &  \\
\hline & \begin{tabular}{l}
2 \\
(Double frequency)
\end{tabular} & \begin{tabular}{l}
U \(\square\) \\
D \(\qquad\)
\end{tabular} & \[
\sqrt{2}
\] \\
\hline \multirow{4}{*}{\begin{tabular}{l}
2-phase \\
2 inputs
\end{tabular}} & \begin{tabular}{l}
1 \\
(Normal frequency)
\end{tabular} & \[
\begin{aligned}
& A \\
& B+\longrightarrow
\end{aligned}
\] &  \\
\hline & \begin{tabular}{l}
2 \\
(Double frequency)
\end{tabular} &  &  \\
\hline & \[
\begin{gathered}
3 \\
\text { (Triple } \\
\text { frequency) }
\end{gathered}
\] & A &  \\
\hline & \begin{tabular}{l}
4 \\
(4 times frequency)
\end{tabular} & \[
\begin{gathered}
A \\
B
\end{gathered}
\] &  \\
\hline
\end{tabular}
g) Special registers for relevant flags and settings of high speed counters:
\begin{tabular}{|c|l|}
\hline Flag & \multicolumn{1}{c|}{ Function } \\
\hline M1150 & DHSZ instruction in multiple set values comparison mode \\
\hline M1151 & The execution of DHSZ multiple set values comparison mode is completed. \\
\hline M1152 & Set DHSZ instruction as frequency control mode \\
\hline M1153 & DHSZ frequency control mode has been executed. \\
\hline M1235 ~ M1245 & \begin{tabular}{l} 
Designating the counting direction of high speed counters C235 ~ C245 \\
When M12 \(\square \square=\) Off, C2 \(\square \square\) will perform a counting up. \\
When M12 \(\square \square=\) On, C2 \(\square \square\) will perform a counting down.
\end{tabular} \\
\hline M1246 ~M1255 & \begin{tabular}{l} 
Monitor the counting direction of high speed counters C246 ~ C255 \\
When M12 \(\square \square=\) Off, C2 \(\square \square\) will perform a counting up. \\
When M12 \(\square \square=\) On, C2 \(\square \square\) will perform a counting down.
\end{tabular} \\
\hline M1260 & X5 as the reset input signal of all high speed counters \\
\hline M1261 & High-speed comparison flag for DHSCR instruction \\
\hline M1264 & Disable the external control signal input point of HHSC0 reset signal point (R)
\end{tabular}
\begin{tabular}{|c|c|}
\hline Flag & Function \\
\hline M1265 & Disable the external control signal input point of HHSCO start signal point (S) \\
\hline M1266 & Disable the external control signal input point of HHSC1 reset signal point (R) \\
\hline M1267 & Disable the external control signal input point of HHSC1 start signal point (S) \\
\hline M1268 & Disable the external control signal input point of HHSC2 reset signal point (R) \\
\hline M1269 & Disable the external control signal input point of HHSC2 start signal point (S) \\
\hline M1270 & Disable the external control signal input point of HHSC3 reset signal point (R) \\
\hline M1271 & Disable the external control signal input point of HHSC3 start signal point (S) \\
\hline M1272 & Internal control signal input point of HHSCO reset signal point (R) \\
\hline M1273 & Internal control signal input point of HHSC0 start signal point (S) \\
\hline M1274 & Internal control signal input point of HHSC1 reset signal point (R) \\
\hline M1275 & Internal control signal input point of HHSC1 start signal point (S) \\
\hline M1276 & Internal control signal input point of HHSC2 reset signal point (R) \\
\hline M1277 & Internal control signal input point of HHSC2 start signal point (S) \\
\hline M1278 & Internal control signal input point of HHSC3 reset signal point (R) \\
\hline M1279 & Internal control signal input point of HHSC3 start signal point (S) \\
\hline M1289 & High speed counter 1010 interruption forbidden \\
\hline M1290 & High speed counter 1020 interruption forbidden \\
\hline M1291 & High speed counter 1030 interruption forbidden \\
\hline M1292 & High speed counter 1040 interruption forbidden \\
\hline M1293 & High speed counter 1050 interruption forbidden \\
\hline M1294 & High speed counter 1060 interruption forbidden \\
\hline M1312 & C235 Start input point control \\
\hline M1313 & C236 Start input point control \\
\hline M1314 & C237 Start input point control \\
\hline M1315 & C238 Start input point control \\
\hline M1316 & C239 Start input point control \\
\hline M1317 & C240 Start input point control \\
\hline M1320 & C235 Reset input point control \\
\hline M1321 & C236 Reset input point control \\
\hline M1322 & C237 Reset input point control \\
\hline M1323 & C238 Reset input point control \\
\hline M1324 & C239 Reset input point control \\
\hline M1325 & C240 Reset input point control \\
\hline M1328 & Enable Start/Reset of C235 \\
\hline M1329 & Enable Start/Reset of C236 \\
\hline M1330 & Enable Start/Reset of C237 \\
\hline M1331 & Enable Start/Reset of C238 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Flag & \\
\hline M1332 & Enable Start/Reset of C239 \\
\hline M1333 & Enable Start/Reset of C240 \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special D & \multicolumn{1}{c|}{ Function } \\
\hline D1022 & Multiplied frequency of A-B phase counters for ES/SA series MPU \\
\hline D1150 & Table counting register for DHSZ multiple set values comparison mode \\
\hline D1151 & Register for DHSZ instruction frequency control mode (counting by table) \\
\hline \begin{tabular}{l} 
D1152 (low word) \\
D1153 (high word)
\end{tabular} & \begin{tabular}{l} 
In frequency control mode, DHSZ reads the upper and lower limits in the table \\
counting register D1153 and D1152.
\end{tabular} \\
\hline D1166 & \begin{tabular}{l} 
Switching between rising/falling edge counting modes of X10 (for SC series \\
MPU only)
\end{tabular} \\
\hline D1167 & \begin{tabular}{l} 
Switching between rising/falling edge counting modes of X11 (for SC series \\
MPU only)
\end{tabular} \\
\hline D1225 & The counting mode of the 1 \({ }^{\text {st }}\) group counters (C241, C246, C251) \\
\hline D1227 & The counting mode of the \(2^{\text {nd }}\) group counters (C242, C247, C252) \\
\hline D1228 & The counting mode of the \(3^{\text {rd }}\) group counters (C243, C248, C253) \\
\hline The counting mode of the 4 \({ }^{\text {th }}\) group counters (C244, C249, C254)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline \multicolumn{7}{|c|}{} & H & HSCR & \(\mathbf{S}_{1}\left(\mathbf{S}_{2}\right)\) & D & High Speed Counter Reset \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & & K & H & KnX & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DHSCR: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & * & * & & * & * & & * & * & * & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline D & & * & * & * & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & Sx & SC & EH S & \[
\begin{array}{l|l|}
\hline \mathrm{VH} & \mathrm{EH} 3 \\
\hline \mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Comparative value
\(\mathbf{S}_{2}\) : No. of high speed counter
D: Comparison result

\section*{Explanations:}
1. \(\quad S_{2}\) has to designate the No. of high speed counters C235 \(\sim \mathrm{C} 255\). See remarks of API 53 DHSCS for more details.
2. D of EH/EH2/SV series MPU can designate the No. of high speed counters C241~C254 that are the same as the counters designated by \(\mathbf{S}_{2}\).
3. D of SC series MPU can designate the No. of high speed counters C243, C245, C248, C250 and C255 that are the same as the counters designated by \(\mathbf{S}_{2}\).
4. D of ES/EX/SS/SA/SX series MPU does not support device C.
5. See the specifications of each model for their range of use.
6. Flags: M1150 ~ M1333; see remarks of API 53 DHSCS for more details. ES/EX/SS/SA/SX/SC series MPU does not support M1261 (high speed counter external reset mode designation); see remarks for more details.
7. The high speed counter inputs counting pulses from the corresponding external input terminals X0 ~ X17 by inserting an interruption. When the No. of high-speed counter designated in \(\mathbf{S}_{2}\) " +1 " or " -1 ", DHSCR will perform a comparison immediately. When the present value in the high speed counter equals the comparative value designated in \(\mathbf{S}_{\mathbf{1}}\), the device designated in \(\mathbf{D}\) will turn Off and even the afterward comparison results are unequal, the device will still be Off.
8. If the devices designated in \(\mathbf{D}\) are \(\mathrm{YO} \sim \mathrm{Y} 17\), when the comparative value equals the present value in the high speed counter, the comparison result will immediately output to the external output terminals Y0 ~ Y17 (and clear the designated Y output) and the rest of Y devices will be affected by the scan cycle. Devices M and S act immediately without being affected by the scan cycle.

\section*{Program Example 1:}
1. When \(\mathrm{MO}=\mathrm{On}\) and the present value in the high speed counter C 251 changes from 99 to 100 or 101 to 100 , Y10 will be cleared and Off.
2. When the present value in the high speed counter C251 changes from 199 to 200, the contact of C 251 will be On and make \(\mathrm{YO}=\) On. However, the program scan time will delay the output.
3. Y 10 will immediately reset the status when the counting reaches its target. \(\mathbf{D}\) is also able to designate high speed counters of the same No. See Program Example 2.


\section*{Program Example 2:}

When DHSCR instruction designates the same high speed counter, and the present value in the high speed counter C251 changes from 999 to 1,000 or 1,001 to \(1,000, \mathrm{C} 251\) will be reset to Off.


\section*{Remarks:}
1. DVP all series MPU support high speec counters. For the limitation on the use of instructions, see remarks of API 53 DHSCS for more details.
2. M1261 of EH/EH2/SV/EH3/SV2 series MPU designates the external reset modes of the high speed counter. Some high speec counters have input points for external reset; therefore, when the input point is On, the present value in the corresponding high speed counter will be cleared to 0 and the output contact will be Off. If you wish the reset to be executed immediately by the external output, you have to set M1261 to be On.
3. M1261 can only be used in the hardware high speed counter C241~C255.
4. Example:
a) X 2 is the input point for external reset of C 251 .
b) Assume Y10 \(=\) On.
c) When M1261 \(=\) Off and \(\mathrm{X} 2=\mathrm{On}\), the present value in C 251 will be cleared to 0 and the contact of C 251 will be Off. When DHSCR instruction is executed, there will be no counting input and the comparison result will not output. The external output will not execute the reset; therefore \(\mathrm{Y} 10=\) On will remain unchanged.
d) When M1261 \(=\) On and \(\mathrm{X} 2=\mathrm{On}\), the present value in C 251 will be cleared to 0 and the contact of C 251 will be Off. When DHSCR instruction is executed, there will be no counting input but the comparison result will output. Therefore, Y10 will be reset.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & \multicolumn{19}{|c|}{Function} \\
\hline 55 & D & \multicolumn{2}{|l|}{HSZ} & \multicolumn{7}{|l|}{(S1) \(S_{2}\) S D} & \multicolumn{19}{|c|}{High Speed Zone Compare} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\qquad\)}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & & S & K & H & & KnX & KnY & Kn & & KnS & S & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{DHSZ: 17 steps}} \\
\hline & \(\mathrm{S}_{1}\) & & & & & & * & * & & * & * & & & * & * & & * & * & * & & & & & & & & & & \\
\hline & \(\mathrm{S}_{2}\) & & & & & & * & * & & * & * & & & * & * & & * & * & * & & & & & & & & & & \\
\hline & S & & & & & & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Lower bound of the comparison zone
\(\mathbf{S}_{2}\) : Upper bound of the comparison zone
S: No. of high speed counter
D: Comparison result

\section*{Explanations:}
1. \(\quad \mathbf{S}_{\mathbf{1}}\) has to be euqal to or smaller than \(\mathbf{S}_{\mathbf{2}}\). \(\left(\mathbf{S}_{\mathbf{1}} \leq \mathbf{S}_{\mathbf{2}}\right)\)
2. When \(\mathbf{S}_{1}>\mathbf{S}_{2}\), the instruction will perform a comparison by using \(\mathbf{S}_{1}\) as the upper bound and \(\mathbf{S}_{\mathbf{2}}\) as the lower bound.
3. \(\quad\) S has to designate high speed counters C235 ~ C255, See remarks of API 53 DHSCS for more details.
4. D will occupy 3 consecutive devices.
5. Flags: M1150 ~ M1333; see remarks of API 53 DHSCS for more details. M1150, M1151 DHSZ executing multiple points comparison mode; see Program Example 3 for more details; SA/SXISC series MPU does not support. M1152, M1153 DHSZ as frequency control mode; see Program Example 4 for more details; SA/SX/SC series MPU does not support.
6. The output will not be affected by the scan time.
7. The zone comparisons and outputs are all processed by inserting interruptions.
8. Please refer to the remarks on API 53 DHSCS for more information about the limitation to the use of the instruction in an DVP-EH2/EH3/SV/SV2 series PLC.

\section*{Program Example 1:}
1. Designate device YO and \(\mathrm{YO} \sim \mathrm{Y} 2\) will be automatically occupied.
2. When DHSZ instruction is being executed and the counting of the high speed counter C246 reaches upper and lower bounds, one of Y0 ~ Y2 will be On


\section*{Program Example 2:}
1. Use DHSZ instruction for high/low speed stop control. C251 is an A-B phase high speed counter and DHSZ only performs comparison output when there is a C251 counting pulse input. Therefore, even when the present value in the counter is \(0, \mathrm{Y} 10\) will not be On.
2. When \(\mathrm{X} 10=\mathrm{On}\), DHSZ will require that Y 10 has to be On when the present value in the counter \(\leq K 2,000\). To solve this requirement, you can execute DZCPP instruction when the program was first RUN and compare C 251 with \(\mathrm{K} 2,000\). When the present value in the counter \(\leq \mathrm{K} 2,000, \mathrm{Y} 10\) will be On. DZCPP instruction is a pulse execution instruction and will only be executed once with Y10 being kept On.
3. When the drive contact \(\mathrm{X} 10=\mathrm{Off}, \mathrm{Y} 10 \sim \mathrm{Y} 12\) will be reset to Off.

4. The timing diagram


\section*{Program Example 3:}
1. Program Example 3 is only applicable to EH/EH2/SV/EH3/SV2 series MPU.
2. The multiple set values comparison mode: If \(\mathbf{D}\) of DHSZ instruction designates a special auxiliary relay M1150, the instruction will be able to compare (output) the present value in the high speed counter with many set values.
3. In this mode,
- \(\quad \mathbf{S}_{1}\) : start device in the comparison table. \(\mathbf{S}_{\mathbf{1}}\) can only designate data register D and can be modified by E and \(F\). Once this mode is enabled, \(\mathbf{S}_{1}\) will not be changed even the \(E\) and \(F\) has been changed.
- \(\quad \mathbf{S}_{2}\) : number of group data to be compared. \(\mathbf{S}_{2}\) can only designate K1 ~ K255 or H1 ~ HFF and can be modified by \(E\) and \(F\). Once this mode is enabled, \(\mathbf{S}_{\mathbf{2}}\) cannot be changed. If \(\mathbf{S}_{\mathbf{2}}\) is not within its range, error code 01EA (hex) will display and the instruction will not be executed.
- \(\quad\) S: No. of high speed counter (designated as C241 ~ C254).
- D: Designated mode (can only be M1150)
4. The No. of start register designated in \(\mathbf{S}_{\mathbf{1}}\) and the number of rows (groups) designated in \(\mathbf{S}_{\mathbf{2}}\) construct a comparison table. Please enter the set values in every register in the table before executing the instruction.
5. When the present value in the counter C251 designated in S equals the set values in D1 and D0, the Y output designated by \(D 2\) will be reset to Off \((D 3=K 0)\) or \(O n(D 3=K 1)\) and be kept. Output \(Y\) will be processed as an interruption. No. of Y output pointss are in decimal (range: \(0 \sim 255\) ). If the No. falls without the range, SET/RESET will not be enabled when the comparison reaches its target.
6. When this mode is enabled, PLC will first acquire the set values in D0 and D1 as the target value for the first comparison section. At the same time, the index value displayed in D1150 will be 0 , indicating that PLC performs the comparison based on the group 0 data.
7. When the group 0 data in the table have been compared, PLC will first execute the \(Y\) output set in group 0 data and determine if the comparison reaches the target number of groups. If the comparison reaches the target, M1151 will be On; if the comparison has not reached the final group, the content in D1150 will plus 1 and continue the comprison for the next group.
8. M1151 is the flag for the completion of one execution of the table, can be Off by the user. Or when the next comparion cycle takes place and the group 0 data has been compared, PLC will automatically reset the flag.
9. When the drive contact of the instruction X 10 goes Off, the execution of the instruction will be interrupted and the content in D1150 (table counting register) will be reset to 0 . However, the On/Off status of all outputs will be remained.
10. When the instruction is being executed, all set values in the comparison table will be regarded as valid values only when the scan arrives at END instruction for the first time.
11. This mode can only be used once in the program.
12. This mode can only be used on the hardware high speed counters C241~C254.
13. When in this mode, the frequency of the input counting pulses cannot exceed 50 kHz or the neighboring two groups of comparative values cannot differ by 1; otherwise there will not be enough time for the PLC to react and result in errors.
\begin{tabular}{|c|l|l|l|l|l|}
\hline X10 \\
\hline DHSZ & D0 & K4 & C251 & M1150 \\
\hline
\end{tabular}

The comparison table:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{32-bit data for comparison} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{No. of Y output}} & \multicolumn{2}{|l|}{\multirow{2}{*}{On/Off indication}} & \multirow[t]{2}{*}{Table counting register D1150} \\
\hline High word & \multicolumn{2}{|l|}{Low word} & & & & & \\
\hline D1 (K0) & D0 & (K100) & & (K10) & D3 & (K1) & 0 \\
\hline D5 (K0) & & (K200) & & (K11) & D7 & (K1) & 1 \\
\hline D9 (K0) & & (K300) & D10 & (K10) & D11 & (K0) & 2 \\
\hline D13 (K0) & D12 & (K400) & D14 & (K11) & D15 & (K0) & 3 \\
\hline & & & & & & & \begin{tabular}{l}
\[
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 0
\] \\
Cyclic scan
\end{tabular} \\
\hline
\end{tabular}

14. Special registers for flags and relevant settings:
\begin{tabular}{|c|l|}
\hline Flag & Function \\
\hline M1150 & DHSZ instruction in multiple set values comparison mode \\
\hline M1151 & The execution of DHSZ multiple set values comparison mode is completed. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Special D & Function \\
\hline D1150 & Table counting register for DHSZ multiple set values comparison mode \\
\hline
\end{tabular}

\section*{Program Example 4:}
1. Program Example 4 is only applicable to EH/EH2/SV/EH3/SV2 series MPU.
2. DHSZ and DPLSY instructions are combined for frequency control. If D of DHSZ instruction is a special auxiliary relay M 1152 , the present value in the counter will be able to control the pulse output frequency of DPLSY instruction.
3. In this mode,
- \(\mathbf{S}_{1}\) : start device in the comparison table. \(\mathbf{S}_{1}\) can only designate data register \(D\) and can be modified by \(E\) and \(F\). Once this mode is enabled, \(\mathbf{S}_{1}\) will not be changed even the \(E\) and \(F\) has been changed.
- \(\mathbf{S}_{2}\) : number of group data to be compared. \(\mathbf{S}_{2}\) can only designate K1 ~K255 or H1 ~HFF and can be modified by \(E\) and \(F\). Once this mode is enabled, \(\boldsymbol{S}_{2}\) cannot be changed. If \(\mathbf{S}_{2}\) is not within its range, error code 01EA (hex) will display and the instruction will not be executed.
- S: No. of high speed counter (designated as C241~C254).
- D: Designated mode (can only be M1152)
4. This mode can only be used once. For EH/EH2/SV/EH3/SV2 series MPU, this mode can only be used in the hardware high speed counter C241 ~ C254. Please enter the set values in every register in the table before executing the instruction.
5. When this mode is enabled, PLC will first acquire the set values in D0 and D1 as the target value for the first comparison section. At the same time, the index value displayed in D1152 will be 0 , indicating that PLC performs the comparison based on the group 0 data.
6. When the group 0 data in the table have been compared, PLC will first execute at the frequency set in group 0 data (D2, D3) and copy the data to D1152 and D1153, determining if the comparison reaches the target number of groups. If the comparison reaches the target, M1153 will be On; if the comparison has not reached the final group, the content in D1151 will plus 1 and continue the comprison for the next group.
7. M1153 is the flag for the completion of one execution of the table, can be Off by the user. Or when the next comparion cycle takes place and the group 0 data has been compared, PLC will automatically reset the flag.
8. If you wish to use this mode with PLSY instruction, please preset the value in D1152.
9. If you wish to stop the execution at the last row, please set the value in the last row K0.
10. When the drive contact of the instruction X 10 goes Off, the execution of the instruction will be interrupted and the content in D1151 (table counting register) will be reset to 0 .
11. When in this mode, the frequency of the input counting pulses cannot exceed 50 kHz or the neighboring two groups of comparative values cannot differ by 1 ; otherwise there will not be enough time for the PLC to react and result in errors.


The comparison table:


12. Special registers for flags and relevant settings:
\begin{tabular}{|c|l|}
\hline Flag & \multicolumn{1}{|c|}{ Function } \\
\hline M1152 & DHSZ instruction in frequency control mode \\
\hline M1153 & The execution of DHSZ frequency control mode is completed. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special D & \multicolumn{1}{c|}{ Function } \\
\hline D1151 & Table counting register for DHSZ multiple set values comparison mode \\
\hline \begin{tabular}{l} 
D1152 (low word) \\
D1153 (high word)
\end{tabular} & \begin{tabular}{l} 
In frequency control mode, DHSZ reads the upper and lower limits in the \\
table counting register D1153 and D1152.
\end{tabular} \\
\hline \begin{tabular}{l} 
D1336 (low word) \\
D1337 (high word)
\end{tabular} & Current number of pulses output by DPLSY instruction \\
\hline
\end{tabular}
13. The complete program:

14. During the execution of DHSZ instruction, do not modify the set values in the comparison table.
15. The designated data will be arranged into the the above program diagram when the program executes to END instruction. Therefore, PLSY instruction has to be executed after DHSZ instruction has been executed once.
\begin{tabular}{|c||c|c|ll|}
\hline API & Mnemonic & Operands & & Function \\
\hline 56 & SPD & \(\mathbf{S}_{1}\left(\mathbf{S}_{2}\right.\) & \(D\) & Speed Detection
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & Kn & & KnY & Kn & & Kn & & T & C & D & & E & F & \multicolumn{9}{|l|}{SPD: 7 steps} \\
\hline \(\mathrm{S}_{1}\) & * & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & & * & * & & * & & * & * & * & & * & * & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & * & * & * & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & S & E & & V & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{|c} 
EH3 \\
SV2
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : External pulse input terminal
\(\mathbf{S}_{\mathbf{2}}\) : Pulse receiving time (ms)
D: Detected result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flag: M1100 (SPD instruction performs sampling for one time)
3. External pulse input terminals designated in \(\mathbf{S}_{\mathbf{1}}\) for all series MPU:
\begin{tabular}{|c|c|c|c|c|}
\hline Input MPU & ES/EXISS
(V5.7and above) & SA/SXISC & EH/EH2/SV & EH3/SV2 \\
\hline Available input points & X1, X2 & \[
\begin{gathered}
\mathrm{X0} / \mathrm{X} 1, \\
\mathrm{X} 1, \mathrm{X} 2
\end{gathered}
\] & X0, X1, X2, X3 & \[
\begin{gathered}
\mathrm{X} 0 \text { / X1, X10 / X11, } \\
\text { X4 / X5, X14 / X15, } \\
\text { X1 ~ X3, X11 ~ X13, } \\
\text { X5 ~ X7, X15 ~ X17 }
\end{gathered}
\] \\
\hline
\end{tabular}
4. For SA/SX (V1.4 and above) series MPU and SC (V1.2 and above) series MPU, the new X0 and X1 can be used together with A-B phase input points. When "A ahead of \(B\) " detection result is a positive value and " \(B\) ahead of \(A\) " detection result is a negative value, the multiplied frequency of the counter can be set by D1022.
5. Input points on EH series are single-phase input. EH2/SV series support A-B phase input, and X0 has to be designated in the instruction as the speed detection point and X 1 occupied. When \(B\) is ahead of \(A\), the detection result will be positive value. If \(A\) is ahead of \(B\), the detection result will be negative value. EH3/SV2 V1.86 (and above) can only detect the speed of one input (X0/X1, X1 ~ X3). EH3/SV2 V1.88 (and above) can detect the speeds of four inputs at most. If the \(\mathrm{X0}, \mathrm{X} 4, \mathrm{X10}\), or X 14 is selected, the speed of an A/B-pahse input will be detected. If the input terminal slected is in the range of X1 ~ X3, X5 ~ X7, X11 ~ X13, or X15 ~ X17, the speed of a single-pahse input will be detected.
6. The received number of pulses of the input terminal designated in \(\mathbf{S}_{1}\) is calculated within the time (in ms) designated in \(\mathbf{S}_{\mathbf{2}}\). The result is stored in the register designated in \(\mathbf{D}\).
7. D will occupy 5 consecutive devices. D + 1 and \(\mathbf{D}\) are the detected value obtained from the previous pulses; D +3 and \(\mathbf{D}+2\) are the current accumulated number of values; \(\mathbf{D}+4\) is the counting time remaining (max. \(32,767 \mathrm{~ms}\) ).
8. Pulse frequency detection for all series:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ MPU } & \multicolumn{1}{c|}{ Max. frequency } \\
\hline ES/EX/SS (V5.7 and later versions) & X1 (20kHz), X2 (10kHz) \\
\hline SA/SX/SC & X0/X1 (4kHz), X1 (20kHz), X2 (10kHz) \\
\hline EH/EH2/SV & X0 (200kHz), X1 (200kHz), X2 (10kHz), X3 (10kHz) \\
\hline & X0/X1 (200kHz), X1 (200kHz), X2 ~ X3 (10kHz), X4/X5 \\
& (200kHz), X5 (20kHz), X6 ~ X7 (10kHz), X10/X11 (200kHz), \\
EH3/SV2 & X11 (20kHz), X12 ~ X13 (10kHz), X14/X15 (200kHz), X15 \\
& \((20 \mathrm{kHz})\), X16 ~ X17 (10kHz) \\
\hline
\end{tabular}
9. This instruction is mainly used for obtaining a proportional value of rotation speed. The result \(\mathbf{D}\) and rotation speed will be in proportion. The following equation is for obtaining the rotation speed of motor.
\[
\mathrm{N}=\frac{60(\mathrm{DO})}{\mathrm{nt}} \times 10^{3}(\mathrm{rpm}) \quad \begin{array}{ll}
\mathrm{N}: & \text { Rotation speed } \\
\mathrm{n}: & \text { The number of pulses produced per rotation }
\end{array}
\]
t : Detecting time designated in \(\mathbf{S}_{\mathbf{2}}(\mathrm{ms})\)
10. The \(X\) input point designated by this instruction cannot be used again as the pulse input terminal of the high speed counter or as an external interruption signal.
11. When M1036 in SC (V1.4 and above) series MPU is enabled, SPD instruction can detect the speeds at X0 ~ X5 at the same time with a total bandwidth of 40 kHz . See 2.11 for more details for how to use M1036.
12. There is no limitation on the times of using this instruction in the program, but only one instruction will be executed at a time.
13. When SPD instruction is enabled and M1100 \(=\) On, SPD instruction will perform a sampling at the moment when M1100 goes from Off to On and stop the sampling. If you wish to resume the sampling, you have to turn Off M1100 and re-enable SPD instruction.

\section*{Program Example:}
1. When \(\mathrm{X} 7=\mathrm{On}\), D 2 will calculate the high-speed pulses input by X 1 and stop the calculation automatically after \(1,000 \mathrm{~ms}\). The result will be stored in DO.
2. When the \(1,000 \mathrm{~ms}\) counting is completed, D2 will be cleared to 0 . When X 7 is On again, D2 will start the calculation again.
\begin{tabular}{|c|c|c|c|c|}
\hline X7 & SPD & X1 & K1000 & D0 \\
\hline
\end{tabular}


\section*{Remarks:}
1. When ES/EX/SS (V5.7 and above) and SA/SXISC series MPU use X1 or X2, the relevant high speed counters or external interruptions I101 and I201 cannot be used.
2. For SC (V1.4 and above) series MPU, when M1036 is enabled, the speed of X0 \(\sim\) X5 can be detected at the same time.
\begin{tabular}{|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \\
\hline \multicolumn{7}{|c|}{} & D & PLSY & & \(\mathbf{S}_{1}\left(S_{2}\right.\) & Dunction & Pulse Y Output & \\
\hline
\end{tabular}


\section*{Operands:}
\(S_{1}\) : Pulse output frequency
\(\mathbf{S}_{2}\) : Number of output pulses
D: Pulse output device (please use transistor output module)

\section*{Explanations:}
1. The program of ES/EX/SS series MPU can use PLSY instruction two times but cannot designate the same \(Y\) device.
2. Flags: M1010 ~ M1345. See remarks for more details.
3. \(\quad S_{1}\) designates the pulse output frequency. With M1133 ~M1135 and D1133, Y0 of SA/SX series MPU is able to output pulses at 50 kHz . (SX V3.0 and above do not support this function. Users can directly use the instruciton to output pulses at 50kHz.) SV/EH2/EH3/SV2 series MPU of V1.4 and later versions use M1190 ~ M1191, and Y 0 and Y 2 are able to output \(0.01 \sim 500 \mathrm{~Hz}\).

Range of output frequency for all series:
\begin{tabular}{|c|c|c|c|c|c|}
\hline MPU & ES/EXISS & SA/SX & SC & EH & EH2/SV/EH3/SV2 \\
\hline \multirow{4}{*}{ Frequency range } & \(0 \sim 10 \mathrm{kHz}\) & \(\mathrm{Y0:} 0 \sim 50 \mathrm{kHz}\) & \(\mathrm{Y} 1: 0 \sim 30 \mathrm{kHz}\) & \(\mathrm{Y0:} 1 \sim 200 \mathrm{kHz}\) & \(\mathrm{Y} 2: 0 \sim 200 \mathrm{kHz}\) \\
& & \(\mathrm{Y}: 0 \sim 10 \mathrm{kHz}\) & \(\mathrm{Y} 10: 77 \sim 100 \mathrm{kHz}\) & \(\mathrm{Y} 2: 1 \sim 200 \mathrm{kHz}\) & \(\mathrm{Y} 4: 0 \sim 200 \mathrm{kHz}\) \\
& & & \(\mathrm{Y} 11: 77 \sim 100 \mathrm{kHz}\) & & \(\mathrm{Y}: 0 \sim 200 \mathrm{kHz}\) \\
\hline
\end{tabular}
4. \(\quad \mathbf{S}_{2}\) designates the number of output pulses. The 16 -bit instruction can designate \(1 \sim 32,767\) pulses and the 32-bit instruction can designate \(1 \sim 2,147,483,647\) pulses.

Number of continuous pulses for all series:
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ MPU } & ES/EXISS/SA/SXISC & \multicolumn{1}{|c|}{ SC } & EH/EH2/SV/EH3/SV2 \\
\hline & & M1010 (Y0) On & \begin{tabular}{l} 
The number of output \\
pulses designated for
\end{tabular} \\
\begin{tabular}{l} 
How to designate \\
continuous pulses
\end{tabular} & \begin{tabular}{l} 
M1010 (Y0) On \\
M1023 (Y1) On On
\end{tabular} & \begin{tabular}{l} 
The number of output pulses designated \\
for Y10 and Y11 is set to K0.
\end{tabular} & \begin{tabular}{l} 
Y0, Y2, Y4 and Y6 is set \\
to K0
\end{tabular} \\
\hline
\end{tabular}
5. For EH/EH2/SV/EH3/SV2 series MPU, when the number of output pulses is set to 0 , there will be continuous pulse output with no limitation on the number of pulses. For ES/EX/SS/SA/SXISC series MPU, you have to make M1010 (Y0) or M1023 (Y1) On to allow a continuous pulse output with no limitation on the number of
pulses.
6. For the pulse output device designated in D, EH series MPU can designate \(Y 0\) and \(Y 2, E H 2 / S V / E H 3 / S V 2\) series MPU can designate Y0, Y2, Y4 and Y6, ES/EXISS/SA/SX series MPU can designate Y0 and Y1, SC series MPU can designate Y0, Y1, Y10 and Y11. (SC V1.2 and above series MPU supports Y10 and Y11).
7. EH series MPU has two groups of A-B phase pulse output from \(\mathrm{CH}(\mathrm{YO}, \mathrm{Y} 1)\) and \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\); EH2/SV/EH3/SV2 series MPU has four groups of A-B phase pulse output from CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See 2.3 and remarks for how to set up.
8. When PLSY instruction is executed, it will designate the number of output pulses \(\left(\mathbf{S}_{2}\right)\) output from the output device (D) at a pulse output frequency \(\left(\mathbf{S}_{1}\right)\).
9. When PLSY instruction is used in the program, its outputs cannot be the same as those in API 58 PWM and API 59 PLSR.
10. Pulse output completed flags for all series:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ MPU } & \multicolumn{2}{|c|}{ ES/EX/SS } & \multicolumn{2}{c|}{ SC } & \multicolumn{2}{c|}{ EH/EH2/SV } & \multicolumn{2}{c|}{ EH2/SV/EH3/SV2 } \\
\hline Output device & Y0 & Y1 & Y10 & Y11 & Y0 & Y2 & Y4 & Y6 \\
\hline Flag & M1029 & M1030 & M1102 & M1103 & M1029 & M1030 & M1036 & M1037 \\
\hline
\end{tabular}
11. For ES/EX/SS/SA/SX/SC/EH series MPU, when PLSY and DPLSY instruction is disabled, the pulse output completed flags will all be Off automatically.
12. For EH2/SV/EH3/SV2 series MPU, when PLSY and DPLSY instruction is disabled, the user will have to reset the pulse output completed flags.
13. The user has to reset the pulse output completed flags after the pulse output is completed.
14. After PLSY instruction starts to be executed, \(Y\) will start a pulse output. Modifying \(\mathbf{S}_{\mathbf{2}}\) at this moment will not affect the current output. If you wish to modify the number of output pulses, you have to first stop the execution of PLSY instruction and modify the number.
15. \(\mathbf{S}_{1}\) can be modified when the program executes to PLSY instruction.
16. Off time : On time of the pulse output =1:1.
17. When the program executes to PLSY instruction, the current number of output pulses will be stored in the special data registers D1336 ~ D1339. See remarks for more details.
18. For SA/EH series MPU, there is no limitation on the times using this instruction. For SA/SX/SC/EH series MPU, the program allows two instructions being executed at the same time. For EH2/SV/EH3/SV2 series MPU, the program allows four instructions being executed at the same time.

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), there will be 200 pulses output from YO at 1 kHz . When the pulse output is completed, M1029 will be On and Y 10 will be On.
2. When \(\mathrm{XO}=\mathrm{Off}\), the pulse output from YO will stop immediately. When XO is On again, the output will start again ffrom the first pulse.


\section*{Remarks:}
1. Flags and special registers for ES/EX/SS series MPU:

M1010: When On, Y0 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y 0 will be decided by \(\mathbf{S}_{2}\).
M1023: When On, Y1 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y 1 will be decided by \(\mathbf{S}_{2}\).

M1029: On when Y0 pulse output is completed.
M1030: On when Y1 pulse output is completed.
M1078: Y0 output pauses.
M1079: Y1 output pauses.
D1030: Low word of the current number of output pulses from Y0
D1031: High word of the current number of output pulses from Y0
D1032: Low word of the current number of output pulses from Y1
D1033: High word of the current number of output pulses from Y1
2. Flags and special registers for SA/SX/SC series MPU:

M1010: (SA/SXISC) When On, Y0 output will be continuous with no limitation on the number of pulses. When Off, the number of output pulses from Y 0 will be decided by \(\mathbf{S}_{\mathbf{2}}\).
M1023: (SA/SX/SC) When On, Y1 output will be continuous with no limitation on the number of pulses.
When Off, the number of output pulses from Y1 will be decided by \(\mathbf{S}_{2}\).
M1029: (SA/SX/SC) On when Y0 pulse output is completed.
M1030: (SA/SX/SC) On when Y1 pulse output is completed.
M1078: (SA/SX/SC) Y0 output pauses.
M1079: (SA/SX/SC) Y1 output pauses.
M1102: (SC) On when Y10 pulse output is completed.
M1103: (SC) On when Y11 pulse output is completed.
M1347: (SA/SC) Auto zero return after Y0 output is completed.
(Available only in SA V1.8 and later versions, SC V1.6 and later versions)
M1348: (SA/SC) Auto zero return after Y1 output is completed.
(Available only in SA V1.8 and later versions, SC V1.6 and later versions)
M1524: (SC) Auto zero return after Y10 output is completed. (Available only in V1.6 and later versions)

M1525: (SC) Auto zero return after Y11 output is completed. (Available only in V1.6 and later versions)
D1030: (SA/SXISC) Low word of the current number of output pulses from Y0
D1031: (SA/SX/SC) High word of the current number of output pulses from Y0
D1032: (SA/SXISC) Low word of the current number of output pulses from Y1
D1033: (SA/SX/SC) High word of the current number of output pulses from Y1
D1220 (SX V3.0 and above) Setting the phase of CHO (YO, Y1): Users can judge the phase of CH ( Y 0 , Y1) by the last two bits in D1220. The other bits are invalid.
1. \(\mathrm{KO}: \mathrm{YO}\)
2. K2: Y0 is an A-phase output, and Y1 is a B-phase output. The A-phase output is ahead of the B-phase output.

D1348: (SC) Low word of the current number of output pulses from Y10
D1349: (SC) High word of the current number of output pulses from Y10
D1350: (SC) Low word of the current number of output pulses from Y11
D1351: (SC) High word of the current number of output pulses from Y11
3. Flags and special registers for EH/EH2/SV/EH3/SV2 series MPU:

M1010: (EH/EH2/SV/EH3/SV2) When On, CH0, CH1, CH 2 and CH 3 will output pulses at END instruction. Off when the output starts.
M1029: (EH/EH2/SV/EH3/SV2) On when CH0 pulse output is completed.
M1030: (EH/EH2/SV/EH3/SV2) On when CH1 pulse output is completed.
M1036: (EH2/SV/EH3/SV2) On when CH2 pulse output is completed.
M1037: (EH2/SV/EH3/SV2) On when CH3 pulse output is completed.
M1190: (EH2/SV/EH3/SV2) Able to output \(0.01 \sim 500 \mathrm{~Hz}\) when PLSY Y0 high-speed output is enabled.
M1191: (EH2/SV/EH3/SV2) Able to output \(0.01 \sim 500 \mathrm{~Hz}\) when PLSY Y2 high-speed output is enabled.
M1334: (EH/EH2/SV/EH3/SV2) CH0 pulse output pauses.
M1335: (EH/EH2/SV/EH3/SV2) CH1 pulse output pauses.
M1520: (EH2/SV/EH3/SV2) CH 2 pulse output pauses.
M1521: (EH2/SV/EH3/SV2) CH3 pulse output pauses.
M1336: (EH/EH2/SV/EH3/SV2) CH0 pulse output has been sent.
M1337: (EH/EH2/SV/EH3/SV2) CH1 pulse output has been sent.
M1522: (EH2/SV/EH3/SV2) CH 2 pulse output has been sent.
M1523: (EH2/SV/EH3/SV2) CH3 pulse output has been sent.
M1338: (EH/EH2/SV/EH3/SV2) CH0 offset pulses enabled.
M1339: (EH/EH2/SV/EH3/SV2) CH1 offset pulses enabled.
M1340: (EH/EH2/SV/EH3/SV2) I110 interruption occurs after CH0 pulse output is completed.
M1341: (EH/EH2/SV/EH3/SV2) I120 interruption after occurs CH1 pulse output is completed.
M1342: (EH/EH2/SV/EH3/SV2) I130 interruption occurs when CH 0 pulse output is sending.
M1343: (EH/EH2/SV/EH3/SV2) I140 interruption occurs when CH0 pulse output is sending.
M1344: (EH/EH2/SV/EH3/SV2) CH0 pulse compensation enabled.

M1345: (EH/EH2/SV/EH3/SV2) CH1 pulse compensation enabled.
M1347: (EH/EH2/SV/EH3/SV2) CH0 pulse output reset flag
M1348: (EH/EH2/SV/EH3/SV2) CH1 pulse output reset flag
M1524: (EH2/SV/EH3/SV2) CH 2 pulse output reset flag
M1525: (EH2/SV/EH3/SV2) CH3 pulse output reset flag
D1220: (EH/EH2/SV/EH3/SV2) Setting the phase of CH0 (Y0, Y1): Users can judge the phase of CH0 (Y0,
Y1) by the last two bits in D1220. The other bits are invalid.
1. \(\mathrm{KO}: \mathrm{YO}\)
2. K1: Y0 is an A-phase output, and Y1 is a B-phase output. The A-phase output is ahead of the B-phase output.
3. K2: Y0 is an A-phase output, and Y1 is a B-phase output. The B-phase output is ahead of the B-phase output.
4. Y 1

D1221: (EH/EH2/SV/EH3/SV2) Phase setting of CH1 (Y2, Y3): D1221 determines the phase by the last two bits; other bits are invalid.
1. KO: Y2 output
2. \(K 1\) : Y2, Y3 AB-phase output; \(A\) ahead of \(B\).
3. \(K 2\) : Y2, Y3 AB-phase output; \(B\) ahead of \(A\).
4. K3: Y3 output

D1229: (EH2/SV/EH3/SV2) Phase setting of CH2 (Y4, Y5): D1229 determines the phase by the last two bits; other bits are invalid.
1. KO: Y4 output
2. K1: Y4, Y5 AB-phase output; \(A\) ahead of \(B\).
3. K2: Y4, Y5 AB-phase output; B ahead of A.
4. K3: Y5 output

D1230: (EH2/SV/EH3/SV2) Phase setting of CH3 (Y6, Y7): D1230 determines the phase by the last two bits; other bits are invalid.
1. KO: Y6 output
2. \(K 1\) : \(Y 6, Y 7 A B\)-phase output; \(A\) ahead of \(B\).
3. \(K 2\) : \(Y 6, Y 7 A B-\) phase output; \(B\) ahead of \(A\).
4. K3: Y7 output

D1328: (EH/EH2/SV/EH3/SV2) Low word of the number of CH0 offset pulses
D1329: (EH/EH2/SV/EH3/SV2) High word of the number of CH 0 offset pulses
D1330: (EH/EH2/SV/EH3/SV2) Low word of the number of CH 1 offset pulses
D1331: (EH/EH2/SV/EH3/SV2) High word of the number of CH 1 offset pulses
D1332: (EH/EH2/SV/EH3/SV2) Low word of the number of remaining pulses at CHO
D1333: (EH/EH2/SV/EH3/SV2) High word of the number of remaining pulses at CH 0
D1334: (EH/EH2/SV/EH3/SV2) Low word of the number of remaining pulses at CH 1
D1335: (EH/EH2/SV/EH3/SV2) High word of the number of remaining pulses at CH1

D1336: (EH/EH2/SV/EH3/SV2) Low word of the current number of output pulses at CHO
D1337: (EH/EH2/SV/EH3/SV2) High word of the current number of output pulses at CH0
D1338: (EH/EH2/SV/EH3/SV2) Low word of the current number of output pulses at CH 1
D1339: (EH/EH2/SV/EH3/SV2) High word of the current number of output pulses at CH1
D1375: (EH2/SV/EH3/SV2) Low word of the current number of output pulses at CH 2
D1376: (EH2/SV/EH3/SV2) High word of the current number of output pulses at CH2
D1377: (EH2/SV/EH3/SV2) Low word of the current number of output pulses at CH3
D1378: (EH2/SV/EH3/SV2) High word of the current number of output pulses at CH 3
D1344: (EH/EH2/SV/EH3/SV2) Low word of the number of compensation pulses at CHO
D1345: (EH/EH2/SV/EH3/SV2) High word of the number of compensation pulses at CH0
D1346: (EH/EH2/SV/EH3/SV2) Low word of the number of compensation pulses at CH 1
D1347: (EH/EH2/SV/EH3/SV2) High word of the number of compensation pulses at CH 1
4. When there are many high speed output instructions (PLSY, PWM, PLSR) for Y0 output in a program, PLC will only execute the settings and outputs of the instruction that is first enabled.
5. More explanations on M1347 and M1348:

If M1347 and M1348 is enabled, and when the execution of PLSY instruction has been completed, M1347/M1348 will be reset automatically, i.e. you do not have to turn the status of the drive contact from Off to On before PLSY instruction and when PLC scans to the instruction (assume the drive contact of the instruction is True), there will still be pulse output. PLC detects the status of M1347 and M1348 when END instruction is being executed. Therefore, when the pulse output is completed and if PLSY instruction is a continuous execution one, there will be a scan time of delay in the next string of pulse output.

\section*{Program Example 1:}


Explanations:
a) Whenever X 0 is triggered, Y 0 will output 1,000 pulses; whenever X 1 is triggered, Y 2 will output 1,000 pulses.
b) When \(X\) triggers \(Y\) pulse output, there should be an interval of at least one scan time between the end of \(Y\) pulse output and the next X -triggered output.

\section*{Program Example 2:}


Explanations:
When both X 1 and X 2 are On, Y0 pulse output will keep operating. However, there will be a short pause (approx. 1 scan time) every 1,000 pulses before the output of the next 1,000 pulses.
\begin{tabular}{|c|c|c|c|c|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 58 & PWM & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(D\) \\
& Pulse Width Modulation & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{PWM: 7 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & V & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Pulse output width
\(\mathbf{S}_{2}\) : Pulse output period
D: Pulse output device (please use transistor output module)

\section*{Explanations:}
1. \(S_{1} \leq S_{2}\).
2. See the specifications of each model for their range of use.
3. In ES/EXISS series MPU, PWM instruction can only be used once in the program.
4. Flags: See remarks for more details.
5. Range of \(\mathbf{S}_{1}\) : (t) \(0 \sim 32,767 \mathrm{~ms}\).
6. Range of \(\mathbf{S}_{2}\) : (T) \(1 \sim 32,767 \mathrm{~ms}\) (but \(\mathbf{S}_{1} \leq \mathbf{S}_{2}\) ).
7. \(\mathbf{D}\) for all series MPU:
\begin{tabular}{|l|c|c|c|}
\hline MPU & ES/EXISS/SA/SX/SC & EH & EH2/SV/EH3/SV2 \\
\hline Output point & Y1 & Y0, Y2 & Y0, Y2, Y4, Y6 \\
\hline
\end{tabular}
8. When PWM instruction is used in the program, its outputs cannot be the same as those of API 57 PLSY and API 59 PLSR.
9. PWM instruction designates the pulse output width in \(\mathbf{S}_{\mathbf{1}}\) and pulse output period in \(\mathbf{S}_{\mathbf{2}}\) and outputs from output device \(\mathbf{D}\).
10. For SA/SX/SC series MPU, When, \(\mathbf{S}_{1} \leq 0\) or \(\mathbf{S}_{2} \leq 0\) or \(\mathbf{S}_{1}>\mathbf{S}_{2}\), there will be operational errors (M1067 and M1068 will not be On), and there will be no output from the pulse output device. When \(\mathbf{S}_{1}=\mathbf{S}_{2}\), the pulse output device will keep being On.
11. For EH/EH2/SV/EH3/SV2 series MPU, When, \(\mathbf{S}_{1}<0\) or \(\mathbf{S}_{\mathbf{2}} \leq 0\) or \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{2}\), there will be operational errors (M1067 and M1068 will be On), and there will be no output from the pulse output device. When \(\mathbf{S}_{1}=0, \mathrm{M} 1067\) and M1068 will not be On and there will be no output from the pulse output device. When \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\), the the pulse output device will keep being On.
12. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) can be changed when PWM instruction is being executed.
13. For SA/EH series MPU, there is no limitation on the times using this instruction in the program. However, for EH series MPU, two instructions are allowed to be executed at the same time; for EH2/SV/EH3/SV2 series MPU, four instructions are allowed to be executed at the same time.

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{On}\), Y 1 will output the pulses as below. When \(\mathrm{X} 0=\mathrm{Off}, \mathrm{Y} 1\) output will also be Off.
\begin{tabular}{|c|c|c|c|c|}
\hline X0 & PWM & K1000 & K2000 & Y1 \\
\hline
\end{tabular}


\section*{Remarks:}
1. Flags for ES/EX/SS/SA/SX/SC series MPU:

M1070: Y1 pulse output time unit switch. When Off: 1ms; when On: 100us
2. Flags and special registers for \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2\) series MPU:

M1010: (EH/EH2/SV/EH3/SV2) When On, CH0, CH1, CH2 and CH 3 will output pulses when END instruction is executed. Off when the output starts.
M1070: (EH/EH2/SV/EH3/SV2) The setting of time unit of CH0 has to work with D1371.
M1071: (EH/EH2/SV/EH3/SV2) The setting of time unit of CH1 has to work with D1372.
M1258: (EH/EH2/SV/EH3/SV2) CH0 pulse output signals reverse.
M1259: (EH/EH2/SV/EH3/SV2) CH1 pulse output signals reverse.
M1334: (EH/EH2/SV/EH3/SV2) CH0 pulse output pauses.
M1335: (EH/EH2/SV/EH3/SV2) CH1 pulse output pauses.
M1336: (EH/EH2/SV/EH3/SV2) CH0 pulse output has been sent.
M1337: (EH/EH2/SV/EH3/SV2) CH1 pulse output has been sent.
M1520: (EH2/SV/EH3/SV2) CH2 pulse output pauses.
M1521: (EH2/SV/EH3/SV2) CH3 pulse output pauses.
M1522: (EH2/SV/EH3/SV2) CH2 pulse output has been sent.
M1523: (EH2/SV/EH3/SV2) CH3 pulse output has been sent.
M1526: (EH2/SV/EH3/SV2) CH2 pulse output signals reverse.
M1527: (EH2/SV/EH3/SV2) CH3 pulse output signals reverse.
M1530: (EH2/SV/EH3/SV2) The setting of time unit of CH 2 has to work with D1373.
M1531: (EH2/SV/EH3/SV2) The setting of time unit of CH 3 has to work with D1374.
D1336: (EH/EH2/SV/EH3/SV2) Low word of the current number of output pulses from CH 0 .
D1337: (EH/EH2/SV/EH3/SV2) High word of the current number of output pulses from CH0.
D1338: (EH/EH2/SV/EH3/SV2) Low word of the current number of output pulses from CH 1 .
D1339: (EH/EH2/SV/EH3/SV2) High word of the current number of output pulses from CH1.
D1371: (EH/EH2/SV/EH3/SV2) Time unit of CH0 output pulses when M1070 = On.
D1372: (EH/EH2/SV/EH3/SV2) Time unit of CH1 output pulses when M1071 = On.

D1373: (EH2/SV/EH3/SV2) Time unit of CH 2 output pulses when \(\mathrm{M} 1530=\) On.
D1374: (EH2/SV/EH3/SV2) Time unit of CH3 output pulses when M1531 = On.
D1375: (EH2/SV/EH3/SV2) Low word of the current number of output pulses from CH 2 .
D1376: (EH2/SV/EH3/SV2) High word of the current number of output pulses from CH .
D1377: (EH2/SV/EH3/SV2) Low word of the current number of output pulses from CH3.
D1378: (EH2/SV/EH3/SV2) High word of the current number of output pulses from CH 3 .
3. Time unit settings for \(E H / E H 2 / S V / E H 3 / S V 2\) series MPU:

You cannot modify M1070 in the program.
D1371, D1372, D1373 and D1374 determine the time unit of the output pulses from \(\mathrm{CH}, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3 and the default setting is K1. If your set value is not within the range, the default value will be adopted.
\begin{tabular}{|l|c|c|c|c|}
\hline D1371, D1372, D1373, D1374 & K0 & K1 & K2 & K3 \\
\hline Time unit & 10us & 100us & 1 ms & 10 ms \\
\hline
\end{tabular}
4. When there are many high-speed pulse output instructions (PLSY, PWM, PLSR) in a program for Y0 output, and provided these instructions are being executed in the same scan period, PLC will set up and output the instructions with the fewest steps.
\begin{tabular}{|c||c|c|c|l|l|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
& Function \\
\hline 59 & D & PLSR & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{5}{*}{PLSR: 9 steps DPLSR: 17 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & \[
\begin{array}{|c|c|}
\hline \text { SV } & \text { EH3 } \\
\hline \text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|}
\text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS S & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Maximum speed of pulse output \(\quad \mathbf{S}_{2}\) : Total number of output pulses \(\quad \mathbf{S}_{3}\) : Acceleration/deceleration time (ms)
D: Pulse output device (please use transistor output module)

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. For ES/EX/SS series MPU, PLSR instruction can be used twice in the program but the outputs cannot be overlapped.
3. Flags: See remarks of API 57 PLSY.
4. Range of \(\mathbf{S}_{1}: 10 \sim 32,767 \mathrm{~Hz}\) (16-bit); \(10 \sim 200,000 \mathrm{~Hz}\) (32-bit). The maximum speed has to be 10 's multiple; if not, the 1 s digit will be left out. \(1 / 10\) of the maximum speed is the variation of one acceleration or deleration. Please be aware if the variation reponds to the acceleration/deceleration demand from the step motor, in case the step motor may crash.
5. Range of \(\mathbf{S}_{2}: 110 \sim 32,767\) (16-bit); \(110 \sim 2,147,483,647\) (32-bit). If \(\mathbf{S}_{\mathbf{2}}\) is less than 110 , the pulet output will be abnormal.
6. Range of \(\mathbf{S}_{3}\) : below \(5,000 \mathrm{~ms}\). The acceleration time and deceleration time have to be the same.
a) The acceleration/deceleration time in a DVP-ES/EX/SS/SA/SXISC series PLC has to be 10 times longer than the maximum scan time (D1012). If not, the slope of accleration and deceleration will be incorrect.
b) The minimum set value of acceleration/deceleration time can be obtained from the following equation:
\[
\mathbf{S}_{3} \geqslant \frac{90,000}{\mathbf{S}_{1}}
\]

If the set value is less than the result obtained from the equation, the acceleration/deceleration time will be longer. If the set value is less than \(90,000 / \mathbf{S}_{1}\), use the result of \(90,000 / \mathbf{S}_{1}\) as the set value.
c) The maximum set value of acceleration/deceleration time can be obtained from the following equation:
\(\mathbf{S}_{3} \leqslant \frac{\mathbf{S}_{2}}{\mathbf{S}_{1}} \times 818\)
d) The speed variation is fixed to 10 steps. If the input acceleration/deceleration time is longer than the maximum set value, the acceleration/deceleration time will follow the maximum set time. If shorter than the minimum set value, the accleration/deceleration time will follow the minimum set time.
7. \(\mathbf{D}\) for all series MPU:
\begin{tabular}{|l|c|c|c|}
\hline MPU & ES/EX/SS/SA/SXISC & EH & EH2/SV/EH3/SV2 \\
\hline Output point & Y0, Y1 & Y0, Y2 & Y0, Y2, Y4, Y6 \\
\hline
\end{tabular}
8. EH series MPU has two groups pf A-B phase pulse output \(\mathrm{CHO}(\mathrm{YO}, \mathrm{Y} 1)\) and \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\). EH2/SV/EH3/SV2 series MPU has four groups pf A-B phase pulse output CH0 (Y0, Y1), CH1 (Y2, Y3), CH2 (Y4, Y5) and CH3 (Y6, Y7). See remarks of API 57 PLSY for how to set up.
9. PLSR instruction is a pulse output instruction with acclerating and decelerating functions. The pulses accelerate from the static status to target speed and decelerates when the target distance is nearly reached. The pulse output will stop when the target distance is reached.
10. When PLSR instruction is executed, after \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{2}\) and \(\mathbf{S}_{3}\) are set, the pulses will output from \(\mathbf{D}\). The output starts at the frequency of increasing \(\mathbf{S}_{1} / 10\) at a time. The time forf every frequency is fixed at \(\mathbf{S}_{3} / 9\).
11. \(\mathbf{S}_{1}, \mathbf{S}_{2}\) and \(\mathbf{S}_{3}\) can be changed when PLSR instruction is being executed.
12. For ES/EX/SS/SA/SXISC series MPU, when all the Y0 pulses have been sent, M1029 will be On; when all the Y1 pulses have been sent, M1030 will be On. Next time when PLSR instruction is enabled, M1029 or M1030 will be 0 again and after the pulse output is completed, it will become 1 again.
13. For EH/EH2/SV/EH3/SV2 series MPU, when all the CH0 (Y0, Y1) pulses have been sent, M1029 will be On; when all the \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\) pulses have been sent, M 1030 will be On; when \(\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) pulses have been sent, M1036 will be On; when CH3 (Y6, Y7) pulses have been sent, M1037 will be On. Next time when PLSR instruction is enabled, M1029, M1030, M1036 or M1037 will be 0 again and after the pulse output is completed, they will become 1 again.
14. For EH2/SV/EH3/SV2 series MPU V1.4 and later versions, when the instruction designate incorrect parameters, the default output will become the maximum value or mininum value.
15. During every acceleration section, the number of pulses (frequency \(\times\) time) may not all be integers. PLC will round up the number to an integer before the output. Therefore, the acceleration time of every section may not be exactly the same. The offset is determined upon the frequency and the decimal after rounding up. In order to ensure the correct number of output pulses, PLC will supplement insufficient pulses in the last section.
16. For SA/EH series MPU, there is no limitation on the times of using this instruction in the program. However, for SA/SXISC/EH series MPU, two instructions can be exeucted at the same time; for EH2/SV/EH3/SV2 series MPU, four instructions can be executed at the same time.

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), the pulses will output at the maximum frequency \(1,000 \mathrm{~Hz}\) with the total number D10 at \(3,000 \mathrm{~ms}\) from YO. The frequency will increase by \(1,000 / 10 \mathrm{~Hz}\) at a time and every frequency will last for \(3,000 / 9\) (ms).
2. When X 10 is Off, the output will be interrupted. When XO is On again, the counting of pulses will start from 0 .
\begin{tabular}{|l|l|l|l|l|l|}
\hline X0 & PLSR & K1000 & D10 & K3000 & Yo \\
\hline
\end{tabular}


\section*{Remarks:}
1. The outputs cannot be the same as those of API 57 PLSY and API 58 PWM.
2. When there are many high speed pulse output instructions (PLSY, PWM, PLSR) in a program for Y0 output, and provided these instructions are being executed in the same scan period, PLC will set up and output the instructions with the fewest steps.
3. With M1133 ~ M1135 and D1133, Y0 of SA/SX/SC series MPU can output pulses at up to 50 kHz . (SX V3.0 and above do not support this function. Users can directly use PLSY to output pulses at 50kHz.) See 2.11 for more details of special D and special M.

Range of output frequecies for all series:
\begin{tabular}{|l|c|c|c|c|}
\hline MPU & ES/EXISS & SA/SX/SC & EH & EH2/SV/EH3/SV2 \\
\hline \multirow{4}{*}{ Range } & & & & \(Y 0: 10 \sim 200,000 \mathrm{~Hz}\) \\
& \(Y 0: 10 \sim 10,000 \mathrm{~Hz}\) & \(Y 0: 10 \sim 30,000 \mathrm{~Hz}\) & \(Y 0: 10 \sim 200,000 \mathrm{~Hz}\) & \(Y 2: 10 \sim 200,000 \mathrm{~Hz}\) \\
& \(Y 1: 10 \sim 10,000 \mathrm{~Hz}\) & \(Y 1: 10 \sim 30,000 \mathrm{~Hz}\) & \(Y 2: 10 \sim 200,000 \mathrm{~Hz}\) & \(Y 4: 10 \sim 200,000 \mathrm{~Hz}\) \\
& & & & \(Y 6: 10 \sim 200,000 \mathrm{~Hz}\) \\
\hline
\end{tabular}
4. Flags and special registers for SA/SC series MPU:
\begin{tabular}{|l|l|}
\hline M1347 & \begin{tabular}{l} 
For SA/SC. Reset flag for Y0 pulse output \\
(Available in SA V1.8 and later version, SC V1.6 and later versions)
\end{tabular} \\
\hline M1348 & \begin{tabular}{l} 
For SA/SC. Reset flag for Y1 pulse output \\
(Availabe in SA V1.8 and later versions, SC V1.6 and later versions)
\end{tabular} \\
\hline M1524 & For SC (V1.6 and later versions). Reset flag for Y10 pulse output \\
\hline M1525 & For SC (V1.6 and later versions). Reset flag for Y11 pulse output \\
\hline
\end{tabular}
5. Flags and special registers for EH2/SV/EH3/SV2 series MPU:
\begin{tabular}{|l|l|}
\hline M1257 & The acceleration/deceleration slope of the high-speed pulse output is an S curve. \\
\hline M1308 & \begin{tabular}{l} 
Off->On: The high-speed output of the first pulse CH0 (Y0, Y1) paruse immediately. \\
On->Off: Continue to output the pulses which have not been output.
\end{tabular} \\
\hline M1309 & \begin{tabular}{l} 
Off->On: The high-speed output of the first pulse CH1 (Y2, Y3) paruse immediately. \\
On->Off: Continue to output the pulses which have not been output.
\end{tabular} \\
\hline M1310 & \begin{tabular}{l} 
Off->On: The high-speed output of the first pulse CH2 (Y4, Y5) paruse immediately. \\
On->Off: Continue to output the pulses which have not been output.
\end{tabular} \\
\hline M1311 & \begin{tabular}{l} 
Off->On: The high-speed output of the first pulse CH3 (Y6, Y7) paruse immediately. \\
On->Off: Continue to output the pulses which have not been output.
\end{tabular} \\
\hline M1347 & For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH0 pulse output \\
\hline M1348 & For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH1 pulse output \\
\hline M1524 & For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH2 pulse output \\
\hline M1525 & For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH3 pulse output \\
\hline D1127 & The number of pulses at the acceleration setion for the position instruction (low word) \\
\hline D1128 & The number of pulses at the acceleration setion for the position instruction (high word) \\
\hline D1133 & The number of pulses at the deceleration setion for the position instruction (low word) \\
\hline D1134 & The number of pulses at the deceleration setion for the position instruction (high word) \\
\hline
\end{tabular}

\section*{Functions in EH series MPU:}
1. Relevant devices for EH/EH2/SV/EH3/SV2 series MPU:
\begin{tabular}{|l|l|l|l|l|l|}
\hline X0 & PLSR & K1000 & D10 & K3000 & Y0 \\
\hline
\end{tabular}
2. The range of pulse speed for this instruction is \(10 \sim 200,000 \mathrm{~Hz}\). If the set values of maximum speed and acceleration/deceleration time exceed the range, PLC will operate by the default value that is within the range.
\begin{tabular}{|l|c|c|c|c|}
\hline Operand & \multicolumn{1}{|c|}{\(\mathbf{S}_{1}\)} & \multicolumn{1}{c|}{\(\mathbf{S}_{2}\)} & \(\mathbf{S}_{3}\) & \multicolumn{1}{c|}{\(\mathbf{D}\)} \\
\hline Explanation & Max. frequency & Total number of pulses & Accel/Decel time & Output point \\
\hline Range & 16 -bit & \(10 \sim 32,767 \mathrm{~Hz}\) & \(110 \sim 32,767\) & \(1 \sim 5,000 \mathrm{~ms}\)
\end{tabular}

When M1257 is Off, the acceleration/deceleration slope is a straight-line curve, as shown below.


When M1257 is On, the acceleration/deceleration slope is an S curve, as shown below.

3. The acceleration/deceleration of \(E H / E H 2 / S V / E H 3 / S V 2\) series MPU is based on the number of pulses. If the output cannot reach the maximum acceleration frequency within the acceleration/deceleration time offered, the instruction will automatically adjust the acceleration/deceleration time and the maximum frequency.
4. The operands have to be set before the execution of the instruction PLSR.
5. All acceleration/deceleration instructions are included with the brake function. The brake function will be enabled when PLC is performing acceleration and the switch contact is suddenly Off. The deceleration will operate at the slope of the acceleration.

\begin{tabular}{|c||c|c|ll|}
\hline API & Mnemonic & Operands & & Function \\
\hline 60 & IST & \(S D D_{1} D_{2}\) & Initial State & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & Kn & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{IST: 7 steps} \\
\hline S & * & * & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{1}\) & & & & & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & \multicolumn{2}{|l|}{SX SC} & \multicolumn{2}{|l|}{EH SV} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & \multicolumn{2}{|l|}{ES EX} & \multicolumn{2}{|l|}{SS} & SA & \multicolumn{2}{|l|}{SC} & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & & SA & Sx & SC & \multicolumn{2}{|l|}{EH S} & \[
\begin{array}{l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{sv} & \mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}\) : Start device in the designated operation mode \(\quad \mathbf{D}_{1}\) : The smallest No. of designated step in auto mode
\(\mathbf{D}_{2}\) : The biggest No. of designated step in auto mode

\section*{Explanations:}
1. \(S\) will occupy 8 consecutive points.
2. Range of \(\mathbf{D}_{1}\) and \(\mathbf{D}_{2}\) : for SA/SX/SC/EH/EH2/SV/EH3 /SV2 S20 ~ S899; for ES/EX/SS S20 ~S127; \(\mathbf{D}_{2}>\mathbf{D}_{\mathbf{1}}\).
3. See the specifications of each model for their range of use.
4. ES/SA series MPU does not support E, F index register modification.
5. IST instruction can only be used once in the program.
6. Flags: M1040 ~ M1047. See remarks for more details.
7. IST instruction is a handy instruction specifically for the initial status of step ladder control procedure to accommodate special auxiliary relay.

\section*{Program Example 1:}
1. Use of IST instruction
\begin{tabular}{|l|l|l|l|l|}
\hline M1000 & IST & X10 & S20 & S60 \\
\hline
\end{tabular}

S X10: Individual operation
X11: Zero return
X12: Step operation
X13: One cycle operation

X14: Continuous operation
X15: Zero return enabled switch
X16: Start switch
X17: Stop switch
2. When IST instruction is being executed, the following special auxiliary relays will switch automatically.
\begin{tabular}{ll} 
M1040: Operation forbidden & S0: Initiates manual operation \\
M1041: Operation starts & S1: Initiates zero return \\
M1042: Pulse output enabled & S2: Initiates auto operation
\end{tabular} M1047: STL monitor enabled

S1: Initiates zero return
S2: Initiates auto operation
3. S10 ~ S19 are for zero return and cannot be used as general steps. When S0 ~ S9 are in use, S0 ~ S2 represent manual operation mode, zero return mode and auto operation mode. Therefore, in the program, you have to write the circuit of the three steps in advance.
4. When switched to S 1 (zero return) mode, any On in S10 ~ S19 will result in no zero return.
5. When switched to S 2 (auto operation) mode, any On of the \(S\) in \(D_{1} \sim D_{2}\) or M1043 \(=\) On will result in no auto operation.

\section*{Program Example 2:}
1. Robot arm control (by IST instruction):
a) Motion request: Separate the big ball and small ball and move them to different boxes. Configure the control panel for the control.
b) Motions of the robot arm: descending, clipping ball, ascending, right shifting, releasing ball, ascending, left shifting.
c) \(1 / O\) devices:

2. Operation modes:

Manual operation: Turn On/Off of the load by a single button.
Zero return: Press the zero return button to automatically zero-return the machine.
Auto operation:
a) Single step operation: Press "auto start" button for every one step forward.
b) One cycle operation: Press "auto start" button at the zero point. After a cycle of auto operation, the operation will stops at the zero point. Press "auto stop" button in the middle of the operation to stop the operation and press "auto start" to restart the operation. The operation will resume until it meets the zero point.
c) Continuous operation: Press "auto start" button at the zero point to resume the operation. Press "auto stop" to operate until it meets the zero point.
3. The control panel:

a) Ball size sensor \(X 0\).
b) Robot arm: left limit X 1 , big ball right limit X 2 , small ball right limit X 3 , upper limit X 4 , lower limit X 5 .
c) Robot arm: ascending Y 0 , descending Y 1 , right shifting Y 2 , left shifting Y 3 , clipping Y 4 .

\section*{Start Circuit}


Manual Operation Mode


\section*{Zero Return Mode}

SFC:


Ladder Diagram:


\section*{Auto Operation Modes}

SFC:


Ladder Diagram:


\section*{Remarks:}

Flag explanations:
M1040: When On, all step operations are forbidden.
1. Manual mode: M1040 keeps being On
2. Zero return/one cycle operation mode: Between the timing of pressing "auto stop" and "auto start" buttons, M1040 will keep being On.
3. Step mode: M1040 keeps being On until "auto start" button is pressed.
4. Continuous operation mode: When PLC goes from STOP to RUN, M1040 will keep being On and turn Off when "auto start" button is pressed.

M1041: Step operation starts. Special M for initial S2 to move to the next step.
1. Manual/zero return mode: M1041 keeps being Off.
2. Step/one cycle operation mode: M1041 will only be On when "auto start" button is pressed.
3. Continuous operation mode: M1041 keeps On when "auto start" button is pressed; Off when "auto stop" button is pressed.

M1042: Enabling pulse output. Sending pulses once when "auto start" button is pressed.
M1043: On when zero return is completed.
M1044: In continuous operation mode, M1044 has to be On to more S2 to the next step.
M1045: All output resets are forbidden.
If the machine (not at the zero point) goes
- from manual (S0) to zero return (S1)
- from auto (S2) to manual (S0)
- from auto (S2) to zero return (S1)
1. When M1045 is Off, and any of the \(S\) among \(D_{1} \sim D_{2}\) is On, SET Y output and the step in action will be reset to Off.
2. When M1045 is On, SET Y output will be remained but the step in action will be reset to Off If the machine executes zero return (at the zero point) and goes from zero return (S1) to manual (S0), no matter M1045 is On or Off, SET Y output will be remained but the step in action will be reset to Off.

M1047: On for enabling STL monitor. When IST instruction starts to be executed, M1047 will be forced On. In every scan time, as long as IST instruction is still On, M1047 will be forced On. M1047 monitors all the S.

D1040 ~
On status of step No. \(1 \sim 8\)
D1047: STL state setting. On when any of the steps is On. When M1047 is forced On, On of any S will result in On of M1046. D1040 ~ D1047 will record the No. of the previous 8 points before On of S.
\begin{tabular}{|c||c|c|c|c|cc|}
\hline \multicolumn{3}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
& Function \\
\hline 61 & D & SER & P & \(S_{1}\) & \(S_{2}\) & \(D\) \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Start device for data stack comparison
\(\mathbf{S}_{2}\) : Data to be compared
D: Start device for storing comparison result \(\quad \mathbf{n}\) : Length of data to be compared

\section*{Explanations:}
1. When \(\mathbf{S}_{\mathbf{2}}\) are used in device F , only 16 -bit instruction is applicable.
2. D will occupy 5 consecutive points.
3. Range of \(\mathbf{n}\) : for 16 -bit instruction \(1 \sim 256\); for 32 -bit instruction \(1 \sim 128\).
4. See the specifications of each model for their range of use.
5. The \(\mathbf{n}\) data in the registers starting from \(\mathbf{S}_{\mathbf{1}}\) are compared with \(\mathbf{S}_{\mathbf{2}}\) and the results are stored in the registers starting from \(\mathbf{D}\).
6. In the 32-bit instruction, \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}, \mathbf{D}\) and \(\mathbf{n}\) will designate 32 -bit registers.
7. For \(\mathbf{D}\), the 16 -bit counters and 32 -bit counters in SA/SXISC series MPU cannot be mixed when being used.

\section*{Program Example:}
1. When \(\mathrm{X0}=\mathrm{On}\), the data stack consist of \(\mathrm{D} 10 \sim \mathrm{D} 19\) will be compared against D 0 and the result will be stored in D50 ~ D52. If there are equivalent values appearing during the comparison, D50 ~ D52 will all be 0.
2. The data are compared algebraically. \((-10<2)\).
3. The No. of the register with the smallest value among the compared data will be recorded in D53; the biggest will be recorded in D54. When there are more than one smallest value or biggest value, device D will record the No. of the register with bigger value.
\begin{tabular}{|l|l|l|l|l|l|}
\hline X0 \\
\hline SER & D10 & D0 & D50 & K10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & Content & Data to be compared & Data No. & Result & D & Content & Description \\
\hline & D10 & 88 & \multirow{10}{*}{\(\mathbf{S}_{\mathbf{2}}\)
D0 \(=\) K100} & 0 & & D50 & 4 & Total number of data with equivalent values \\
\hline & D11 & 100 & & 1 & Equal & D51 & 1 & No. of the first equivalent value \\
\hline & D12 & 110 & & 2 & & D52 & 8 & No. of the last equivalent value \\
\hline (n) & D13 & 150 & & 3 & & D53 & 7 & No. of the smallest value \\
\hline \multirow{6}{*}{\(\rightarrow\)} & D14 & 100 & & 4 & Equal & D54 & 9 & No. of the biggest value \\
\hline & D15 & 300 & & 5 & & & & \\
\hline & D16 & 100 & & 6 & Equal & & & \\
\hline & D17 & 5 & & 7 & Smallest & & & \\
\hline & D18 & 100 & & 8 & Equal & & & \\
\hline & D19 & 500 & & 9 & Biggest & & & \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Start device in the data table
\(\mathbf{S}_{\mathbf{2}}\) : No. of counter
D: Start No. of the devices for the comparison results
\(\mathbf{n}\) : Number of data for comparison

\section*{Explanations:}
1. When \(\mathrm{S}_{1}\) designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS , the 16-bit instruction has to designate K 4 and 32-bit instruction has to designate K8.
2. For SA/SX/SC series MPU, \(\mathbf{S}_{\mathbf{2}}\) only supports \(C\) device.
3. Range of \(\mathbf{n}: 1 \sim 64\)
4. See the specifications of each model for their range of use.
5. ABSD instruction is for the absolute control of the multiple output pulses generated by the present value in the counter.
6. \(\quad \mathbf{S}_{2}\) of DABSD instruction can designate high speed counters. However, when the present value in the high speed counter is compared with the target value, the result cannot output immediately owing to the scan time. If an immediate output is required, please use DHSZ instruction that is exclusively for high speed counters.

\section*{Program Example:}
1. Before the execution of ABSD instruction, use MOV instruction to write all the set values into D100 ~ D107 in advance. The even-number \(D\) is for lower bound value and the odd-number \(D\) is for upper bound value.
2. When \(\mathrm{X} 10=\mathrm{On}\), the present value in counter C 10 will be compared with the four groups of lower and upper bound values in D100 ~ D107. The comprison results will be stored in M10 ~ M13.
3. When \(\mathrm{X} 10=\) Off, the original \(\mathrm{On} /\) Off status of \(\mathrm{M} 10 \sim \mathrm{M} 13\) will be remained.

4. M10~M13 will be On when the present value in C10 \(\leqq\) upper bound value or \(\geqq\) lower bound value.
\begin{tabular}{|c|c|c|c|}
\hline Lower bound value & Upper bound value & Present value in C10 & Output \\
\hline \(\mathrm{D} 100=40\) & \(\mathrm{D} 101=100\) & \(40 \leqq \mathrm{C} 10 \leqq 100\) & \(\mathrm{M} 10=\mathrm{On}\) \\
\hline \(\mathrm{D} 102=120\) & \(\mathrm{D} 103=210\) & \(120 \leqq \mathrm{C} 10 \leqq 210\) & \(\mathrm{M} 11=\mathrm{On}\) \\
\hline Lower bound value & Upper bound value & Present value in C10 & Output \\
\hline \(\mathrm{D} 104=140\) & \(\mathrm{D} 105=170\) & \(140 \leqq \mathrm{C} 10 \leqq 170\) & \(\mathrm{M} 12=\) On \\
\hline \(\mathrm{D} 106=150\) & \(\mathrm{D} 107=390\) & \(150 \leqq \mathrm{C} 10 \leqq 390\) & \(\mathrm{M} 13=\mathrm{On}\) \\
\hline
\end{tabular}
5. If the lower bound value > upper bound value, when C10 < upper bound value (60) or > upper bound value (140), M12 will be On.
\begin{tabular}{|c|c|c|c|}
\hline Lower bound value & Upper bound value & Present value in C10 & Output \\
\hline \(\mathrm{D} 100=40\) & \(\mathrm{D} 101=100\) & \(40 \leqq \mathrm{C} 10 \leqq 100\) & \(\mathrm{M} 10=\mathrm{On}\) \\
\hline \(\mathrm{D} 102=120\) & \(\mathrm{D} 103=210\) & \(120 \leqq \mathrm{C} 10 \leqq 210\) & \(\mathrm{M} 11=\mathrm{On}\) \\
\hline \(\mathrm{D} 104=140\) & \(\mathrm{D} 105=60\) & \(60 \leqq \mathrm{C} 10 \leqq 140\) & \(\mathrm{M} 12=\) On \\
\hline \(\mathrm{D} 106=150\) & \(\mathrm{D} 107=390\) & \(150 \leqq \mathrm{C} 10 \leqq 390\) & \(\mathrm{M} 13=\) On \\
\hline
\end{tabular}
M10 \(\quad 40 \quad 100\)
M11

\begin{tabular}{|c|c|c|l|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\cline { 1 - 4 } 63 & INCD & \(\mathbf{S}_{1}\left(\boldsymbol{S}_{2} \varnothing D \subset \mathrm{D}\right.\) & Incremental Drum Sequencer \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & & KnY & Kn & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{INCD: 9 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & * & & * & * & & * & & * & * & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & * & & & & & & & & & & & & & \\
\hline D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & & & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Start device in the data table
\(\mathbf{S}_{2}\) : No. of counter
D: Start No. of the devices for the comparison results \(\mathbf{n}\) : Number of data for comparison

\section*{Explanations:}
1. When \(\mathrm{S}_{1}\) designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS , it has to designate K 4 .
2. In the 16 -bit instruction, \(\mathbf{S}_{\mathbf{2}}\) has to designate \(\mathbf{C 0} \sim \mathrm{C} 198\) and will occupy 2 consecutive No. of counters.
3. Range of \(\mathbf{n}: 1 \sim 64\)
4. See the specifications of each model for their range of use.
5. Flag: M1029 (instruciton execution completed)
6. INCD instruction is for the relative control of the multiple output pulses generated by the present value in the counter.
7. The present value in \(\mathbf{S}_{2}\) is compared with \(\mathbf{S}_{1} . \mathbf{S}_{2}\) will be reset to 0 whenever a comparison is completed. The current number of data processed in temporarily stored in \(\mathbf{S}_{\mathbf{2}}+1\).
8. When n data have been processed, M1029 will be On for one scan period.

\section*{Program Example:}
1. Before the execution of INCD instruction, use MOV instruction to write all the set values into D100 ~ D104 in advance. D100 = 15, D101 = 30, D102 = 10, D103 = 40, D104 \(=25\).
2. The present value in C10 is compared against the set values in D100 ~ D104. The present value will be reset to 0 whenever a comparison is completed.
3. The current number of data having been processed is temporarily stored in C11.
4. The number of times of reset is temporarily stored in C11.
5. Whenever the content in C11 pluses \(1, \mathrm{M} 10 \sim\) M14 will also correspondingly change. See the timing diagram below.
6. After the 5 groups of data have been compared, M1029 will be On for one scan period.
7. When X 0 goes from On to Off, C10 and C11 will both be reset to 0 and \(\mathrm{M} 10 \sim \mathrm{M} 14\) will all be Off. When X 0 is On again, the instruction will start its execution again from the beginning.

\begin{tabular}{|c|c|c|ll|}
\hline API & Mnemonic & Operands & \multicolumn{1}{|c|}{ Function } \\
\hline 64 & TTMR & D & n & Teaching Timer
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & Kn & & KnS & T & T & C & D & D & E & F & \multicolumn{9}{|l|}{TTMR: 5 steps} \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & S & & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}

D: Device No. for storing the "On" time of button switch
n : Multiple setting

\section*{Explanations:}
1. D will occupy 2 consecutive devices.
2. Range of \(\mathbf{n}: \mathbf{0} \sim 2\)
3. See the specifications of each model for their range of use.
4. For SA series MPU, TTMR instruction can be used 8 times in the program.
5. The "On" time (unit: 100 ms ) of the external button switch is stored in device No. \(\mathbf{D}+1\). The "On" time (unit: second) of the switch is multiplied by \(\mathbf{n}\) and stored in \(\mathbf{D}\).
6. Multiple setting:

When \(\mathrm{n}=0\), unit of \(\mathrm{D}=\) second
When \(\mathrm{n}=1\), unit of \(\mathrm{D}=100 \mathrm{~ms}(\mathrm{D} \times 10)\)
When \(\mathrm{n}=2\), unit of \(\mathrm{D}=10 \mathrm{~ms}(\mathrm{D} \times 100)\)

\section*{Program Example 1:}
1. The "On" (being pressed) time of button switch X0 is stored in D1. The setting of n is stored in D0. Therefore, the button switch will be able to adjust the set value in the timer.
2. When \(X 0\) goes Off, the content in \(D 1\) will be cleared to 0 , but the content in \(D 0\) will remain.

3. Assume the "On" time of \(X 0\) is \(T\) (sec.), see the relation between \(D 0, D 1\) and \(n\) in the table below.
\begin{tabular}{|c|c|c|}
\hline n & D0 & D1 (unit: 100ms) \\
\hline K0 (unit: s) & \(1 \times \mathrm{T}\) & D1 = D0 \(\times 10\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{n} & \multicolumn{1}{|c|}{ D0 } & D1 (unit: 100ms) \\
\hline K1 (unit: 100 ms ) & \(10 \times \mathrm{T}\) & D1 = D0 \\
\hline K2 (unit: 10 ms ) & \(100 \times \mathrm{T}\) & D1 = D0/10 \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. Use TMR instruction to write in 10 groups of set time.
2. Write the set values into D100 ~ D109 in advance.
3. The timing unit for timer \(\mathrm{T} 0 \sim \mathrm{~T} 9\) is 0.1 sec . The timing unit for the teaching timer is 1 sec .
4. Connect the 1-bit DIP switch to \(\mathrm{XO} \sim \mathrm{X} 3\) and use BIN instruction to convert the set value of the switch into a bin value and store it in \(E\).
5. Store the "On" time (sec.) of X10 in D200.
6. M0 refers to the pulses generated from one scan period after the button switch of the teaching timer X 10 is released.
7. Use the set number of the DIP switch as the indirectly designated pointer and send the content in D200 to D100E (D100 ~ D109).


\section*{Remarks:}
1. For SA series MPU, TTMR instruction can be used 8 times in the program. But in a subroutine or interruption subroutine, the instruction can only be used once.
2. For EH series MPU, there is no limitation on the times using this instruction in the program and 8 instructions can be executed at the same time.
\begin{tabular}{|c|c|c|l|}
\hline API & Mnemonic & Operands & \\
\hline 65 & STMR & S & Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & \multicolumn{2}{|l|}{KnM} & KnS & \multicolumn{2}{|l|}{T} & C & D & E & F & \multicolumn{9}{|l|}{STMR: 7 steps} \\
\hline S & & & & & & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline m & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & SE & & & & & & & & 16 & -bit & & & & & & & & & & & & \\
\hline & & E & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: No. of timer
m: Set value in timer (unit: 100ms)
D: No. of start output device

\section*{Explanations:}
1. Range of S: for SA/SXISC T0 ~ T191; for EH/EH2/SV T0 ~ T199; for EH3/SV2 T0 ~ T183
2. Range of \(\mathbf{m}: 1 \sim 32,767\)
3. D will occupy 4 consecutive devices.
4. See the specifications of each model for their range of use.
5. STMR instruction is used for Off-delay, one shot timer and flashing sequence.
6. The No. of timers designated by STMR instructions can be used only once.

\section*{Program Example:}
1. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{STMR}\) instruction will designate timer T 0 and set the set value in T 0 as 5 seconds.
2. Y 0 is the contact of Off-delay. When X 10 goes from Off to On, Y0 will be On. When X 10 goes from On to Off, Y0 will be Off after a five seconds of delay.
3. When X 10 goes from On to Off, there will be a five seconds of \(\mathrm{Y} 1=\) On output.
4. When X 10 goes from Off to On, there will be a five seconds of \(\mathrm{Y} 2=\) On output.
5. When X 10 goes from Off to On, Y3 will be On after a five seconds of delay. When X 10 goes from On to Off, Y3 will be Off after a five seconds of delay.

6. Add \(a b\) contact of \(Y 3\) after \(X 10\), and \(Y 1\) and \(Y 2\) can operate for flashing sequence output. When \(X 10\) goes Off, \(\mathrm{Y} 0, \mathrm{Y} 1\) and Y 3 will be Off and the content in T 10 will be reset to 0 .

\begin{tabular}{|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 66 & & ALT & P & D & Alternate State
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & Kn & & KnY & & & Kn & & & T & C & D & E & F & \multicolumn{9}{|l|}{ALT, ALTP: 3 steps} \\
\hline D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & S & & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & S & & & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

D: Destination device

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. When ALT instruction is executed, "On" and "Off" of \(\mathbf{D}\) will switch.
3. This instruction adopts pulse execution instructions (ATLP).

\section*{Program Example 1:}

When X0 goes from Off to On, Y0 will be On. When X0 goes from Off to On for the second time, Y0 will be Off.


\section*{Program Example 2:}

Using a single switch to enable and disable control. At the beginning, M0 = Off, so Y0 = On and Y1 = Off. When X10 switches between On/Off for the first time, M0 will be On, so Y1 = On and Y0 = Off. For the second time of On/Off switching, M0 will be Off, so Y0 \(=\) On and \(\mathrm{Y} 1=\) Off.


\section*{Program Example 3:}

Generate flashing. When \(\mathrm{X} 10=\mathrm{On}\), T0 will generate a pulse every 2 seconds and Y0 output will switch between On and Off following the TO pulses.

\begin{tabular}{|c|c|c|l|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\hline \multicolumn{5}{|c|}{67} & RAMP & \(\mathbf{S}_{1}\left(\mathbf{S}_{2}\right) \mathbf{D}\) & n & Ramp Variable Value \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & K & H & Kn & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{RAMP: 9 steps DRAMP: 17 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & S & S & A & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Start of ramp signal
\(\mathbf{S}_{2}\) : End of ramp signal
D: Duration of ramp signal
n: Scan times

\section*{Explanations:}
1. Range of \(\mathbf{n}: 1 \sim 32,767\)
2. D will occupy 2 consecutive points.
3. See the specifications of each model for their range of use.
4. Flags: M1026 (enabling RAMP; see remarks for more details); M1029 (RAMP execution completed).
5. This instruction is for obtaining slope (the relation between linearity and scan time). Before using this instruction, you have to preset the scan time.
6. The set value of start ramp signal is pre-written in D10 and set value of end ramp signal in D11. When \(\mathrm{X} 10=\mathrm{On}\), D10 increases towards D11 through \(\mathrm{n}(=100)\) scans (the duration is stored in D12). The times of scans are stored in D13.
7. In the program, first drive M1039 = On to fix the scan time. Use MOV instruction to write the fixed scan time to the special data register D1039. Assume the scan time is 30 ms and take the above program for example, \(\mathrm{n}=\) K100, the time for D10 to increase to D11 will be 3 seconds ( \(30 \mathrm{~ms} \times 100\) ).
8. When X 10 goes Off, the instruction will stop its execution. When X 10 goes On again, the content in D12 will be reset to 0 for recalculation.
9. When M1026 = Off, M1029 will be On and the content in D12 will be reset to the set value in D10.
10. When this instruction is used with analog signal outputs, it will be able to buffer START and STOP.
11. DRAMP only supports EH3/SV2 V1.0, EH2/SV V1.8, SX V3.0, and above.

\section*{Program Example:}
\begin{tabular}{|c|l|l|l|l|l|}
\hline X10 & RAMP & D10 & D11 & D12 & K100 \\
\hline
\end{tabular}

n scans
D10<D11

n scans
D10 >D11

The scan times is stored in D13

\section*{Remarks:}

D12 for enabling On/Off of M1026:

M1026=ON

X10 \(\qquad\) Start signal


X10 \(\qquad\) Start signal


Operand \(\mathbf{n}\) in SA/SX V1.8, SC V1.6 and later versions support D device. Please be noted that the content in D can only be modified when the instruction stops executing. Modification cannot be made in the execution of the instruction.
\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 68 & DTM & (S1 D m n & Data Transform and Move \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & K & H & KnX & & nY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{DTM: 9 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline m & & & & & & * & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & & SS & SA & SX & SC & EH & Sv & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV2}
\end{array}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Start device of the source data stack
D: Start device of the destination data stack
\(\mathbf{m}\) : Transformation mode
n: Length of source data stack

\section*{Explanations:}
1. For parameter settings of operand \(\mathbf{m}\), please refer to the following description. K, H, D devices can be specified by operand \(\mathbf{m}\). If the set value is not in the available range, no transformation or move operation will be executed and no error will be detected.
2. K, H, D devices can be specified by operand \(\mathbf{n}\), which indicates the length of the source data stack. The available range for \(\mathbf{n}\) is \(1 \sim 256\). If the set value falls out of available range, PLC will take the max value (256) or the min value (1) as the set value automatically.
3. Explanations on parameter settings of \(\mathbf{m}\) operand:

KO: With \(\mathrm{n}=4\), transform 8-bit data into 16-bit data (Hi-byte, Lo-byte) in the following rule:
Hi-byte Lo-byte
\begin{tabular}{|l|l|}
\hline & (1) \\
\hline & (2) \\
\hline & (3) \\
\hline & (4) \\
\hline
\end{tabular}
Hi-byte Lo-byte
\begin{tabular}{|c|c|}
\hline (1) & (2) \\
\hline\((3)\) & (4) \\
\hline
\end{tabular}

K1: With \(\mathrm{n}=4\), transform 8-bit data into 16-bit data (Lo-byte, Hi-byte) in the following rule:
Hi-byte Lo-byte
\begin{tabular}{|l|l|}
\hline & (1) \\
\hline & (2) \\
\hline & \((3)\) \\
\hline & \((4)\) \\
\hline
\end{tabular}
\begin{tabular}{c} 
\\
\multicolumn{2}{c}{ Hi-byte Lo-byte } \\
\hline (2) \\
\hline\((4)\) \\
\hline\((3)\) \\
\hline
\end{tabular}

K2: With \(\mathrm{n}=2\), transform 16-bit data (Hi-byte, Lo-byte) into 8-bit data in the following rule:


K3: With \(\mathrm{n}=2\), transform 16-bit data (Lo-byte, Hi-byte) into 8-bit data in the following rule:


K4: With \(\mathrm{n}=3\), transform 8-bit HEX data into ASCII data (higher 4 bits, lower 4 bits) in the following rule:


K5: With \(\mathrm{n}=3\), transform 8-bit HEX data into ASCII data (lower 4 bits, higher 4 bits) in the following rule:


K6: When \(\mathrm{n}=4\), transform 8-bit ASCII data (higher 4 bits, lower 4 bits) into HEX data in the following rule: (ASCII value to be transformed includes \(0 \sim 9\) ( \(0 \times 30 \sim 0 \times 39\) ), \(A \sim F(0 \times 41 \sim 0 \times 46)\), and \(a \sim f(0 \times 61 \sim 0 \times 66)\).)

\section*{Hi-byte Lo-byte}
\begin{tabular}{|l|l|}
\hline & (1) \\
\hline & (2) \\
\hline & (3) \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|c|c|} 
\\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|ll|}
\hline & Hi-byte Lo-byte \\
\hline & (1) \\
\hline
\end{tabular}

K7: When \(\mathrm{n}=4\), transform 8-bit ASCII data (lower 4 bits, higher 4 bits) into HEX data in the following rule:


K8: Transform 8-bit GPS data into 32-bit floating point data in the following rule:


K9: Calculate the optimal frequency for positioning instructions with ramp up/ down function.
Users only need to set up the total number of pulses for positioning and the total time for positioning first, DTM instruction will automatically calculate the optimal max output frequency as well as the optimal start frequency for positioning instructions with ramp-up/down function such as PLSR, DDRVI and DCLLM.

\section*{Points to note:}
1. When the calculation results exceed the max frequency of PLC, the output frequency will be set as 0 .
2. When the total of ramp-up and ramp-down time exceeds the total time for operation, PLC will change the total time for operation (S+2) into "ramp-up time (S+3) + ramp-down time (S+4) + 1" automatically.

Explanation on operands: (For DVP-EH3 series PLCs whose version is 1.60 or below)
\(\mathbf{S}+0, \mathbf{S}+1\) : Total number of pulses for operation (32-bit)

S+2: Total time for operation (unit: ms)
D1343: Ramp-up time (unit: ms)
D1348: Ramp-down time (unit: ms)
D+0, D+1: Optimal max output frequency (unit: Hz ) (32-bit)
D+2: Optimal start frequency (Unit: Hz)
n: Reserved

Whether the ramp-up time is equal to the ramp-down time depends on the setting of M1534. If the ramp-up time is not equal to the ramp-down time, there will be 30 sections of acceleration, and 30 sections of deceleration. If the ramp-up time is equal to the ramp-down time, there will be 60 sections of acceleration, and 60 sections of decelerations.

Explanation on operands: (For DVP-SV2 series PLCs whose version is 1.40 or below)
\(\mathbf{S}+0, \mathbf{S}+1\) : Total number of pulses for operation (32-bit)
\(\mathbf{S}+2\) : Total time for operation (unit: ms)
\(\mathbf{S + 3 : ~ R a m p - u p ~ t i m e ~ ( u n i t : ~ m s ) ~}\)
S+4: Ramp-down time (unit: ms)
D+0, D+1: Optimal max output frequency (unit: Hz ) (32-bit)
D+2: Optimal start frequency (Unit: Hz)
n: Reserved

The ramp-up time is equal to the ramp-down time. There are 30 sections of acceleration, and 30 sections of deceleration.

Explanation on operands: (For DVP-EH3 series PLCs whose version is 1.62 (or above) and DVP-SV2 series PLCs whose version is 1.40 (or above)
\(\mathbf{S}+0, \mathbf{S}+1\) : Total number of pulses for operation (32-bit)
\(\mathbf{S}+2\) : Total time for operation (unit: ms)
\(\mathbf{S + 3 : ~ R a m p - u p ~ t i m e ~ ( u n i t : ~ m s ) ~}\)
S+4: Ramp-down time (unit: ms)
D+0, D+1: Optimal max output frequency (unit: Hz ) (32-bit)
D+2: Optimal start frequency (Unit: Hz)
n: Reserved

If \(\mathbf{S}+3\) is equal to \(\mathbf{S}+4\), the ramp-up time is equal to the ramp-down time, and there are 60 sections of acceleration, and 60 sections of deceleration. If \(\mathbf{S}+3\) is not equal to \(\mathbf{S}+4\), the ramp-up time is not equal to the ramp-down time, and there are 30 sections of acceleration, and 60 sections of deceleration.
K11: Conversion from Local Time to Local Sidereal Time
Unlike the common local time defined by time zones, local sidereal time is calculated based on actual
longitude. The conversion helps the user obtain the more accurate time difference of each location within the same time zone.

Explanation on operands:
\(\mathbf{S}+0, \mathbf{S}+1\) : Longitude (32-bit floating point value; East: positive, West: negative)
\(\mathbf{S}+2\) : Time zone (16-bit integer; unit: hour)
S+3~ S+8: Year, Month, Day, Hour, Minute, Second of local time (16-bit integer)
D+0~D+5: Year, Month, Day, Hour, Minute, Second of the converted local sidereal time (16-bit integer)
n: Reserved
Example:
Input: Longitude F121.55, Time zone: +8, Local time: AM 8:00:00, Jan/6/2011
Conversion results: AM 8:06:12, Jan/6/2011

K12: Ramp value for multiple points (16-bit)
Explanation on operands (16 bits):
S: input value
\(\mathbf{S}+1, \mathbf{S}+2 \ldots . \mathbf{S}+\mathrm{n}\) : input values for multiple points. The value of these values must be set by the following rule, \(\mathbf{S}+1\) must be the smallest value, \(\mathbf{S}+2\) must be larger than \(\mathbf{S}+1\) and so on. Therefore, \(\mathbf{S}+\mathrm{n}\) must be the largest value.
D: ramp value
\(\mathbf{D}+1, \mathbf{D}+2 \ldots \mathbf{D}+\mathrm{n}\) : Range of ramp values for multiple points
\(\mathbf{n}\) : Setting value for multiple points. The setting value is within the range between K2 \(\sim\) K50. If the setting value exceeds the range, the instruction is not executed.

The example of a curve is as follows. ( \(n=K 4\) )


Explanation of the example:
1. If \(\mathbf{S}\) is larger than \(\mathbf{S}+1\left(\mathbf{S}_{1}\right)\) and is less than \(\mathbf{S}+2\left(\mathbf{S}_{2}\right), \mathbf{D}+1\left(\mathbf{D}_{1}\right)\) and \(\mathbf{D}+2\left(\mathbf{D}_{2}\right) . \mathrm{D}=\left(\left(\mathbf{S}-\mathbf{S}_{1}\right) \times\left(\mathbf{D}_{2}-\mathbf{D}_{1}\right)\right.\) / \(\left.\left(\mathbf{S}_{2}-\mathbf{S}_{1}\right)\right)+\mathbf{D}_{1}\).
2. If \(\mathbf{S}\) is less than \(\mathbf{S}+1, \mathbf{D}=\mathbf{D}+1\). If \(\mathbf{S}\) is larger than \(\mathbf{S}+\mathbf{n}, \mathbf{D}=\mathbf{D}+\mathbf{n}\).
3. The floating-point numbers are involved in the operation. The output value is rounded down to the nearest whole digit, and then the 16 -bit integer is output.

K13: Ramp value for multiple points (32-bit)
Please refer to parameter K12 for more information about the operands. The source device and the destination device are represented by 32-bit values.

K14: Floating-point value for multiple points
Please refer to parameter K12 for more information about the operands. The source device and the destination device are represented by 32-bit floating-point values.

\section*{K16: String combination}

\section*{Explanations:}

The system searches for the location of ETX (value \(0 \times 00\) ) of the destination data string (lower 8 bits), then copies the data string starting of the source register (lower 8 bits) to the end of the destination data string. The source data string will be copied in byte order until the ETX (value 0x00) is reached.

\section*{Points to note:}

The operand \(\mathbf{n}\) sets the max data length after the string combination (max 256). If the ETX is not reached after the combination, the location indicated by \(\mathbf{n}\) will be the ETX and filled with \(0 \times 00\).

The combination will be performed in the following rule:


\section*{K17: String capture}

Explanations:
The system copies the source data string (lower 8 bits) with the data length specified by operand \(n\) to the destination registers, where the \(n+1\) register will be filled with \(0 \times 00\). If value \(0 \times 00\) is reached before the specified capture length n is completed, the capture will also be ended.

The capture will be performed in the following rule:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Hi-byte Lo-byte} & \multirow{9}{*}{\[
\square^{\mathrm{n}=\mathrm{k} 3}
\]} & \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Hi-byte}} & \multirow[b]{3}{*}{Lo-byte} \\
\hline S+0 & 'a' & & & & \\
\hline S+1 & 'b' & & & & \\
\hline S+2 & 'c' & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{D}+0 \\
& \mathrm{D}+1 \\
& \mathrm{D}+2
\end{aligned}
\]} & & 'a' \\
\hline S+3 & 'A' & & & & 'b' \\
\hline S+4 & 'B' & & & & 'c' \\
\hline S+5 & 'C' & & D+3 & & 0x00 \\
\hline S+6 & 'D' & & & & \\
\hline S+7 & 0x00 & & & & \\
\hline
\end{tabular}

K18: Convert data string to floating point value

\section*{Explanations:}

The system converts \(\mathbf{n}\) words (lower 8 bits) of the source data string (decimal point is not included) to floating point value and stores the converted value in the destination device.

\section*{Points to note:}
1. Operand \(\mathbf{n}\) sets the number of total digits for the converted floating value. Max 8 digits are applicable and the value over \(\mathbf{n}\) digit will be omitted. For example, \(\mathbf{n}=\mathrm{K} 6\), data string " 123.45678 " will be converted to "123.456".
2. When there are characters other than numbers 1~9 or the decimal point in the source data string, the character before the decimal point will be regarded as 0 , and the value after the decimal point will be regarded as the ETX.
3. If the source data string contains no decimal point, the converted value will be displayed by an \(\mathbf{n}\)-digit floating point value automatically.

The conversion will be performed in the following rule:
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{S+0} & Hi-byte Lo-byte & \multirow{9}{*}{} & \multirow{9}{*}{\[
\begin{aligned}
& D+0 \\
& D+1
\end{aligned}
\]} & \multirow[b]{5}{*}{32-bit Floating value} \\
\hline & '1' & & & \\
\hline S+1 & '2' & & & \\
\hline S+2 & '3' & & & \\
\hline S+3 & '.' & & & \\
\hline S+4 & '4’ & & & 123.456 \\
\hline S+5 & '5' & & & \\
\hline S+6 & '6' & & & \\
\hline S+7 & \(0 \times 00\) & & & \\
\hline
\end{tabular}

K19: Convert floating point value to data string
Explanations:
The system converts the floating point value in the source device \(S\) to data string with specified length \(\mathbf{n}\) (decimal point is not included).

\section*{Points to note:}
1. Operand \(\mathbf{n}\) sets the number of total digits for the floating point value to be converted. Max 8 digits are applicable and the value over \(\mathbf{n}\) digit will be omitted. For example, \(\mathbf{n}=\mathrm{K} 6\), floating value F123.45678 will be converted to data string "123.456".
2. When the digits of source value are more than the specified \(\mathbf{n}\) digits, only the \(\mathbf{n}\) digits from the left will be converted. For example, source value F123456.78 with \(\mathbf{n}=\mathrm{K} 4\) will be converted as data string "1234".
3. If the source value is a decimal value without integers, e.g. 0.1234 , the converted data string will be ". 1234 " where the first digit is the decimal point.

The conversion will be performed in the following rule:


\section*{Program Example 1: K2, K4}
1. When \(\mathrm{MO}=\mathrm{ON}\), transform 16-bit data in \(\mathrm{D} 0, \mathrm{D} 1\) into ASCII data in the following order: H byte -L byte -H byte Low byte, and store the results in D10 ~ D17.
\begin{tabular}{|c|c|c|c|c|c|}
\hline DTM & D0 & D2 & K2 & K2 \\
\hline & DTM & D2 & D10 & K4 & K4 \\
\hline
\end{tabular}
2. Value of source devices D0, D1:
\begin{tabular}{|c|c|c|}
\hline Register & D0 & D1 \\
\hline Value & H1234 & H5678 \\
\hline
\end{tabular}
3. When the \(1^{\text {st }}\) DTM instruction executes ( \(m=K 2\) ), ELC transforms the 16-bit data (Hi-byte, Lo-byte) into 8-bit data and move to registers D2~D5.
\begin{tabular}{|c|c|c|c|c|}
\hline Register & D2 & D3 & D4 & D5 \\
\hline Value & H12 & H34 & H56 & H78 \\
\hline
\end{tabular}
4. When the \(2^{\text {nd }}\) DTM instruction executes ( \(m=K 4\) ), ELC transforms the 8-bit HEX data into ASCII data and move to registers D10~D17.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Register & D10 & D11 & D12 & D13 & D14 & D15 & D16 & D17 \\
\hline Value & H 0031 & H 0032 & H 0033 & H 0034 & H 0035 & H 0036 & H 0037 & H 0038 \\
\hline
\end{tabular}

\section*{Program Example 2: K9}
\(\mathbf{m}=\mathrm{K} 9\)
1. Set up total number of pulses, total time, ramp-up time and ramp-down time in source device starting with D0. Execute DTM instruction and the optimal max frequency as well as optimal start frequency can be obtained and executed by positioning instructions.
2. Assume the data of source device is set up as below:
\begin{tabular}{|c|c|c|c|}
\hline Total Pulses & Total Time & Ramp-up Time & Ramp-down Time \\
\hline D0, D1 & D2 & D3 & D4 \\
\hline K10000 & K200 & K50 & K50 \\
\hline
\end{tabular}
3. The optimal positioning results can be obtained as below:
\begin{tabular}{|c|c|}
\hline Optimal max frequency & Optimal start frequency \\
\hline D10, D11 & D12 \\
\hline K70000 & K3334 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|r|}{Mnemonic} & Operands & Function \\
\hline 69 & D & SORT & (S)m1 \(m^{(m 2}\) & Sort Tabulated Data \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & Kn & & Kn & & T & & & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{6}{*}{SORT: 11 steps DSORT: 21 steps}} \\
\hline S & & & & & & & & & & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{m}_{1}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{m}_{2}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH S & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & S & & & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for the original data
\(\mathbf{m}_{\mathbf{1}}\) : Groups of data to be sorted \(\quad \mathbf{m}_{\mathbf{2}}\) : Number of columns of data
D: Start device for the sorted data
\(\mathbf{n}\) : Reference value for data sorting

\section*{Explanations:}
1. Range of \(\mathbf{m}_{1}: 1 \sim 32\).
2. Range of \(\mathbf{m}_{\mathbf{2}}: \mathbf{1 \sim 6}\)
3. Range of \(\mathbf{n}: \mathbf{1} \sim \mathbf{m}_{\mathbf{2}}\)
4. See the specifications of each model for their range of use.
5. Flag: M1029 (SORT execution completed).
6. The sorted result is stored in \(\mathbf{m}_{\mathbf{1}} \times \mathbf{m}_{\mathbf{2}}\) registers starting from the device designated in \(\mathbf{D}\). Therefore, if \(\mathbf{S}\) and \(\mathbf{D}\) designate the same register, the sorted result will be the same as the data designated in \(\mathbf{S}\).
7. It is better that the start No. designated in \(\mathbf{S}\) is 0 .
8. The sorting will be completed after \(\mathbf{m}_{1}\) times of scans. After the sorting is completed, M1029 will be On.
9. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.
10. The function of sorting one-dimensional data is added. If users set \(\mathbf{m}_{1}\) and \(\mathbf{m}_{\mathbf{2}}\) to 1 , the function will be enabled. The operand \(\mathbf{n}\) represents the number of data. It must be in the range of 1 to 32 . The data in the \(\mathbf{n}\) devices starting from \(\mathbf{S}\) is sorted. The sorting result is stored in the devices starting from \(\mathbf{D}\). This function only needs one scan time. After data is sorted. M1029 will be ON. This function supports DVP-EH3 series PLCs whose version is 1.62, DVP-SV2 series PLCs whose version is 1.62 , DVP-SX series PLCs whose version is 3.0 , and above.
11. The 32-bit instruction DSORT is added. It supports DVP-EH3 series PLCs whose version is 1.62 , DVP-SV2 series PLCs whose version is 1.62 , DVP-SX seires PLCs whose version is 3.0 , and above.

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), the sorting will start. When the sorting is completed, M1029 will be On. DO NOT change the data to be sorted during the execution of the instruction. If you wish to change the data, please make \(\mathrm{X0}\) go from Off to On again.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline X0 \\
\hline SORT & D0 & K5 & K5 & D50 & D100 \\
\hline
\end{tabular}
2. Example table of data sorting
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|c|}{- Columns of data: \(\mathbf{m}_{2}\)} \\
\hline & & \multicolumn{5}{|c|}{Data Column} \\
\hline & Column & 1 & 2 & 3 & 4 & 5 \\
\hline & Row & Students No. & Physics & English & Math & Chemistry \\
\hline \(\dagger\) & 1 & (D0) 1 & (D5) 90 & (D10) 75 & (D15) 66 & (D20) 79 \\
\hline \% & 2 & (D1) 2 & (D6) 55 & (D11) 65 & (D16) 54 & (D21) 63 \\
\hline \(\stackrel{4}{0}\) & 3 & (D2) 3 & (D7) 80 & (D12) 98 & (D17) 89 & (D22) 90 \\
\hline \[
\begin{aligned}
& \text { 亏े } \\
& \frac{0}{0}
\end{aligned}
\] & 4 & (D3) 4 & (D8) 70 & (D13) 60 & (D18) 99 & (D23) 50 \\
\hline 1 & 5 & (D4) 5 & (D9) 95 & (D14) 79 & (D19) 75 & (D24) 69 \\
\hline
\end{tabular}

Sorted data when D100 \(=\mathrm{K} 3\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|c|}{Columns of data: \(\mathbf{m}_{\mathbf{2}}\)} \\
\hline & & \multicolumn{5}{|c|}{Data Column} \\
\hline & \multirow[t]{2}{*}{} & 1 & 2 & 3 & 4 & 5 \\
\hline & & Students No. & Physics & English & Math & Chemistry \\
\hline \multirow[t]{5}{*}{\(\leftarrow\) Groups of data: \(\mathbf{m}_{\mathbf{1}} \rightarrow\) -} & 1 & (D50) 4 & (D55) 70 & (D60) 60 & (D65) 99 & (D70) 50 \\
\hline & 2 & (D51) 2 & (D56) 55 & (D61) 65 & (D66) 54 & (D71) 63 \\
\hline & 3 & (D52) 1 & (D57) 90 & (D62) 75 & (D67) 66 & (D72) 79 \\
\hline & 4 & (D53) 5 & (D58) 95 & (D63) 79 & (D68) 75 & (D73) 69 \\
\hline & 5 & (D54) 3 & (D59) 80 & (D64) 98 & (D69) 89 & (D74) 90 \\
\hline
\end{tabular}

Sorted data when D100 \(=\mathrm{K} 5\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{5}{|c|}{Columns of data: \(\mathbf{m}_{\mathbf{2}}\)} \\
\hline & & \multicolumn{5}{|c|}{Data Column} \\
\hline & \multirow[t]{2}{*}{\(\qquad\)} & 1 & 2 & 3 & 4 & 5 \\
\hline & & Students No. & Physics & English & Math & Chemistry \\
\hline \multirow[t]{5}{*}{} & 1 & (D50) 4 & (D55) 70 & (D60) 60 & (D65) 99 & (D70) 50 \\
\hline & 2 & (D51) 2 & (D56) 55 & (D61) 65 & (D66) 54 & (D71) 63 \\
\hline & 3 & (D52) 5 & (D57) 95 & (D62) 79 & (D67) 75 & (D72) 69 \\
\hline & 4 & (D53) 1 & (D58) 90 & (D63) 75 & (D68) 66 & (D73) 79 \\
\hline & 5 & (D54) 3 & (D59) 80 & (D64) 98 & (D69) 89 & (D74) 90 \\
\hline
\end{tabular}
3. Example of sorting one-dimensional data: If \(X 0\) is ON , the data specified will be sorted. After the data is sorted, M1092 will be ON.


Owing to the fact that \(\mathbf{m}_{1}\) and \(\mathbf{m}_{\mathbf{2}}\) are set to K1, one-dimensional data will be sorted. 5 values will be sorted (D100=K5). The values in D0~D4 are shown below.
(a) The values in D0~D4 are shown below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Data source & D0 & D1 & D2 & D3 & D4 \\
\hline Data & 75 & 65 & 98 & 60 & 79 \\
\hline
\end{tabular}
(b) The sorting result is stored in D50~D54.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sorting result & D50 & D51 & D52 & D53 & D54 \\
\hline Data & 60 & 65 & 75 & 79 & 98 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & Operands & & Function \\
\hline \(7 n\) & D & TKY & S (D) \(\mathbf{D}_{2}\) & Ten Key Input & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & Kn & & Kn & & T & C & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{4}{*}{TKY: 7 steps DTKY: 13 steps}} \\
\hline S & * & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{1}\) & & & & & & & & & & * & * & & * & & * & * & & * & * & * & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & * & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & & & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & & SA & S & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for key input
\(D_{1}\) : Device for storing keyed-in value
\(\mathbf{D}_{2}\) : Key output signal

\section*{Explanations:}
1. \(\mathbf{S}\) will occupy 10 consecutive points; \(\mathbf{D}_{2}\) will occupy 11 consecutive points.
2. See the specifications of each model for their range of use.
3. For SA series MPU, \(\mathbf{S}\) and \(\mathbf{D}_{\mathbf{2}}\) do not support \(\mathrm{E}, \mathrm{F}\) index register modification.
4. This instruction designates 10 external input points (representing decimal numbers \(0 \sim 9\) ) starting from \(\mathbf{S}\). The 10 points are respectively connected to 10 keys. By pressing the keys, you can enter a 4-digit decimal figure \(0 \sim\) 9,999 (16-bit instruction) or a 8-digit figure \(0 \sim 99,999,999\) (32-bit instruction) and store the figure in \(\mathbf{D}_{\mathbf{1}} . \mathbf{D}_{\mathbf{2}}\) is used for storing key status.
5. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

\section*{Program Example:}
1. Connect the 10 input points starting from \(X 0\) to the 10 keys \((0 \sim 9)\). When \(X 20=O n\), the instruction will be executed and the keyed-in values will be stored in D0 in bin form. The key status will be stored in M10 ~ M19.
\begin{tabular}{|l|l|l|l|l|}
\hline\(\times 20\) \\
\hline & TKY & X0 & D0 & M10 \\
\hline
\end{tabular}


2. As shown in the timing chart below, the 4 points \(X 5, X 3, X 0\), and \(X 1\) connected to the keys are entered in order and you can obtain the result 5,301 . Store the result in D0. 9,999 is the maximum value allowed to stored in D0. Once the value exceeds 4 digits, the highest digit will overflow.
3. \(\mathrm{M} 12=\) On when from X 2 is pressed to the other key is pressed. Same to other keys.
4. When any of the keys in \(\mathrm{X} 0 \sim \mathrm{X} 11\) is pressed, one of \(\mathrm{M} 10 \sim 19\) will be On correspondingly.
5. \(\mathrm{M} 20=\) On when any of the keys is pressed.
6. When X 20 goes Off, the keyed-in value prior to D 0 will remain unchanged, but \(\mathrm{M} 10 \sim \mathrm{M} 20\) will all be Off.

\begin{tabular}{|c||c|c|c|l|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 71 & D & HKY & S \(\left(D_{1}\right)\left(D_{2}\right)\left(D_{3}\right)\) & Hexadecimal Key Input \\
\hline
\end{tabular}


\section*{Operands:}
S: Start device for key scan input
\(D_{1}\) : Start device for key scan output
\(D_{2}\) : Device for storing keyed-in value
\(\mathrm{D}_{3}\) : Key output signal

\section*{Explanations:}
1. \(\mathbf{S}\) will occupy 4 consecutive points.
2. \(D_{1}\) will occupy 4 consecutive points.
3. \(\mathrm{D}_{3}\) will occupy 8 consecutive points.
4. See the specifications of each model for their range of use.
5. For SA series \(\mathrm{MPU}, \mathbf{S}, \mathrm{D}_{1}\) and \(\mathrm{D}_{3}\) do not support \(\mathrm{E}, \mathrm{F}\) index register modification.
6. Flags: M1029 (On whenever a matrix scan period is completed); M1167 (HKY input modes switch). See remarks for more details.
7. This instruction designates 4 continuous external input points starting from \(\mathbf{S}\) and 4 continuous external input points starting from \(\mathbf{D}_{1}\) to construct a 16 -key keyboard by a matrix scan. The keyed-in value will be stored in \(\mathbf{D}_{\mathbf{2}}\) and \(\mathbf{D}_{3}\) is used for storing key status. If several keys are pressed at the same time, the first key pressed has the priority.
8. The keyed-in value is termporarily stored in DO. When the 16 -bit instruction HKY is in use, 9,999 is the maximum value DO is able to store. When the value exceeds 4 digits, the highest digit will overflow. When the 32 -bit instruction DHKY is in use, 99,999,999 is the maximum value DO is able to store. When the value exceeds 8 digits, the highest digit will overflow.
9. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

\section*{Program Example:}
1. Designate 4 input points \(\mathrm{X} 10 \sim \mathrm{X} 13\) and the other 4 input points \(\mathrm{Y} 10 \sim \mathrm{Y} 13\) to construct a 16-key keyboard. When \(\mathrm{X} 4=\) On, the instruction will be executed and the keyed-in value will be stored in D0 in bin form. The key status will be stored in M0 ~ M7.
\begin{tabular}{|l|l|l|l|l|l|}
\hline X4 & HKY & X10 & Y10 & D0 & M0 \\
\hline
\end{tabular}
2. Key in numbers:

3. Function keys input:
a) When \(A\) is pressed, M0 will be On and retained. When D is pressed next, M0 will be Off, M3 will be On and retained.
b) When many keys are pressed at the same time, the
 first key pressed has the priority.
4. Key output signal:
a) When any of \(A \sim F\) is pressed, M6 will be On for once.
b) When any of \(0 \sim 9\) is pressed, M7 will be On for once.
5. When X 4 goes Off, the keyed-in value prior to D 0 will remain unchanged, but \(\mathrm{MO} \sim \mathrm{M} 7\) will all be Off.
6. External wiring:


\section*{Remarks:}
1. When this instruction is being executed, it will require 8 scans to obtain one valid keyed-in value. A scan period that is too long or too short may result in poor keyed-in effect, which can be avoided by the following methods:
a) If the scan period is too short, I/O may not be able to respond in time, resulting in not being able to read the keyed-in value correctly. In this case, please fix the scan time.
b) If the scan period is too long, the key may respond slowly. In this case, write this instruction into the time interruption subroutine to fix the time for the execution of this instruction.
2. Functions of M1167:
a) When M1167 = On, HKY instruction will be able to input the hexadecimal value of \(0 \sim F\).
b) When M1167 = Off, HKY instruction will see A ~F as function keys.
3. Functions of D1037 (only supports EH/EH2/SV/EH3/SV2 series MPU):

Write D1037 to set the overlapping time for keys (unit: ms). The overlapping time will vary upon different program scan time and the settings in D1037.
\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 72 & DSW & (S) \(D_{1} D_{2}\) ( & Digital Switch \\
\hline
\end{tabular}


\section*{Operands:}
S: Start device for switch scan input
\(D_{1}\) : Start device for switch scan output
\(D_{2}\) : Device for storing the set value of switch \(\quad \mathbf{n}\) : Groups of switches

\section*{Explanations:}
1. Range of \(\mathbf{n}: 1 \sim 2\)
2. \(S\) and \(D_{1}\) in SA/SX/SC series MPU do not support \(E, F\) index register modification.
3. See the specifications of each model for their range of use.
4. Flag: M1029 (DSW execution completed)
5. This instruction designates 4 or 8 consecutive external input points starting from \(\mathbf{S}\) and 4 consecutive external input points starting from \(\mathbf{D}_{1}\) to scan read 1 or 24 -digit DIP switches. The set values of DIP switches are stored in \(\mathbf{D}_{2}\). \(\mathbf{n}\) decides to read 1 or 2 4-digit DIP switches.
6. There is no limitation on the times of using this instruction in the program. However, for SA series MPU, only one instruction can be executed at a time. For EH series MPU, two instructions are allowed to be executed at a time.

\section*{Program Example:}
1. The first group of DIP switches consist of \(X 20 \sim X 23\) and \(Y 20 \sim Y 23\). The second group of switches consist of \(X 24 \sim X 27\) and \(Y 20 \sim Y 23\). When \(X 10=O n\), the instruction will be executed and the set values of the first group switches will be read and converted into bin values before being stored in D20. The set values of the second group switches will be read, converted into bin values and stored in D21.
\begin{tabular}{|l|l|l|l|l|l|} 
X10 \\
\hline
\end{tabular} \begin{tabular}{|l|l|l|l|} 
& \\
DSW & X20 & Y20 & D20 \\
\hline
\end{tabular}
2. When \(\mathrm{X} 10=\mathrm{On}\), the \(\mathrm{Y} 20 \sim \mathrm{Y} 23\) auto scan cycle will be On. Whenever a scan cycle is completed, M1029 will be On for a scan period.
3. Please use transistor output for \(\mathrm{Y} 20 \sim \mathrm{Y} 23\). Every pin 1, 2, 4, 8 shall be connected to a diode ( \(0.1 \mathrm{~A} / 50 \mathrm{~V}\) ) before connecting to the input terminals on PLC.

4. Wiring for DIP swich input:


\section*{Remarks:}
1. When \(\mathbf{n}=K 1, \mathbf{D}_{\mathbf{2}}\) will occupy one register. When \(\mathbf{n}=K 2, \mathbf{D}_{\mathbf{2}}\) will occupy 2 consecutive registers.
2. Follow the methods below for the transistor scan output:
a) When \(\mathrm{X} 10=\mathrm{On}\), DSW instruction will be executed. When X 10 goes Off, M10 will keep being On until the scan output completes a scan cycle and go Off.
b) When X 10 is used as a button switch, whenever X 10 is pressed once, M10 will be reset to Off when the scan output designated by DSW instruction completes a scan cycle. The DIP switch data will be read completely and the scan output will only operate during the time when the button switch is pressed. Therefore, even the scan output is a transistor type, the life span of the transistor can be extended because it does not operate too frequently.

\begin{tabular}{|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 73 & & SEGD & P & S \(D\) D & Seven Segment Decoder \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{SEGD，SEGDP： 5 steps} \\
\hline S & & & & & & ＊ & ＊ & ＊ & & ＊ & ＊ & & ＊ & ＊ & & ＊ & ＊ & ＊ & ＊ & & & & & & & & & \\
\hline D & & & & & & & & & & ＊ & & & ＊ & ＊ & & ＊ & ＊ & ＊ & ＊ & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16－bit} & \multicolumn{9}{|c|}{32－bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH SV & \multicolumn{2}{|l|}{\[
\begin{gathered}
\mathrm{EH} 3 \\
\mathrm{~V} \text { S } 2 \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{ES Ex} & SS & SA & \multicolumn{2}{|l|}{S} & EH & SV & \[
\begin{array}{|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & sX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

Operands：
S：Source device to be decoded
D：Output device after the decoding

\section*{Explanations：}

See the specifications of each model for their range of use．

\section*{Program Example：}

When X10 \(=\) On，the contents \((0 \sim F\) in hex）of the lower 4 bits（b0 \(\sim\) b3）of D10 will be decoded into a 7－segment display for output．The decoded results will be stored in Y10～Y17．If the content exceeds 4 bits，the lower 4 bits are still used for the decoding．
\begin{tabular}{|c|c|c|c|}
\hline X10 \\
& SEGD & D10 & K2Y10 \\
\hline
\end{tabular}

Decoding table of the 7－segment display：
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Hex} & \multirow[t]{2}{*}{Bit combi－ nation} & \multirow[t]{2}{*}{Composition of the 7－ segment display} & \multicolumn{7}{|c|}{Status of each segment} & \multirow[t]{2}{*}{Data displayed} \\
\hline & & & B0（a） & B1（b） & B2（c） & B3（d） & B4（e） & B5（f） & B6（g） & \\
\hline 0 & 0000 & \multirow{16}{*}{} & ON & ON & ON & ON & ON & ON & OFF & ｜－1 \\
\hline 1 & 0001 & & OFF & ON & ON & OFF & OFF & OFF & OFF & I \\
\hline 2 & 0010 & & ON & ON & OFF & ON & ON & OFF & ON & İ \\
\hline 3 & 0011 & & ON & ON & ON & ON & OFF & OFF & ON & －I \\
\hline 4 & 0100 & & OFF & ON & ON & OFF & OFF & ON & ON & I－1 \\
\hline 5 & 0101 & & ON & OFF & ON & ON & OFF & ON & ON & ご \\
\hline 6 & 0110 & & ON & OFF & ON & ON & ON & ON & ON & だ \\
\hline 7 & 0111 & & ON & ON & ON & OFF & OFF & ON & OFF & \({ }^{-1}\) \\
\hline 8 & 1000 & & ON & ｜－1 \\
\hline 9 & 1001 & & ON & ON & ON & ON & OFF & ON & ON & －1 \\
\hline A & 1010 & & ON & ON & ON & OFF & ON & ON & ON & \(\stackrel{1}{1}\) \\
\hline B & 1011 & & OFF & OFF & ON & ON & ON & ON & ON & İ \\
\hline C & 1100 & & ON & OFF & OFF & ON & ON & ON & OFF & \(\stackrel{1}{-}\) \\
\hline D & 1101 & & OFF & ON & ON & ON & ON & OFF & ON & －1 \\
\hline E & 1110 & & ON & OFF & OFF & ON & ON & ON & ON & に \\
\hline F & 1111 & & ON & OFF & OFF & OFF & ON & ON & ON & 『 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|l|}
\hline API & Mnemonic & Operands & \multicolumn{1}{|c|}{ Function } \\
\cline { 3 - 4 } 74 & SEGL & \(\mathbf{S} D \mathbf{D}(\mathbf{n}\) & Seven Segment with Latch \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{SEGL: 7 steps} \\
\hline S & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & \[
\begin{array}{c|c|}
\hline \text { SV } & \begin{array}{c}
\text { EH3 } \\
\mathrm{SV} 2
\end{array} \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device to be displayed in 7-segment display
D: Start device for 7-segment display scan output
n: Polarity setting of output signal and scan signal

\section*{Explanations:}
1. Range of \(\mathbf{n}: 0 \sim 7\). See remarks for more details.
2. For ES series MPU, the instruction can only be used once in the program. For EH series MPU, the instruction can be used twice in the program. For SA series MPU, there is no limitation on the times of using the instruction, but only one instruction can be executed at a time.
3. For ES/EXISS/SA/SXISC series MPU, the last digit of \(\mathbf{D}\) should be 0 and it does not support \(E\), \(F\) index register modification.
4. Flag: M1029 (SEGL execution completed)
5. This instruction occupies 8 or 12 continuous external input points starting from \(\mathbf{D}\) for displaying 1 or 2 4-digit 7-segment display data and outputs of scanned signals. Every digit carries a 7-segment display drive (to convert the BCD codes into 7-segment display signal). The drive also carries latch control signals to retain the 7 -segment display.
6. \(\mathbf{n}\) decides there be 1 group or 2 groups of 4-digit 7-segment display and designates the polarity for the output.
7. When there is 1 group of 4-digit output, 8 output points will be occupied. When there are 2 groups of 4 -digit output, 12 output points will be occupied.
8. When this instruction is being executed, the scan output terminals will circulate the scan in sequence. When the drive contact of the instruction goes from Off to On again, the scan output terminal will restart the scan again.

\section*{Program Example:}
1. When \(\mathrm{X} 10=\mathrm{On}\), this instruction starts to be executed, \(\mathrm{Y} 10 \sim \mathrm{Y} 17\) construct a 7 -segment display scan circuit. The value in D10 will be converted into BCD codes and sent to the first group 7-segment display. The value in D11 will be converted into BCD codes as well and sent to the second group 7-segment display. If the values in D10 and D11 exceed 9,999, operational error will occur.
\begin{tabular}{|c|l|l|l|l|}
X 10 & SEGL & D10 & Y10 & K4 \\
\hline
\end{tabular}
2. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{Y} 14 \sim \mathrm{Y} 17\) will circulate the scan automatically. Every cycle requires 12 scan period. Whenever
a cycle is completed, M1029 will be On for a scan period.
3. When there is 1 group of 4-digit 7-segment display, \(\mathbf{n}=0 \sim 3\).
a) Connect the already decoded 7-segment display terminals 1, 2, 4, 8 in parallel an connect them to Y10 ~ Y13 on the PLC. Connect the latch terminals of each digit to Y14 ~Y17 on the PLC.
b) When \(\mathrm{X} 10=0 n\), the instruction will be executed and the content in D10 will be sent to the 7 -segment displays in sequence by the circulation of Y14 ~ Y17.
4. When there is 2 groups of 4-digit 7-segment display, \(\mathbf{n}=4 \sim 7\).
a) Connect the already decoded 7-segment display terminals 1, 2, 4, 8 in parallel an connect them to Y20~ Y23 on the PLC. Connect the latch terminals of each digit to Y14 ~ Y17 on the PLC.
b) The contents in D10 are sent to the first group 7-segment display. The contents in D11 are sent the the second group 7-segment display. If D10 = K1234 and D11 = K4321, the first group will display 123 4, and the second group will display 4321.
5. Wiring of the 7-segment display scan output:


\section*{Remarks:}
1. ES/EX/SS series MPU (V4.9 and above) supports this instruction but only supports 1 group of 4-digit 7-segment display and 8 points of output. This instruction can only be used once in the program. Range of \(\mathbf{n}\) : \(0 \sim 3\).
2. D of ES/EX/SS series MPU can only designate YO.
3. When this instruction is executed, the scan time has to be longer than 10 ms . If the scan time is shorter than 10 ms , please fix the scan time at 10 ms .
4. \(\mathbf{n}\) is for setting up the polarity of the transistor output and the number of groups of the 4-digit 7-segment display.
5. The output point must be a transistor module of NPN output type with open collector outputs. The output has to connect to a pull-up resistor to VCC (less than 30VDC). Therefore, when output point Y is On, the signal output will be in low voltage.

6. Positive logic (negative polarity) output of BCD code
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ BCD value } & \multicolumn{4}{|c|}{ Y output (BCDcode) } & \multicolumn{5}{c|}{ Signal output } \\
\hline \(\mathrm{b}_{3}\) & \(\mathrm{~b}_{2}\) & \(\mathrm{~b}_{1}\) & \(\mathrm{~b}_{0}\) & 8 & 4 & 2 & 1 & A & B & C & D \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline
\end{tabular}
7. Negative logic (positive polarity) output of BCD code
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ BCD value } & \multicolumn{5}{c|}{ Y output (BCDcode) } & \multicolumn{4}{c|}{ Signal output } \\
\hline \(\mathrm{b}_{3}\) & \(\mathrm{~b}_{2}\) & \(\mathrm{~b}_{1}\) & \(\mathrm{~b}_{0}\) & 8 & 4 & 2 & 1 & A & B & C & D \\
\hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
8. Scan latched signal display
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Positive logic (negative polarity) } & \multicolumn{2}{c|}{ Negative logic (positive polarity) } \\
\hline Y output (latch) & Output signal & Y output (latch) & Output signal \\
\hline 1 & 0 & 0 & 1 \\
\hline
\end{tabular}
9. Settings of \(\mathbf{n}\) :
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Groups of 7-segment display & \multicolumn{4}{|c|}{1 group } & \multicolumn{4}{c|}{2 groups } \\
\hline Y output of BCD code & \multicolumn{2}{|c|}{+} & \multicolumn{2}{|c|}{-} & \multicolumn{2}{|c|}{+} & \multicolumn{2}{c|}{-} \\
\hline Scan latched signal display & + & - & + & - & + & - & + & - \\
\hline \(\mathbf{n}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}
+ : Positive logic (negative polarity) output \(\quad-\) : Negative logic (positive polarity) output
10. The polarity of transistor output and the polarity of the 7-segment display input can be the same or different by the setting of \(\mathbf{n}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|l|}{Mnemonic} & \multicolumn{8}{|c|}{Operands} & \multicolumn{18}{|c|}{Function} \\
\hline 75 & \multicolumn{3}{|l|}{ARWS} & \multicolumn{8}{|l|}{(S) \(D_{1} D_{2}\) n} & \multicolumn{18}{|l|}{Arrow Switch} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & & S & K & H & Kn & & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{ARWS: 9 steps}} \\
\hline & & * & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & * & & * & * & * & * & & & & & & & & & \\
\hline & & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for key input
\(D_{1}\) : Device to be displayed in 7-segment display
\(D_{2}\) : Start device for 7-segment display scan output n : Polarity setting of output signal and scan signal

\section*{Explanations:}
1. \(S\) will occupy 4 consecutive points.
2. Range of \(\mathbf{n}: 0 \sim 3\). See remarks of API 74 SEGL for more details.
3. There no limitation on the times of using this instruction in the program. However, only one instruction is allowed to be executed at a time.
4. \(\mathbf{S}\) and \(\mathbf{D}_{2}\) of SA series MPU do not support \(E\), \(F\) index register modification, and \(\mathbf{D}_{\mathbf{2}}\) can only designate the devices whose last digit is 0 (e.g. Y0, Y10....)
5. See the specifications of each model for their range of use.
6. The output points designated by this instruction shall be transistor output.
7. When using this instruction, please fix the scan time, or place this instruction in the time interruption subroutine (I6 \(\square \square \sim\) I8 \(\square \square\) ).

\section*{Program Example:}
1. When this instruction is executed, X 20 is defined as down key, X 21 is defined as up key, X 22 is defined as right key and X23 is defined as left key. The keys are used for setting up and displaying external set values. The set values (range: \(0 \sim 9,999\) ) are stored in D20.
2. When \(\mathrm{X} 10=\mathrm{On}\), digit \(10^{3}\) will be the valid digit for setup. If you press the left key at this time, the valid digit will circulate as \(10^{3} \rightarrow 10^{0} \rightarrow 10^{1} \rightarrow 10^{2} \rightarrow 10^{3} \rightarrow 10^{0}\).
3. If you press the right key at this time, the valid digit will circulate as \(10^{3} \rightarrow 10^{2} \rightarrow 10^{1} \rightarrow 10^{0} \rightarrow 10^{3} \rightarrow 10^{2}\). During the circulation, the digit indicators connected Y24 ~ Y27 will also be On interchangeably following the circulation.
4. If you press the up key at this time, the valid digit will change as \(0 \rightarrow 1 \rightarrow 2 \ldots \rightarrow 8 \rightarrow 9 \rightarrow 0 \rightarrow 1\). If you press the down key, the valid digit will change as \(0 \rightarrow 9 \rightarrow 8 \ldots \rightarrow 1 \rightarrow 0 \rightarrow 9\). The changed value will also be displayed in the 7-segment display.
\begin{tabular}{|c|l|l|l|l|l|}
\hline X10 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|ll|}
\hline API & Mnemonic & Operands & \multicolumn{1}{|c|}{ Function } \\
\hline 76 & ASC & SDD & ASCII Code Conversion & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & KnM & & KnS & T & C & C & D & E & F & \multicolumn{9}{|l|}{ASC: 11 steps} \\
\hline S & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & * & & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & \[
\begin{array}{l|l|}
\hline \mathrm{EV} 3 \\
\mathrm{EH} & \mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: English letter to be converted into ASCII code
D: Device for storing ASCII code

\section*{Explanations:}
1. \(\mathbf{S}\) : enter 8 Engligh letters by using WPLSoft on computer or enter ASCII code by HPP.
2. \(S\) in SA series MPU only accepts A, B, C, D, E, F, G, H, the 8 English character.
3. See the specifications of each model for their range of use.
4. Flag: M1161 (8/16 bit mode switch)
5. If the execution of this instruction is connected to a 7-segment display, the error message can be displayed by English letters.

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), convert \(\mathrm{A} \sim \mathrm{H}\) into ASCII code and stored it in D0 ~ D3.


D0 \begin{tabular}{|c|c|} 
& \multicolumn{1}{c}{ b15 } \\
\hline \(42 \mathrm{H}(\mathrm{B})\) & \(41 \mathrm{H}(\mathrm{A})\) \\
\hline
\end{tabular}
D1


D2 \(\qquad\)
D3

2. When M1161 = On, every ASCII code converted from the letters will occupy the lower 8 bits (b7 ~b0) of a register. The upper 8 bits are invalid (filled by 0 ). One register stores a letter.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{b15} \\
\hline D0 & 00 H & 41H (A) \\
\hline D1 & 00 H & 42H (B) \\
\hline D2 & 00 H & 43H (C) \\
\hline D3 & 00 H & 44H (D) \\
\hline D4 & 00 H & 45H (E) \\
\hline D5 & 00 H & 46H (F) \\
\hline D6 & 00 H & 47H (G) \\
\hline D7 & 00 H & 48H (H) \\
\hline & per 8 b & Lower 8 bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ll|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\cline { 1 - 5 } 77 & PR & S D & Print (ASCII Code Output) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & KnY & KnM & & KnS & T & & & D & E & F & \multicolumn{9}{|l|}{PR: 5 steps} \\
\hline S & & & & & & & & & & & & & * & & & * & & & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & \[
\begin{array}{|c|c|}
\hline \text { SV } & \text { EH3 } \\
\hline \text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

Operands:
S: Device for storing ASCII code D: External ASCII code output points

\section*{Explanations:}
1. \(\mathbf{S}\) will occupy 4 consecutive points.
2. D will occupy 10 consecutive points.
3. This instruction can only be used twice in the program.
4. \(\mathbf{D}\) in SA series MPU does not support \(E, F\), index register modification.
5. See the specifications of each model for their range of use.
6. Flags: M1029 (PR execution completed); M1027 (number of PR outputs)
7. This instruction will output the ASCII codes in the 4 registers starting from \(\mathbf{S}\) from the output devices in the order designated in \(\mathbf{D}\).

\section*{Program Example 1:}
1. Use API 76 ASC to convert \(A \sim H\) into ASCII codes and store them in D0 \(\sim D 3\) and use this instruction to output the codes in sequence.
2. When M 1027 = Off and X 10 goes On, the instruction will be executed. Designate Y 10 (low bits) ~ Y17 (high bits) as the data output points and Y20 for scan signals. Designate Y 21 for the monitor signals during the execution. In this mode, you can execute an output for 8 letters in sequence. During the output, if the drive contact goes Off, the data output will stop immediately and all the outputs will go Off.
3. During the execution of the instruction, when X 10 goes Off, all the data output will be interrupted. When X 10 is On again, the output will be restarted.


X10 start signal


Y21 being executed

\section*{Program Example 2:}
1. PR instruction is for outputing a string of 8 bits. When the special auxiliary relay \(\mathrm{M} 1027=\mathrm{Off}, \mathrm{PR}\) is able to execute an output of maximum 8 letters in string. When M1027 \(=\) On, PR is able to execute an output of \(1 \sim 16\) letters in string.
2. When M1027 = On and X 10 goes from Off to On , the instruction will be executed. Designate Y 10 (low bits) \(\sim \mathrm{Y} 17\) (high bits) as the data output points and Y 20 for scan signals. Designate Y 21 for the monitor signals during the execution. In this mode, you can execute an output for 16 letters in sequence. During the output, if the drive contact goes Off, the data output will stop after it is completed.
3. When the string encounters \(00 \mathrm{H}(\mathrm{NUL})\), the string output will finish. The letters coming after it will not be processed.
4. When X 10 goes from On to Off, the data output will automatically stop after one cycle. If X 10 keeps being On, M1029 will not be enabled.


\section*{Remarks:}
1. Please use transistor output for the output designated by this instruction.
2. When using this instruction, please fix the scan time or place this instruction in a timed interruption subroutine.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|r|}{Bit Devices} & & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
FROM, FROMP: 9 steps \\
DFROM, DFROMP: 17 steps
\end{tabular}}} \\
\hline \(\mathrm{m}_{1}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{m}_{2}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & \\
\hline D & & & & & & & & & & * & * & & * & * & * & * & & * & * & * & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & & & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS S & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(m_{1}\) : No. of special module
\(\mathbf{m}_{\mathbf{2}}\) : CR\# in special module to be read
D: Device for storing read data
n : Number of data to be read at a time

\section*{Explanations:}
1. Range of \(\mathbf{m}_{1}\) (16-bit and 32-bit): for ES/SA: \(0 \sim 7\), for EH/EH2/EH3/SV2 :0~255, for SV: \(0 \sim 107\).
2. Range of \(m_{2}\) (16-bit and 32-bit): for ES/SA: \(0 \sim 48\), for EH: \(0 \sim 254\), for EH2/SV/EH3/SV2: \(0 \sim 499\).
3. Range of \(\mathbf{n}\) :
a) 16-bit: for ES/SA: \(1 \sim\left(49-\mathbf{m}_{\mathbf{2}}\right)\), for \(\mathrm{EH}: 1 \sim\left(255-\mathbf{m}_{\mathbf{2}}\right)\), for EH2/SV/EH3/SV2: \(1 \sim\left(500-\mathbf{m}_{\mathbf{2}}\right)\).
b) 32-bit: for ES/SA: \(1 \sim\left(49-\mathbf{m}_{2}\right) / 2\), for EH: \(1 \sim\left(255-\mathbf{m}_{2}\right) / 2\), for EH2/SV/EH3/SV2: \(1 \sim\left(500-\mathbf{m}_{\mathbf{2}}\right) / 2\).
4. ES series MPU does not support E, F index register modification.
5. \(\quad \mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}}\) and \(\mathbf{n}\) of EH series MPU do not support word device D.
6. This instruction is for reading the data in the CR in special modules.
7. The 16 -bit instruction can designate \(\mathbf{D}=\mathrm{K} 1 \sim \mathrm{~K} 4\); the 32 -bit instruction can designate \(\mathbf{D}=\mathrm{K} 1 \sim \mathrm{~K} 8\).
8. See application examples in API 79 TO insitruction for how to calculate the No. where the special module is located.

\section*{Program Example:}
1. Read CR\#29 of special module No. 0 into D0 and CR\#30 into D1. Only 2 groups of data is read at a time \((\mathrm{n}=2)\).
2. When \(\mathrm{XO}=\mathrm{On}\), the instruction will be executed. When \(\mathrm{XO}=\mathrm{Off}\), the instruction will not be executed and the data read will not be changed.
\begin{tabular}{|l|l|l|l|l|l|}
\hline X0 & FROM & K0 & K29 & D0 & K2 \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\hline F & Function \\
\hline 79 & D & TO & P & m1 & \(\mathrm{m}_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{5}{*}{TO, TOP: 9 steps DTO, DTOP: 17 steps}} \\
\hline \(\mathrm{m}_{1}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{m}_{2}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & \\
\hline S & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & * & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH S & \[
\begin{array}{|c|c|c|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS S & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(m_{1}\) : No. of special module
\(m_{2}\) : CR\# in special module to be written
S: Data to be written in CR
n: Number

\section*{Explanations:}
1. Range of \(\mathbf{m}_{1}\) (16-bit and 32-bit): for ES/SA: \(0 \sim 7\), for EH/EH2/EH3/SV2: \(0 \sim 255\), for SV: \(0 \sim 107\).
2. Range of \(\mathbf{m}_{\mathbf{2}}\) (16-bit and 32-bit): for ES/SA: \(0 \sim 48\), for EH: \(0 \sim 254\), for EH2/SV/EH3/SV2: \(0 \sim 499\).
3. Range of \(\mathbf{n}\) :
a) 16-bit: for ESTSA: \(1 \sim\left(49-\mathbf{m}_{\mathbf{2}}\right)\), for EH: \(1 \sim\left(255-\mathbf{m}_{\mathbf{2}}\right)\), for EH2/SV/EH3/SV2: \(1 \sim\left(500-\mathbf{m}_{\mathbf{2}}\right)\).
b) 32 -bit: for ES/SA: \(1 \sim\left(49-m_{2}\right) / 2\), for EH: \(1 \sim\left(255-m_{2}\right) / 2\), for EH2/SV/EH3/SV2: \(1 \sim\left(500-\mathbf{m}_{2}\right) / 2\).
4. ES series MPU does not support E, F index register modification.
5. \(\quad \mathbf{m}_{\mathbf{1}}, \mathbf{m}_{\mathbf{2}}\) and \(\mathbf{n}\) of EH series MPU do not support word device D.
6. This instruction is for writing the data into the \(C R\) in special modules.
7. The 16 -bit instruction can designate \(\mathbf{S}=\mathrm{K} 1 \sim \mathrm{~K} 4\); the 32 -bit instruction can designate \(\mathbf{S}=\mathrm{K} 1 \sim \mathrm{~K} 8\).

\section*{Program Example:}
1. Use 32-bit instruction DTO to write the content in D11 and D10 into CR\#13 and CR\#12 of special module No.0. Only 1 group of data is written in at a time \((n=1)\).
2. When \(X 0=O n\), the instruction will be executed. When \(X 0=O f f\), the instruction will not be executed and the data written will not be changed.
\begin{tabular}{|l|l|l|l|l|}
\hline X0 & DTO & K0 & K12 & D10 \\
\hline
\end{tabular}
3. Operand rules
a) \(\mathbf{m}_{1}\) : The No. of special modules connected to PLC MPU. No. 0 is the module closest to te MPU. Maximum 8 modules are allowed to connected to a PLC MPU and they will not occupy any I/O points.
b) \(\mathbf{m}_{\mathbf{2}}\) : CR\#. CR (control register) is the n 16 -bit memories built in the special module, numbered in decimal as \#0 ~ \#n. All operation status and settings of the special module are contained in the CR.
c) \(\mathrm{FROM} / \mathrm{TO}\) instruction is for reading/writing 1 CR at a time. DFROM/DTO instruction is for reading/writing 2 CRs at a time.

d) Number of groups " \(n\) " to be transmitted: \(n=2\) in 16-bit instructions and \(n=1\) in 32 -bit instructions mean the same.


16-bit instruction when \(n=6\)


32-bit instruction when \(n=3\)

\section*{FROM/TO Application Example 1:}

Adjust the A/D conversion curve of DVP04AD. Set the OFFSET value of CH 1 as 0 V ( \(=\mathrm{KO}_{\text {LSB }}\) ) and GAIN value as 2.5 V (= K2,000 LSB ).

1. Write H 0 to \(\mathrm{CR} \# 1\) of anlog input module No .0 and set CH 1 as mode 0 (voltage input: \(-10 \mathrm{~V} \sim+10 \mathrm{~V}\) ).
2. Write H 0 to \(\mathrm{CR} \# 33\) and allow OFFSET/GAIN tuning in \(\mathrm{CH} 1 \sim \mathrm{CH} 4\).
3. When \(\mathrm{X0}\) goes from Off to On, write the OFFSET value \(\mathrm{K} 0_{\text {LSB }}\) into \(\mathrm{CR} \# 18\) and the GAIN value \(\mathrm{K} 2,000\) LSB into CR\#24.

FROM/TO Application Example 2:
Adjust the A/D conversion curve of DVP04AD. Set the OFFSET value of CH 2 as \(2 \mathrm{~mA}\left(=\mathrm{K} 400_{\text {LSB }}\right)\) and GAIN value as \(18 \mathrm{~mA}\left(=\mathrm{K} 3,600_{\mathrm{LSB}}\right)\).

1. Write H 18 to \(\mathrm{CR} \# 1\) of anlog input module No. 0 and set CH 2 as mode 3 (current input: \(-20 \mathrm{~mA} \sim+20 \mathrm{~mA}\) ).
2. Write H 0 to \(\mathrm{CR} \# 33\) and allow OFFSET/GAIN tuning in \(\mathrm{CH} 1 \sim \mathrm{CH} 4\).
3. When X0 goes from Off to On, write the OFFSET value K \(400_{\text {LSB }}\) into CR\#19 and the GAIN value K3,600 LSB into CR\#25.

\section*{FROM/TO Application Example 3:}

Adjust the D/A conversion curve of DVP02DA. Set the OFFSET value of CH 2 as \(0 \mathrm{~mA}\left(=\mathrm{K} 0_{\text {LSB }}\right)\) and GAIN value as \(10 \mathrm{~mA}\left(=\mathrm{K} 1,000_{\mathrm{LSB}}\right)\).

1. Write H 18 to \(\mathrm{CR} \# 1\) of anlog output module No. 1 and set CH 2 as mode 3 (current output: \(0 \mathrm{~mA} \sim+20 \mathrm{~mA}\) ).
2. Write H 0 to \(\mathrm{CR} \# 33\) and allow OFFSET/GAIN tuning in CH 1 and CH 2 .
3. When X 0 goes from Off to On, write the OFFSET value \(\mathrm{K} 0_{\text {LSB }}\) into CR\#22 and the GAIN value K1,000 LsB into CR\#28.

\section*{FROM/TO Application Example 4:}

Adjust the D/A conversion curve of DVP02DA. Set the OFFSET value of CH 2 as \(2 \mathrm{~mA}\left(=\mathrm{K} 400_{\text {LSB }}\right)\) and GAIN value as \(18 \mathrm{~mA}\left(=\mathrm{K} 3,600_{\mathrm{LSB}}\right)\).
1. Write H 10 to \(\mathrm{CR} \# 1\) of anlog output module No. 1 and set CH 2 as mode 2 (current output: \(+4 \mathrm{~mA} \sim+20 \mathrm{~mA}\) ).
2. Write H 0 to \(\mathrm{CR} \# 33\) and allow OFFSET/GAIN tuning in CH 1 and CH .
3. When X0 goes from Off to On, write the OFFSET value \(\mathrm{K} 400_{\text {LSB }}\) into \(C R \# 23\) and the GAIN value K3,600 LSB into CR\#29.


FROM/TO Application Example 5:
When DVP04AD is used with DVP02DA

1. Read CR\#0 of the extension module No. 0 and see if it is DVP04AD: H88.
2. If \(\mathrm{D} 0=\mathrm{H} 88\), set the input modes: \((\mathrm{CH} 1, \mathrm{CH} 3)\) mode \(0,(\mathrm{CH} 2, \mathrm{CH} 4)\) mode 3 .
3. Set the average times in CH 1 and CH 2 from \(\mathrm{CR} \# 2\) and \(\mathrm{CR} \# 3\) as K 32 .
4. Read the average of input signals at \(\mathrm{CH} 1 \sim \mathrm{CH} 4\) from CR\#6 ~ CR\#9 and store the 4 data in D20 ~ D23.
5. Read CR\#0 of the extension module No. 1 and see if it is DVP02DA-S: H49.
6. D100 increases K1 and D101 increases K5 every second.
7. When D100 and D101 reach K4,000, they will be cleared as 0 .
8. See if the model is DVP02DA-S when M1 = On. If so, set up output mode: CH 1 in mode 0 and CH 2 is mode 2 .
9. Write the output settings of D100 and D101 into CR\#10 and CR\#11. The analog output will change by the changes in D100 and D101.
\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 80 & RS & \(\mathrm{S} D \mathrm{~m} D \mathrm{D}\) & Serial Communication Instruction \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\qquad\)} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & & KnY & Kn & M & & nS & T & & C & D & E & F & \multicolumn{9}{|l|}{RS: 9 steps} \\
\hline S & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline m & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{|l|} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for the data to be transmitted
\(\mathbf{m}\) : Length of data to be transmitted
D: Start device for receiving data \(\mathbf{n}\) : Length of data to be received

\section*{Explanations:}
1. Range of \(\mathbf{m}: \mathbf{0} \sim 256\)
2. Range of \(\mathbf{n}: \mathbf{0} \sim 256\)
3. See the specifications of each model for their range of use.
4. ES series MPU does not support E, F index register modification.
5. The instruction RS supports COM1 (RS-232), COM2 (RS-485), and COM3 (a communication card) in a DVP-EH3/SV2 series PLC. (COM1 only supports DVP-EH3/SV2 series PLCs. COM3 in DVP-EH3 series PLCs is only applicable to the communication cards DVP-F232 and DVP-F485.)
6. This instruction is a handy instruction exclusively for MPU to use RS-485 serial communication interface. The user has to pre-store word data in \(\mathbf{S}\) data register, set up data length \(\mathbf{m}\) and the data receiving register \(\mathbf{D}\) and received data length \(\mathbf{n}\). If \(E, F\) index registers are used to modify \(\mathbf{S}\) and \(\mathbf{D}\), the user cannot change the set values of \(E\) and \(F\) when the instruction is being executed; otherwise errors may cause in data writing or reading.
7. Designate \(\mathbf{m}\) as \(K 0\) if you do not need to send data. Designate \(\mathbf{n}\) as K0 if you do not need to receive data.
8. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.
9. During the execution of RS instruction, changing the data to be transmitted will be invalid.
10. If the peripheral devices, e.g. AC motor drive, are equipped with RS-485 serial communication and its communication format is open, you can use RS instruction to design the program for the data transmission between PLC and the peripheral device.
11. If the communication format of the peripheral device is Modbus, DVP series PLC offers handy communication instructions API 100 MODRD, API 101 MODWR, and API 150 MODRW, to work with the device. See explanations of the instructions in this application manual.
12. If a Delta VFD series AC motor drive is used, the PLC provides the convenience instructions API 102 FWD, API 103 REV, API 104 STOP, API 105 RDST, and API 106 RSTEF. If a Delta ASD series servo drive is used, the PLC provides the convenience instruction API 206 ASDRW. If a Delta DMV series product is used, the PLC provides the convenience instruction API 295 DMVRW.
13. For the special auxiliary relays M1120 ~ M1161 and special data registers D1120 ~ D1131 relevant to RS-485 communication, see remarks for more details.

\section*{Program Example 1:}
1. Use COM2 on the PLC to carry out RS-485 communication.
2. Write the data to be transmitted in advance into registers starting from D100 and set M1122 (sending request flag) as On.
3. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{RS}\) instruction will be executed and PLC will start to wait for the sending and receiving of data. D100 starts to continuousl send out 10 data and when the sending is over, M1122 will be automatically reset to Off (DO NOT use the program to execute RST M1122). After 1 ms of waiting, PLC will start to receive the 10 data. Store the data in consecutive registers starting from D120.
4. When the receiving of data is completed, M1123 will automatically be On. After the program finishes processing the received data, M1123 has to be reset to Off and the PLC will start to wait for the sending and receiving of data again. DO NOT use the program to continuously execute RST M1123.


\section*{Program Example 2:}

Use COM2 on the PLC to carry out RS-485 communication.
Switching between 8-bit mode (M1161 = On) and 16-bit mode (M1161 = Off)
1. 8-bit mode:

The head code and tail code of the data are set up by M1126 and M1130 together with D1124 ~ D1126. When PLC is executing RS instruction, the head code and tail code set up by the user will be sent out automatically. M1161 \(=\) On indicates PLC in 8-bit conversion mode. The 16-bit data will be divided into the higher 8 bits and lower 8 bits. The higher 8 bits are ignored and only the lower 8 bits are valid for data transmission.


Sending data: (PLC -> external equipment)
\begin{tabular}{|c|c|c|c|c|c|}
\hline STX & D100L & D101L & D102L & D103L & ETX1 \\
\hline \begin{tabular}{l} 
Head \\
code
\end{tabular} & \begin{tabular}{l} 
ETX2 \\
source data register, starting from \\
the lower 8 bits of D100
\end{tabular} & \begin{tabular}{c} 
Tail code \\
1
\end{tabular} & \begin{tabular}{c} 
Tail code \\
2
\end{tabular} \\
& m length = 4
\end{tabular}

Receiving data: (External equipment \(->\) PLC)
\begin{tabular}{|l|l|l|l|l|c|}
\hline D120L & D121L & D122L & D123L & D124L & D125L \\
\hline \begin{tabular}{l} 
Head \\
code
\end{tabular} & S \begin{tabular}{l} 
received data register, starting from \\
the lower 8 bits of D120
\end{tabular} & \begin{tabular}{c} 
Tail code \\
1
\end{tabular} & \begin{tabular}{c} 
Tail code \\
2
\end{tabular} \\
& n length \(=7\)
\end{tabular}

When receiving data, PLC will receive the head code and tail code of the data from the external equipment; therefore, the user has to be aware of the setting of data length \(\mathbf{n}\).
2. 16 -bit mode:

The head code and tail code of the data are set up by M1126 and M1130 together with D1124 ~ D1126. When PLC is executing RS instruction, the head code and tail code set up by the user will be sent out automatically. M1161 = Off indicates PLC in 16-bit conversion mode. The 16-bit data will be divided into the higher 8 bits and lower 8 bits for data transmission.


Sending data: (PLC -> external equipment)
\begin{tabular}{|c|c|c|c|c|c|}
\hline STX & D100L & D100L & D101L & D101L & ETX1 \\
\hline \begin{tabular}{l} 
Head \\
code
\end{tabular} & \begin{tabular}{l} 
ETX2 \\
source data register, starting from \\
the lower 8 bits of D100
\end{tabular} & \begin{tabular}{c} 
Tail code \\
1
\end{tabular} & \begin{tabular}{c} 
Tail code \\
2
\end{tabular} \\
& (m) length = 4
\end{tabular}

Receiving data: (External equipment -> PLC)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline D120L & D120H & D121L & D121H & D122L & D122H & D123L \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\begin{tabular}{l} 
Head \\
code
\end{tabular} & D \begin{tabular}{l} 
received data register, starting from \\
the lower 8 bits of \(D 120\)
\end{tabular} & \begin{tabular}{c} 
Tail code \\
1
\end{tabular} & \begin{tabular}{c} 
Tail code \\
2
\end{tabular} \\
& n length \(=7\) & &
\end{tabular}

When receiving data, PLC will receive the head code and tail code of the data from the external equipment; therefore, the user has to be aware of the setting of data length \(\mathbf{n}\).

\section*{Program Example 3:}

Use COM2 on the PLC to carry out RS-485 communication.
Connect PLC to VFD-B series AC motor drives (AC motor drive in ASCII Mode; PLC in 16-bit mode and M1161 = Off). Write in the 6 data starting from parameter address H 2101 in VFD-B in advance as the data to be transmitted.


PLC \(\Rightarrow\) VFD-B, PLC sends ": 010321010006 D4 CR LF "
VFD-B \(\Rightarrow\) PLC, PLC receives ": 0103 0C 010017660000000001360000 3B CR LF "
Registers for sent data (PLC sends out message)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{Data} & & Explanation \\
\hline D100 low & ':' & 3A H & \multicolumn{2}{|l|}{STX} \\
\hline D100 high & '0' & 30 H & ADR 1 & \multirow[t]{2}{*}{Address of AC motor drive: ADR \((1,0)\)} \\
\hline D101 low & '1' & 31 H & ADR 0 & \\
\hline D101 high & '0' & 30 H & CMD 1 & \multirow[t]{2}{*}{Instruction code: CMD (1,0)} \\
\hline D102 low & '3' & 33 H & CMD 0 & \\
\hline D102 high & '2' & 32 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Start data address}} \\
\hline D103 low & '1' & 31 H & & \\
\hline D103 high & '0' & 30 H & & \\
\hline D104 low & '1' & 31 H & & \\
\hline D104 high & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Number of data (counted by words)}} \\
\hline D105 low & '0' & 30 H & & \\
\hline D105 high & '0' & 30 H & & \\
\hline D106 low & '6' & 36 H & & \\
\hline D106 high & 'D' & 44 H & LRC CHK 1 & Error checksum: LRC CHK (0,1) \\
\hline D107 low & '4' & 34 H & LRC CHK 0 & Error checksum. LRC CHK (0,1) \\
\hline D107 high & CR & D H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{END}} \\
\hline D108 low & LF & A H & & \\
\hline
\end{tabular}

Registers for received data (VFD-B responds with messages)
\begin{tabular}{|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{Data} & Explanation \\
\hline D120 low & ': & 3A H & STX \\
\hline D120 high & '0' & 30 H & ADR 1 \\
\hline D121 low & '1' & 31 H & ADR 0 \\
\hline D121 high & '0' & 30 H & CMD 1 \\
\hline D122 low & '3' & 33 H & CMD 0 \\
\hline D122 high & '0' & 30 H & \multirow[t]{2}{*}{Number of data (counted by byte)} \\
\hline D123 low & 'C' & 43 H & \\
\hline D123 high & '0' & 30 H & \multirow{4}{*}{Content of address 2101 H} \\
\hline D124 low & '1' & 31 H & \\
\hline D124 high & '0' & 30 H & \\
\hline D125 low & '0' & 30 H & \\
\hline D125 high & '1' & 31 H & \multirow{4}{*}{Content of address 2102 H} \\
\hline D126 low & '7' & 37 H & \\
\hline D126 high & '6' & 36 H & \\
\hline D127 low & '6' & 36 H & \\
\hline D127 high & '0' & 30 H & \multirow{4}{*}{Content of address 2103 H} \\
\hline D128 low & '0' & 30 H & \\
\hline D128 high & '0' & 30 H & \\
\hline D129 low & '0' & 30 H & \\
\hline D129 high & '0' & 30 H & \multirow{4}{*}{Content of address 2104 H} \\
\hline D130 low & '0' & 30 H & \\
\hline D130 high & '0' & 30 H & \\
\hline D131 low & '0' & 30 H & \\
\hline D131 high & '0' & 30 H & \multirow{4}{*}{Content of address 2105 H} \\
\hline D132 low & '1' & 31 H & \\
\hline D132 high & '3' & 33 H & \\
\hline D133 low & '6' & 36 H & \\
\hline D133 high & '0' & 30 H & \multirow{4}{*}{Content of address 2106 H} \\
\hline D134 low & '0' & 30 H & \\
\hline D134 high & '0' & 30 H & \\
\hline D135 low & '0' & 30 H & \\
\hline D135 high & '3' & 33 H & LRC CHK 1 \\
\hline D136 low & 'B' & 42 H & LRC CHK 0 \\
\hline D136 high & CR & D H & \multirow[t]{2}{*}{END} \\
\hline D137 low & LF & A H & \\
\hline
\end{tabular}

\section*{Program Example 4:}

Use COM2 on the PLC to carry out RS-485 communication.
Connect PLC to VFD-B series AC motor drives (AC motor drive in RTU Mode; PLC in 16-bit mode and M1161 = On).
Write in H 12 to parameter address H 2000 in VFD-B in advance as the data to be transmitted.


PLC \(\Rightarrow\) VFD-B, PLC sends: 0106200000120207
VFD-B \(\Rightarrow\) PLC, PLC receives: 0106200000120207
Registers for sent data (PLC sends out messages)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & Data & \multicolumn{1}{|c|}{ Explanation } \\
\hline D100 low & 01 H & Address \\
\hline D101 low & 06 H & Function \\
\hline D102 low & 20 H & \multirow{2}{*}{ Data address } \\
\hline D103 low & 00 H & \\
\hline D104 low & 00 H & \multirow{2}{*}{ Data content } \\
\hline D105 low & 12 H & \\
\hline D106 low & 02 H & CRC CHK Low \\
\hline D107 low & 07 H & CRC CHK High \\
\hline
\end{tabular}

Registers for received data (VFD-B responds with messages)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & Data & \multicolumn{1}{|c|}{ Explanation } \\
\hline D120 low & 01 H & Address \\
\hline D121 low & 06 H & Function \\
\hline D122 low & 20 H & \multirow{2}{*}{ Data address } \\
\hline D123 low & 00 H & \\
\hline D124 low & 00 H & \multirow{2}{*}{ Data content } \\
\hline D125 low & 12 H & \\
\hline D126 low & 02 H & CRC CHK Low \\
\hline D127 low & 07 H & CRC CHK High \\
\hline
\end{tabular}

Program Example 5: COM1 RS-232
1. Only 8-bit mode is supported. Communication format and speed are specified by lower 8 bits of D1036.
2. STX/ETX setting function (M1126/M1130/D1124~D1126) is not supported.
3. High byte of 16 -bit data is not available. Only low byte is valid for data communication.
4. Write the data to be transmitted in advance into registers starting from D100 and set M1312 (COM1 sending request) as ON
5. When \(\mathrm{XO}=\mathrm{ON}, \mathrm{RS}\) instruction executes and PLC is ready for communication. D100 will then start to send out 4 data continuously. When data sending is over, M1312 will be automatically reset. (DO NOT apply RST M1312 in program). After approximate 1 ms , PLC will start to receive 7 data and store the data in 7 consecutive registers starting from D120.
6. When data receiving is completed, M1314 will automatically be ON. When data processing on the received data is completed, M1314 has to be reset (OFF) and the PLC will be ready for communication again. However, DO NOT continuously execute RST M1314.


Sending data: (PLC \(\rightarrow\) External equipment)
\begin{tabular}{|l|l|l|l|}
\hline D100L & D101L & D102L & D103L \\
\hline
\end{tabular}

Source data register, starting from lower 8 bits of D100
(m) Length \(=4\)

Receving data: (External equipment \(\rightarrow\) PLC)


\section*{Program Example 6: COM3 RS-485 or RS-232}
1. Only 8-bit mode is supported. Communication format and speed are specified by lower 8 bits of D1109.
2. STX/ETX setting function (M1126/M1130/D1124~D1126) is not supported.
3. High byte of 16 -bit data is not available. Only low byte is valid for data communication.
4. Write the data to be transmitted in advance into registers starting from D100 and set M1316 (COM3 sending request) as ON
5. When \(\mathrm{XO}=\mathrm{ON}, \mathrm{RS}\) instruction executes and PLC is ready for communication. D100 will then start to send out 4 data continuously. When data sending is over, M1316 will be automatically reset. (DO NOT apply RST M1316 in program). After approximate 1 ms , PLC will start to receive 7 data and store the data in 7 consecutive registers starting from D120.
6. When data receiving is completed, M1318 will automatically be ON. When data processing on the received data is completed, M1318 has to be reset (OFF) and the PLC will be ready for communication again. However, DO

NOT continuously execute RST M1318.


Sending data: (PLC \(\rightarrow\) External equipment)

(S) Source data register, starting from lower 8 bits of D100
(m) Length \(=4\)

Receving data: (External equipment \(\rightarrow\) PLC)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline D120L & D121L & D122L & D123L & D124L & D125L & D126L \\
\hline \multicolumn{5}{|c|}{\begin{tabular}{l} 
Registers for received data, starting from \\
lower 8 bits of D120
\end{tabular}} \\
Cn Length \(=7\)
\end{tabular}

\section*{Remarks:}
1. PLC COM1 RS-232: Associated flags (Auxiliary relays) and special registers (Special D) for communication instructions RS / MODRD
\begin{tabular}{|c|l|c|}
\hline Flag & \multicolumn{1}{|c|}{ Function } & Action \\
\hline M1138 & \begin{tabular}{l} 
COM1 retain communication settings. Communication settings will be reset \\
(changed) according to the content in D1036 after every scan cycle. Users can \\
set ON M1138 if the communication protocol requires to be retained. When \\
M1138 = ON, communication settings will not be reset (changed) when \\
communication instructions are being processed, even if the content in D1036 \\
is changed.
\end{tabular} & \begin{tabular}{c} 
User sets and \\
resets
\end{tabular} \\
\hline M1139 & \begin{tabular}{l} 
COM1 ASCII / RTU mode selection, ON: RTU mode, OFF: ASCII mode. \\
M1312
\end{tabular} & \begin{tabular}{l} 
COM1 sending request. Before executing communication instructions, users set M1312 to ON by trigger pulse, so that the data sending and \\
receiving will be started. When the communication is completed, PLC will reset \\
M1312 automatically.
\end{tabular} \\
\hline M1313 & \begin{tabular}{l} 
COM1 data receiving ready. When M1313 is ON, PLC is ready for data \\
receiving
\end{tabular} & \begin{tabular}{c} 
User sets and \\
system resets
\end{tabular} \\
\hline M1314 & \begin{tabular}{ll} 
COM1 Data receiving completed.
\end{tabular} \\
\hline M1315 & \begin{tabular}{l} 
COM1 receiving error. M1315 will be set ON when errors occur and the error \\
code will be stored in D1250.
\end{tabular} & \begin{tabular}{r} 
System sets and \\
user resets
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special register & \multicolumn{1}{c|}{ Function } \\
\hline D1036 & \begin{tabular}{l} 
COM1 (RS-232) communication protocol. Refer to the following table in point 4 for \\
protocol setting.
\end{tabular} \\
\hline D1167 & \begin{tabular}{l} 
The specific end word to be detected for RS instruction to execute an interruption \\
request (I140) on COM1 (RS-232). When the character received is equal to the low byte \\
of D1167, the interrupt I140 is triggered. \\
Supported communication instructions: RS
\end{tabular} \\
\hline D1121 & \begin{tabular}{l} 
COM1 (RS-232)/COM2 (RS-485) communication address when COM1/COM2 \\
functions as a slave station.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special register & \multicolumn{1}{c|}{ Function } \\
\hline D1249 & \begin{tabular}{l} 
COM1 (RS-232) communication time-out setting (unit: ms). If users set up time-out \\
value in D1249 and the data receiving time exceeds the time-out value, M1315 will be \\
set ON and the error code K1 will be stored in D1250. M1315 has to be reset manually \\
when time-out status is cleared.
\end{tabular} \\
\hline D1250 & \begin{tabular}{l} 
COM1 (RS-232) communication error code. \\
Supported communication instructions: MODRW
\end{tabular} \\
\hline
\end{tabular}
2. PLC COM2 RS-485: Associated flags (Auxiliary relays) and special registers (Special D) for communication instructions RS / MODRD / MODWR / FWD / REV / STOP / RDST / RSTEF / MODRW.
\begin{tabular}{|c|l|l|}
\hline Flag & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Action } \\
\hline & \begin{tabular}{l} 
For retain the communication setting. After the first program scan \\
is completed, the communication setting will be reset according \\
to the setting in the special data register D1120. When the \\
second program scan starts and RS instruction is being \\
executed, the communication settings will all be reset according \\
to the settings in D1120. If your communication protocol is fixed, \\
you can set M1120 to On and the communication protocol will not \\
be reset whenever \\
RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW \\
instruction is executed. In this case, even the settings in D1120 \\
are modified, the communication protocol will not be changed.
\end{tabular} & \begin{tabular}{l} 
Set up and reset by the \\
user
\end{tabular} \\
\hline M1121 & \begin{tabular}{l} 
Off when the RS-485 communication data is being transmitted.
\end{tabular} & By the system. \\
\hline M1122 & \begin{tabular}{l} 
Sending request. When you need to send out or receive data by \\
RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW \\
instructions, you have to set M1122 to On by a pulse instruction. \\
When these instructions start to execute, PLC will start to send \\
out or receive data. When the data transmission is completed, \\
M1122 will be reset automatically.
\end{tabular} & \begin{tabular}{l} 
Set up by the user; reset \\
automatically by the \\
system.
\end{tabular} \\
\hline M1124 & \begin{tabular}{l} 
Receiving is completed. When the execution of \\
RS/MODRD/MODWR/FWD/REV/STOP/RDST/RSTEF/MODRW \\
instructions is completed, M1123 will be set to On. You can \\
process the data received when M1123 is On in the program. \\
You have to reset M1123 to Off when the process of received \\
data is completed.
\end{tabular} & \begin{tabular}{l} 
Seting for receiving. On when PLC is waiting for receiving data.
\end{tabular} \\
system; reset by the user. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Flag & Function & Action \\
\hline M1125 & Receiving status cleared. When M1125 = On, the waiting for receiving status of PLC will be cleared. You have to reset M1125 to Off after the staus is cleared. & \multirow{3}{*}{Set up and reset by the user.} \\
\hline M1126 & User/system defined STX/ETX selection of RS instruction (see the next table for details.) & \\
\hline M1130 & User/system defined STX/ETX selection of RS instruction (see the next table for details.) & \\
\hline M1127 & Data transmission is completed for communication instructions (RS instruction not included) & Set up automatically by the system; reset by the user. \\
\hline M1128 & Data being sent/received indication & By the systme. \\
\hline M1129 & Receiving time-out. If you already set up a communication time-out in D1129 and the data have not been received completey when the time-out set is reached, M1129 will be On. You have to reset M1129 to Off after the problem is solved. & Set up automatically by the system; reset by the user. \\
\hline M1131 & On when the data are converted into hex of MODRD/RDST/MODRW instructions when in ASCII mode; otherwise, M1131 is Off. & \multirow{4}{*}{By the system} \\
\hline M1140 & Data receiving error of MODRD/MODWR/MODRW instructions & \\
\hline M1141 & Parameter error of MODRD/MODWR/MODRW instructions & \\
\hline M1142 & Data receiving error of VFD-A handy commands & \\
\hline M1143 & \begin{tabular}{l}
ASCII/RTU mode selection (used with \\
MODRD/MODWR/MODRW instructions). On = RTU; Off = ASCII
\end{tabular} & \multirow[t]{2}{*}{Set up and reset by the user.} \\
\hline M1161 & 8/16-bit mode selection. On = 8-bit; Off = 16-bit & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special register & \multicolumn{1}{c|}{ Function } \\
\hline D1038 & \begin{tabular}{l} 
Delay time of data response when PLC is SLAVE in RS-485 communication, Range: \\
0~10,000. (Unit: 0.1ms).
\end{tabular} \\
\hline D1050~D1055 & \begin{tabular}{l} 
After MODRD / RDST is executed, the PLC will automatically convert the ASCII data in \\
D1070~D1085 into Hex data and stores the 16-bit Hex data into D1050~D1055
\end{tabular} \\
\hline D1070~D1085 & \begin{tabular}{l} 
When the PLC's RS-485 communication instruction receives feedback signals, the data \\
will be saved in the registers D1070~D1085 and then converted into Hex in other \\
registers. The RS instruction is not supported.
\end{tabular} \\
\hline D1089~D1099 & \begin{tabular}{l} 
When the PLC's RS-485 communication instruction sends out data, the data will be \\
stored in D1089~D1099. Users can check the sent data in these registers. RS \\
instruction is not supported
\end{tabular} \\
\hline D1120 & \begin{tabular}{l} 
RS-485 communication protocol. Refer to the following table in point 4 for protocol \\
setting.
\end{tabular} \\
\hline D1121 & PLC communication address when PLC is a slave. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Special register & Function \\
\hline D1122 & Residual number of words of transmitting data. \\
\hline D1123 & Residual number of words of the receiving data. \\
\hline D1124 & \begin{tabular}{l}
Definition of start character (STX) \\
Refer to the following table in point 3 for the setting.
\end{tabular} \\
\hline D1125 & Definition of first ending character (ETX1) in the RS instruction Refer to the following table in point 3 for the setting. \\
\hline D1126 & Definition of second ending character (ETX2) in the RS instruction Refer to the following table in point 3 for the setting. \\
\hline D1129 & \begin{tabular}{l}
Communication time-out setting (unit: ms) \\
If the value in D1129 is 0 , there is no communication timeout. If the setting value in D1129 is greater than 0 , and the first character is not received when RS / MODRD / MODWR / FWD / REV / STOP / RDST / RSTEF / MODRW is executed, or the time interval between two characters is greater than the setting value, the PLC will set M1129 to ON. Users can deal with the communication timeout by means of the flag. After the users deal with the communication timeout, they have to clear M1129.
\end{tabular} \\
\hline D1130 & Error code returning from Modbus. \\
\hline D1168 & \begin{tabular}{l}
The specific end word to be detected for RS instruction to execute an interruption request (I150) \\
If the character received is equal to the low byte in D1168, the interrupt I150 will be triggered.
\end{tabular} \\
\hline D1169 & \begin{tabular}{l}
The specific communication length to be detected for RS instruction to execute an interruption request (I160) \\
If the length of the data received is equal to the low byte in D1169, the interrupt I160 will be triggered. If the value in D1169 is 0, the interrupt is not triggered.
\end{tabular} \\
\hline D1256~D1295 & When the RS-485 communication instruction MODRW is executed, the command sent is stored in D1256 ~ D1295. Users can see the contents of the registers to check whether the command is correct. \\
\hline D1296~D1311 & The PLC automatically converts the received ASCII data into hex data. Supported communication instruction: MODRW \\
\hline
\end{tabular}
3. PLC COM3 RS-485: Associated flags (Auxiliary relays) and special registers (Special D) for communication instructions RS / MODRW and FWD / REV / STOP / RDST / RSTEF when M1177 = ON.
\begin{tabular}{|c|l|c|}
\hline Flag & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Action } \\
\hline M1136 & \begin{tabular}{l} 
COM3 retain communication settings. Communication settings will \\
be reset (changed) according to the content in D1109 after every \\
scan cycle. Users can set ON M1136 if the communication protocol \\
requires to be retained. When M1136 = ON, communication settings \\
will not be reset (changed) when communication instructions are \\
being processed, even if the content in D1109 is changed
\end{tabular} & User sets and resets \\
\hline M1320 & \begin{tabular}{l} 
COM3 ASCII / RTU mode selection. ON : RTU mode, OFF: ASCII \\
mode.
\end{tabular} & \begin{tabular}{l} 
COM3 sending request. Before executing communication \\
instructions, users need to set M1316 to ON by trigger pulse, so that \\
the data sending and receiving will be started. When the \\
communication is completed, PLC will reset M1316 automatically.
\end{tabular} \\
\hline M1316 User sets, system resets \\
\hline M1317 & \begin{tabular}{l} 
Data receiving ready. When M1317 is ON, PLC is ready for data \\
receiving.
\end{tabular} & System sets \\
\hline M1318 & \begin{tabular}{l} 
COM3 data receiving completed.
\end{tabular} \\
\hline M1319 & \begin{tabular}{l} 
COM3 data receiving error. M1319 will be set ON when errors occur \\
and the error code will be stored in D1253
\end{tabular} & System sets, user resets \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special register & \multicolumn{1}{c|}{ Function } \\
\hline D1038 & \begin{tabular}{l} 
Delay time of data response when PLC is SLAVE in COM3 RS-485 communication, \\
Range: 0~10,000. (unit: 0.1ms).
\end{tabular} \\
\hline D1109 & \begin{tabular}{l} 
COM3 (RS-485) communication protocol. Refer to the following table in point 4 for \\
protocol setting.
\end{tabular} \\
\hline D1169 & \begin{tabular}{l} 
The specific end word to be detected for RS instruction to execute an interruption \\
request (I160) on COM3 (RS-485) \\
If the character received is equal to the low byte in D1169, the interrupt I160 will be \\
triggered. \\
Supported communication instructions: RS
\end{tabular} \\
\hline D1252 & \begin{tabular}{l} 
COM3 (RS-485) Communication time-out setting (ms). If users set up time-out value in \\
D1252 and the data receiving time exceeds the time-out value, M1319 will be set ON \\
and the error code K1 will be stored in D1253. M1319 has to be reset manually when \\
time-out status is cleared.
\end{tabular} \\
\hline D1253 & COM3 (RS-485) communication error code \\
\hline D1255 & COM3 (RS-485) PLC communication address when PLC is a slave.
\end{tabular}
4. Corresponding table between COM ports and communication settings/status.
\begin{tabular}{|c|c|c|c|c|}
\hline & COM1 & Сом2 & СОМ3 & Function Description \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Protocol \\
setting
\end{tabular}} & M1138 & M1120 & M1136 & Retain communication setting \\
\hline & M1139 & M1143 & M1320 & ASCII/RTU mode selection \\
\hline & D1036 & D1120 & D1109 & Communication protocol \\
\hline & D1121 & D1121 & D1255 & PLC communication address \\
\hline \multirow{6}{*}{Sending request} & - & M1161 & - & 8/16 bit mode selection \\
\hline & - & M1121 & - & Indicate transmission status \\
\hline & M1312 & M1122 & M1316 & Sending request \\
\hline & - & M1126 & - & Set STX/ETX as user/system defined. (RS) \\
\hline & - & M1130 & - & Set STX/ETX as user/system defined. (RS) \\
\hline & - & D1124 & - & Definition of STX (RS) \\
\hline \multirow{6}{*}{Sending request} & - & D1125 & - & Definition of ETX1 (RS) \\
\hline & - & D1126 & - & Definition of ETX2 (RS) \\
\hline & D1249 & D1129 & D1252 & Communication timeout setting (ms) \\
\hline & - & D1122 & - & Residual number of words of transmitting data \\
\hline & - & \[
\begin{gathered}
\text { D1256 } \\
\sim \\
\text { D1295 }
\end{gathered}
\] & - & Store the sent data of MODRW instruction. \\
\hline & - & \[
\begin{gathered}
\text { D1089 } \\
\sim \\
\text { D1099 }
\end{gathered}
\] & - & Store the sent data of MODRD / MODWR / FWD / REV / STOP / RDST / RSTEF instruction \\
\hline \multirow{6}{*}{\begin{tabular}{l}
Data \\
Receiving
\end{tabular}} & M1313 & M1124 & M1317 & Data receiving ready \\
\hline & - & M1125 & - & Communication ready status reset \\
\hline & - & M1128 & - & Transmitting/Receiving status Indication \\
\hline & - & D1123 & - & Residual number of words of the receiving data \\
\hline & - & \[
\begin{gathered}
\text { D1070 } \\
\sim \\
\text { D1085 }
\end{gathered}
\] & - & Store the feedback data of Modbus communication. RS instruction is not supported. \\
\hline & D1167 & D1168 & D1169 & Store the specific end word to be detected for executing interrupts I140/150/l160 (RS) \\
\hline \multirow{4}{*}{Receiving completed} & M1314 & M1123 & M1318 & RS communication data receiving completed \\
\hline & M1314 & M1127 & M1318 & The sending / receiving of communication data is complete. \\
\hline & - & M1131 & - & ON when data is being converted from ASCII to Hex \\
\hline & - & \[
\begin{gathered}
\text { D1296 } \\
\sim \\
\text { D1311 }
\end{gathered}
\] & - & Store the converted HEX data of MODRW instruction. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & COM1 & COM2 & COM3 & Function Description \\
\hline Receiving completed & - & \[
\begin{gathered}
\text { D1050 } \\
\sim \\
\text { D1055 }
\end{gathered}
\] & - & Store the converted HEX data of MODRD instruction \\
\hline \multirow{7}{*}{Errors} & M1315 & - & M1319 & Data receiving error \\
\hline & D1250 & - & D1253 & Communication error code \\
\hline & - & M1129 & - & Receiving time out \\
\hline & - & M1140 & - & MODRD/MODWR/MODRW data receiving error \\
\hline & - & M1141 & - & \begin{tabular}{l}
MODRD/MODWR/MODRW parameter error (Exception \\
Code exists in received data) \\
Exception Code is stored in D1130
\end{tabular} \\
\hline & - & M1142 & - & Data receiving error of VFD-A handy instructions (FWD/REV/STOP/RDST/RSTEF) \\
\hline & - & D1130 & - & Error code returning from Modbus communication \\
\hline
\end{tabular}
5. How to set up RS-485 communication protocol in D1120
\begin{tabular}{|c|c|c|c|}
\hline - & Content & 0 & 1 \\
\hline b0 & Data length & 7 & 8 \\
\hline \[
\begin{aligned}
& \text { b1 } \\
& \text { b2 }
\end{aligned}
\] & Parity bits & \begin{tabular}{l}
00: None \\
01: Odd \\
11: Even
\end{tabular} & \\
\hline b3 & Stop bits & 1 bit & 2 bits \\
\hline \[
\begin{aligned}
& \text { b4 } \\
& \text { b5 } \\
& \text { b6 } \\
& \text { b7 }
\end{aligned}
\] & \begin{tabular}{lll}
0001 & \((\mathrm{H} 1)\) & \(:\) \\
0010 & \((\mathrm{H} 2)\) & \(:\) \\
0011 & \((\mathrm{H} 3)\) & \(:\) \\
0100 & \((\mathrm{H} 4)\) & \(:\) \\
0101 & \((\mathrm{H} 5)\) & \(:\) \\
0110 & \((\mathrm{H} 6)\) & \(:\) \\
0111 & \((\mathrm{H} 7)\) & \(:\) \\
1000 & \((\mathrm{H} 8)\) & \(:\) \\
1001 & \((\mathrm{H} 9)\) & \(:\) \\
1010 & \((\mathrm{HA})\) & \(:\) \\
1011 & \((\mathrm{HB})\) & \(:\) \\
1100 & \((\mathrm{HC})\) & \(:\)
\end{tabular} & 110
150
300
600
1200
2400
4800
9600
19200
38400
57600
115200 (doe & V5.8 and below) V5.8 and below) \\
\hline b8 & Start word & None & D1124 \\
\hline b9 & First end word & None & D1125 \\
\hline b10 & Second end word & None & D1126 \\
\hline b15 ~ b11 & \multicolumn{3}{|l|}{Not defined} \\
\hline
\end{tabular}
6. When RS instruction is in use, the frequently used communication format in the peripheral device will define the start word and end word of the control string. Therefore, you can set up the start word and end word in D1124 ~ D1126 for COM2 or use the start word and end word defined by the PLC. When you use M1126, M1130 and D1124 ~ D1126 to set up the start word and end word, b8 ~ b10 of D1120 have to be set as 1 to make valid the RS-485 communication protocol. See the table below for how to set up.

7. Example of how to set up the communication format of COM2:

Assume there is a communication format: Baud rate 9600 7, N, 2
STX : ":"
ETX1 : "CR"
ETX2 : "LF"

Check the table and obtain the communication format H 788 and write it into D1120.

\(|\)\begin{tabular}{c|l|l|l|}
0 & 7 & 8 & 8
\end{tabular}
\begin{tabular}{|c|l|l|l|} 
M1002 \\
\hline & MOV & H788 & D1120 \\
\hline
\end{tabular}

When STX, ETX1 and EXT2 are in use, please be aware of the On and Off of the special auxiliary relays M1126 and M1130.
8. D1250 (COM1)/D1253 (COM3) communication error code:
\begin{tabular}{|c|l|}
\hline Value & \multicolumn{1}{|c|}{ Error Description } \\
\hline H0001 & Communication time-out \\
\hline H0002 & Checksum error \\
\hline H0003 & Exception code exists \\
\hline H0004 & Command code error / data error \\
\hline H0005 & Communication data length error \\
\hline
\end{tabular}
9. The relation between special data registers and interrupts is described below. (Only lower 8 bits are valid.) Three communication interrupts at most can be enabled by the program in a DVP-EH3/SV2 series PLC. Users have to note the interrupt numbers used. (DVP-SV2 series PLCs do not support COM3.)
\begin{tabular}{|c|c|c|}
\hline Communication port & Interrupt number & Special data register \\
\hline \multirow{2}{*}{ COM1 } & I 151 & D 1397 \\
\cline { 2 - 3 } & I 161 & D 1398 \\
\hline \multirow{3}{*}{ COM2 } & I 150 & D 1168 \\
\cline { 2 - 3 } & D 160 & D 1169 \\
\cline { 2 - 3 } & I 170 & - \\
\hline \multirow{2}{*}{ COM3 } & I 153 & D 1242 \\
\cline { 2 - 3 } & I 163 & D 1243 \\
\hline
\end{tabular}

The interrupts I151, I161, I153, and I163 only support EH3/EH3-L/SV2 V2.00 (and above). EH2 and SV only support COM2 communucation interrupts.
10. M1143 is for the selection of ASCII mode or RTU mode. On = RTU mode; Off \(=A S C I I\) mode.

Take the standard Modbus format for example:
In ASCII mode (M1143 = Off)
\begin{tabular}{|c|c|}
\hline STX & Start word = ' \(:\) ' (3AH) \\
\hline Address Hi & \multirow[t]{2}{*}{\begin{tabular}{l}
Communication address: \\
The 8-bit address consists of 2 ASCII codes
\end{tabular}} \\
\hline Address Lo & \\
\hline Function Hi & \multirow[t]{2}{*}{\begin{tabular}{l}
Function code: \\
The 8-bit function code consists of 2 ASCII codes
\end{tabular}} \\
\hline Function Lo & \\
\hline DATA ( \(\mathrm{n}-1\) ) & \multirow{3}{*}{\begin{tabular}{l}
Data: \\
The \(\mathrm{n} \times 8\)-bit data consists of 2 n ASCII codes
\end{tabular}} \\
\hline .... & \\
\hline DATA 0 & \\
\hline LRC CHK Hi & \multirow[t]{2}{*}{\begin{tabular}{l}
LRC checksum: \\
The 8-bit checksum consists of 2 ASCII code
\end{tabular}} \\
\hline LRC CHK Lo & \\
\hline END Hi & \multirow[t]{2}{*}{\begin{tabular}{l}
End word: \\
END Hi = CR (ODH), END Lo = LF(OAH)
\end{tabular}} \\
\hline END Lo & \\
\hline
\end{tabular}

The communication protocol is in Modbus ASCII mode, i.e. every byte is composed of 2 ASCII characters. For example, 64 Hex is ' 64 ' in ASCII, composed by ' 6 ' (36Hex) and '4' (34Hex). Every hex '0'...' 9 ', 'A'...' \(F\) ' corresponds to an ASCII code.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Character & \(‘ 0 '\) & \(' 1 '\) & \(' 2 '\) & \(‘ 3 '\) & \(‘ 4 '\) & \(‘ 5 '\) & \(‘ 6 '\) & \(‘ 7 '\) \\
\hline ASCII code & 30 H & 31 H & 32 H & 33 H & 34 H & 35 H & 36 H & 37 H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Character & '8' & '9' & 'A' & 'B' & 'C' & 'D' & ' \(E\) ' & 'F' \\
\hline ASCII code & 38 H & 39 H & 41 H & 42 H & 43 H & 44 H & 45 H & 46 H \\
\hline
\end{tabular}

Start word (STX):
Fixed as ':' (3AH)
Address:
' 0 ' ' 0 ': Broadcasting to all drivers
' 0 ' ' 1 ': To the driver at address 01
' 0 ' ' \(F\) ': To the driver at address 15
' 1 ' ' 0 ': To the driver at address 16
....and so on, maximum to the driver at address 254 (' \(F\) ' ' \(E\) ')
Function code:
'0’ '1': Reading several bit devices
'0' ' 2 ': Reading several bit devices (read-only devices)
'0’ '3': Reading several word devices
'0' '4': Reading several word devices (read-only devices)
' 0 ' ' 5 ': Writing a state in a single bit device
' 0 ' ' 6 ': Writing data in a single word device
'0' 'F': Writing states in bit devices
'1' '0': Writing data in word devices
'1' '7': Reading word devices and writing data in word devices
Data characters: The data sent by the user.
LRC checksum:
LCR checksum is 2's complement of the value added from Address to Data Content.
For example: \(01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}\). 2 's complement of \(29 \mathrm{H}=\mathrm{D} 7 \mathrm{H}\)
End word (END):
Fixed as END Hi = CR (ODH), END Lo = LF (OAH)
For example: Read 2 continuous data stored in the registers of the driver at address 01 H (see the table below).
The start register is at address 2102 H .

Inquiry message:
\begin{tabular}{|c|c|}
\hline STX & ':' \\
\hline \multirow[t]{2}{*}{Slave station address} & '0' \\
\hline & '1' \\
\hline \multirow[b]{2}{*}{Function code} & '0' \\
\hline & '3' \\
\hline \multirow{4}{*}{Start address} & '2' \\
\hline & '1' \\
\hline & '0' \\
\hline & '2' \\
\hline \multirow{4}{*}{Number of data (counted by words)} & '0' \\
\hline & '0' \\
\hline & '0' \\
\hline & '2' \\
\hline \multirow[t]{2}{*}{LRC checksum} & 'D' \\
\hline & '7' \\
\hline \multirow[t]{2}{*}{END} & CR \\
\hline & LF \\
\hline
\end{tabular}

Responding message:
\begin{tabular}{|c|c|}
\hline STX & ':' \\
\hline \multirow[t]{2}{*}{Slave station address} & '0' \\
\hline & '1' \\
\hline \multirow[t]{2}{*}{Function code} & '0' \\
\hline & '3' \\
\hline \multirow[t]{2}{*}{Number of data (counted by byte)} & '0' \\
\hline & '4' \\
\hline \multirow{4}{*}{Content in start address
\[
2102 \mathrm{H}
\]} & '1' \\
\hline & '7' \\
\hline & '7' \\
\hline & '0' \\
\hline \multirow{4}{*}{Content of address
\[
2103 \mathrm{H}
\]} & '0' \\
\hline & '0' \\
\hline & '0' \\
\hline & '0' \\
\hline \multirow[t]{2}{*}{LRC check} & '7' \\
\hline & '1' \\
\hline \multirow[t]{2}{*}{END} & CR \\
\hline & LF \\
\hline
\end{tabular}

In RTU mode (M1143 = On)
\begin{tabular}{|c|c|}
\hline Name & Data (hexadecimal system) \\
\hline START & See the following explanation \\
\hline Address & Communication address: In 8-bit binary \\
\hline Function & Function code: In 8-bit binary \\
\hline DATA ( \(\mathrm{n}-1\) ) & \multirow[t]{2}{*}{\begin{tabular}{l}
Data: \\
\(\mathrm{n} \times 8\)-bit data
\end{tabular}} \\
\hline DATA 0 & \\
\hline CRC CHK Low & \multirow[t]{2}{*}{CRC checksum:
16-bit CRC consists of 28 -bit binary} \\
\hline CRC CHK High & \\
\hline END & See the following explanation \\
\hline
\end{tabular}

\section*{Address:}

00 H : Broadcasting to all drivers
01H: To the driver at address 01
0FH: To the driver at address 15
10H: To the driver at address \(16 \ldots\). And so on, maximum to the driver at address 254 (FE H)
Function code:
02H: Reading several bit devices
03H: Reading several word devices
04H: Reading several word devices (read-only devices)
05 H : Writing a state in a single bit device
06 H : Writing data in a single word device
OFH: Writing states in bit devices
10 H : Writing data in word devices
17H: Reading word devices and writing data in word devices
Data characters: The data sent by the user.
CRC checksum: Starting from Address and ending at Data Content.
Step 1: Make the 16-bit register (CRC register) \(=\) FFFFH
Step 2: Exclusive OR the first 8-bit message and the low 16-bit CRC register. Store the result in the CRC register.

Step 3: Right shift CRC register for a bit and fill "0" into the high bit.
Step 4: Check the value shifted to the right. If it is 0 , fill in the new value obtained in step 3 and store the value in CRC register; otherwise, Exclusive OR A001H and CRC register and store the result in the CRC register.

Step 5: Repeat step \(3-4\) and finish operations of all the 8 bits.
Step 6: Repeat step \(2-5\) for obtaining the next 8 -bit message until the operation of all the messages are completed. The final value obtained in the CRC register is the CRC checksum. The CRC checksum has to be placed interchangeably in the checksum of the message.
START and END:
For ES/EX/SS V5.8 (and below) and SA/SX V1.1 (and below) series MPU, keep no input signal be \(\geq 10 \mathrm{~ms}\).

See the table below for EH/EH2/SV/EH3/SV2 series MPU:
\begin{tabular}{|c|c|c|c|}
\hline Baud rate(bps) & RTU timeout timer (ms) & Baud rate (bps) & RTU timeout timer (ms) \\
\hline 300 & 40 & 9,600 & 2 \\
\hline 600 & 21 & 19,200 & 1 \\
\hline 1,200 & 10 & 38,400 & 1 \\
\hline 2,400 & 5 & 57,600 & 1 \\
\hline 4,800 & 3 & 115,200 & 1 \\
\hline
\end{tabular}

For example: Read 2 continuous data stored in the registers of the driver at address 01 H (see the table below).
The start register is at address 2102 H .

Inquiry message:
\begin{tabular}{|c|c|}
\hline Name & \begin{tabular}{c} 
Data \\
(Hexadecimal \\
value)
\end{tabular} \\
\hline Address & 01 H \\
\hline Function code & 03 H \\
\hline Start data address & 21 H \\
\cline { 2 - 2 } Number of data & 02 H \\
\cline { 2 - 2 } (counted by words) & 00 H \\
\hline CRC CHK Low & 02 H \\
\hline CRC CHK High & 6 FH \\
\hline
\end{tabular}

Responding message:
\begin{tabular}{|c|c|}
\hline Name & \begin{tabular}{c} 
Data \\
(Hexadecimal \\
value)
\end{tabular} \\
\hline Address & 01 H \\
\hline Function & 03 H \\
\hline \begin{tabular}{c} 
Number of data \\
(counted by byte)
\end{tabular} & 04 H \\
\hline \begin{tabular}{c} 
Content in data address \\
2102 H
\end{tabular} & 17 H \\
\cline { 2 - 2 } \begin{tabular}{c} 
Content in data address \\
2103 H
\end{tabular} & 70 H \\
\cline { 2 - 2 } \begin{tabular}{c} 
CRC CHK Low \\
CRC CHK High
\end{tabular} & 00 H \\
\hline FR H \\
\hline
\end{tabular}
11. Timing diagram of the RS-485 communication flag for COM2:


\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & & Function \\
\hline 81 & D & PRUN & P & (S) D & Parallel Run & \\
\hline
\end{tabular}


Operands:
S: Source device
D: Destination device

\section*{Explanations:}
1. The most right digit of \(X, Y\) and \(M\) of \(K n X, K n Y\) and \(K n M\) has to be 0 .
2. When \(\mathbf{S}\) designates \(\mathrm{KnX}, \mathbf{D}\) has to designate KnM ; when \(\mathbf{S}\) designates \(\mathrm{KnM}, \mathbf{D}\) has to designate KnY .
3. See the specifications of each model for their range of use.
4. This instruction sends the content in \(\mathbf{S}\) to \(\mathbf{D}\) in the form of octal system.

Program Example 1:
When \(\mathrm{X} 3=\mathrm{On}\), the content in K 4 X 10 will be sent to K 4 M 10 in octal form.

No change

\section*{Program Example 2:}

When \(\mathrm{X} 2=\mathrm{On}\), the content in K 4 M 10 will be sent to K 4 Y 10 in octal form.

\begin{tabular}{|c||c|c|c|cc|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 82 & ASCI & P & S \(D\) D & Converts Hex to ASCII & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & T & C & D & E & F & \multicolumn{9}{|l|}{ASCI, ASCIP: 7 steps} \\
\hline S & & & & & & * & * & * & & * & & & * & & & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & & * & & * & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for source data
D: Start device for storing the converted result
n : Number of bits to be converted

\section*{Explanations:}
1. Range of \(\mathbf{n}: 1 \sim 256\)
2. See the specifications of each model for their range of use.
3. Flag: M1161 (8/16 bit mode switch)
4. 16-bit conversion mode: When M1161 = Off, the instruction converts every bit of the hex data in S into ASCII codes and send them to the 8 high bits and 8 low bits of \(\mathbf{D} . \mathbf{n}=\) the converted number of bits.
5. 8-bit conversion mode: When M1161 = On, the instruction converts every bit of the hex data in S into ASCII codes and send them to the 8 low bits of \(\mathbf{D} . \mathbf{n}=\) the number of converted bits. (All 8 high bits of \(\mathbf{D}=0\) )

\section*{Program Example 1:}
1. M1161 = Off: The 16-bit conversion mode
2. When \(\mathrm{X0}=\mathrm{On}\), convert the 4 hex values in D10 into ASCII codes and send the result to registers starting from D20.

3. Assume
\begin{tabular}{|c|c|c|c|}
\hline \((\mathrm{D} 10)=0123 \mathrm{H}\) & ' 0 ' \(=30 \mathrm{H}\) & '4' \(=34 \mathrm{H}\) & ' 8 ' \(=38 \mathrm{H}\) \\
\hline \((\mathrm{D} 11)=4567 \mathrm{H}\) & ' 1 ' \(=31 \mathrm{H}\) & '5' \(=35 \mathrm{H}\) & '9' \(=39 \mathrm{H}\) \\
\hline \((\mathrm{D} 12)=89 \mathrm{AB} \mathrm{H}\) & '2' \(=32 \mathrm{H}\) & ' 6 ' \(=36 \mathrm{H}\) & ' \(\mathrm{A}^{\prime}=41 \mathrm{H}\) \\
\hline \((\mathrm{D} 13)=\) CDEF H & \(' 3\) ' \(=33 \mathrm{H}\) & '7' \(=37 \mathrm{H}\) & \(' \mathrm{~B}\) ' \(=42 \mathrm{H}\) \\
\hline
\end{tabular}
4. When \(\mathbf{n}=4\), the bit structure will be as:

D10 \(=0123 \mathrm{H}\)


D20 High byte Low byte

D21 High byte Low byte

5. When \(\mathbf{n}=6\), the bit structure will be as:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline b1 & & & & 22 & & & & & & & & & & & b0 \\
\hline 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
\hline & & \multicolumn{4}{|r|}{\(3 \rightarrow \mathrm{H} 33\)} & & & & & \multicolumn{6}{|l|}{\({ }_{2} \rightarrow \mathrm{H} 32\)} \\
\hline
\end{tabular}
6. When \(\mathbf{n}=1 \sim 16\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & K1 & K2 & K3 & K4 & K5 & K6 & K7 & K8 \\
\hline D20 Low byte & "3" & "2" & "1" & "0" & "7" & "6" & "5" & "4" \\
\hline D20 High byte & & "3" & "2" & "1" & "0" & "7" & "6" & "5" \\
\hline D21 Low byte & & & "3" & "2" & "1" & "0" & "7" & "6" \\
\hline D21 High byte & & & & "3" & "2" & "1" & " 0 " & "7" \\
\hline D22 Low byte & & & & \multirow{12}{*}{\[
\begin{gathered}
\text { no } \\
\text { chang }
\end{gathered}
\]} & "3" & "2" & "1" & "0" \\
\hline D22 High byte & & & & & & "3" & "2" & "1" \\
\hline D23 Llow byte & & & & & & & "3" & "2" \\
\hline D23 High byte & & & & & & & & "3" \\
\hline D24 Low byte & & & & & & & & \\
\hline D24 High byte & & & & & & & & \\
\hline D25 Low byte & & & & & & & & \\
\hline D25 High byte & & & & & & & & \\
\hline D26 Low byte & & & & & & & & \\
\hline D26 High byte & & & & & & & & \\
\hline D27 Low byte & & & & & & & & \\
\hline D27 High byte & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
n \\
D
\end{tabular} & K9 & K10 & K11 & K12 & K13 & K14 & K15 & K16 \\
\hline D20 Low byte & "B" & "A" & "9" & "8" & "F" & "E" & "D" & "C" \\
\hline D20 High byte & "4" & "B" & "A" & "9" & "8" & "F" & "E" & "D" \\
\hline D21 Low byte & "5" & "4" & "B" & "A" & "9" & "8" & "F" & "E" \\
\hline D21 High byte & "6" & "5" & "4" & "B" & "A" & "9" & "8" & "F" \\
\hline D22 Low byte & "7" & "6" & "5" & "4" & "B" & "A" & "9" & "8" \\
\hline D22 High byte & "0" & "7" & "6" & "5" & "4" & "B" & "A" & "9" \\
\hline D23 Llow byte & "1" & "0" & "7" & "6" & "5" & "4" & "B" & "A" \\
\hline D23 High byte & "2" & "1" & "0" & "7" & "6" & "5" & "4" & "B" \\
\hline D24 Low byte & "3" & "2" & "1" & "0" & "7" & "6" & "5" & "4" \\
\hline D24 High byte & & "3" & "2" & "1" & "0" & "7" & "6" & "5" \\
\hline D25 Low byte & & & "3" & "2" & "1" & "0" & "7" & "6" \\
\hline D25 High byte & & & \multirow{5}{*}{no change} & "3" & "2" & "1" & "0" & "7" \\
\hline D26 Low byte & & & & & "3" & "2" & "1" & "0" \\
\hline D26 High byte & & & & & & "3" & "2" & "1" \\
\hline D27 Low byte & & & & & & & "3" & "2" \\
\hline D27 High byte & & & & & & & & "3" \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. \(\mathrm{M} 1161=\mathrm{On}\) : The 8-bit conversion mode
2. When \(\mathrm{X0}=\mathrm{On}\), convert the 4 hex values in D10 into ASCII codes and send the result to registers starting from D20.

3. Assume
\begin{tabular}{|c|c|c|c|}
\hline \((\mathrm{D} 10)=0123 \mathrm{H}\) & ' 0 ' \(=30 \mathrm{H}\) & '4' \(=34 \mathrm{H}\) & ' 8 ' \(=38 \mathrm{H}\) \\
\hline \((\mathrm{D} 11)=4567 \mathrm{H}\) & ' 1 ' \(=31 \mathrm{H}\) & ' 5 ' = 35H & '9' \(=39 \mathrm{H}\) \\
\hline \((\mathrm{D} 12)=89 \mathrm{AB} \mathrm{H}\) & '2' \(=32 \mathrm{H}\) & ' 6 ' \(=36 \mathrm{H}\) & ' A ' \(=41 \mathrm{H}\) \\
\hline \((\mathrm{D} 13)=\mathrm{CDEFH}\) & '3' \(=33 \mathrm{H}\) & '7' = 37H & ' \({ }^{\prime}\) ' \(=42 \mathrm{H}\) \\
\hline
\end{tabular}
4. When \(\mathbf{n}=2\), the bit structure will be as:

D10=0123 H
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

ASCII code of \(D 20=2\) is 32 H

ASCII code of D21=3 is 33 H

5. When \(\mathbf{n}=4\), the bit structure will be as:





6. When \(\mathbf{n}=1 \sim 16\) :
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & K1 & K2 & K3 & K4 & K5 & K6 & K7 & K8 \\
\hline D20 & "3" & "2" & "1" & "0" & "7" & "6" & "5" & "4" \\
\hline D21 & & "3" & "2" & "1" & "0" & "7" & "6" & "5" \\
\hline D22 & & & "3" & "2" & "1" & "0" & "7" & "6" \\
\hline D23 & & & & "3" & "2" & "1" & "0" & "7" \\
\hline D24 & & & & \multirow{12}{*}{\[
\begin{gathered}
\text { no } \\
\text { chang }
\end{gathered}
\]} & "3" & "2" & "1" & "0" \\
\hline D25 & & & & & & "3" & "2" & "1" \\
\hline D26 & & & & & & & "3" & "2" \\
\hline D27 & & & & & & & & "3" \\
\hline D28 & & & & & & & & \\
\hline D29 & & & & & & & & \\
\hline D30 & & & & & & & & \\
\hline D31 & & & & & & & & \\
\hline D32 & & & & & & & & \\
\hline D33 & & & & & & & & \\
\hline D34 & & & & & & & & \\
\hline D35 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline  & K9 & K10 & K11 & K12 & K13 & K14 & K15 & K16 \\
\hline D20 & "B" & "A" & "9" & "8" & "F" & "E" & "D" & "C" \\
\hline D21 & "4" & "B" & "A" & "9" & "8" & "F" & "E" & "D" \\
\hline D22 & "5" & "4" & "B" & "A" & "9" & "8" & "F" & "E" \\
\hline D23 & "6" & "5" & "4" & "B" & "A" & "9" & "8" & "F" \\
\hline D24 & "7" & "6" & "5" & "4" & "B" & "A" & "9" & "8" \\
\hline D25 & "0" & "7" & "6" & "5" & "4" & "B" & "A" & "9" \\
\hline D26 & "1" & "0" & "7" & "6" & "5" & "4" & "B" & "A" \\
\hline D27 & "2" & "1" & "0" & "7" & "6" & "5" & "4" & "B" \\
\hline D28 & "3" & "2" & "1" & "0" & "7" & "6" & "5" & "4" \\
\hline D29 & & "3" & "2" & "1" & "0" & "7" & "6" & "5" \\
\hline D30 & & & "3" & "2" & "1" & "0" & "7" & "6" \\
\hline D31 & & & \multirow{5}{*}{\[
\begin{gathered}
\text { no } \\
\text { chang }
\end{gathered}
\]} & "3" & "2" & "1" & "0" & "7" \\
\hline D32 & & & & & "3" & "2" & "1" & "0" \\
\hline D33 & & & & & & "3" & "2" & "1" \\
\hline D34 & & & & & & & "3" & "2" \\
\hline D35 & & & & & & & & "3" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & Operands & Function \\
\hline 83 & HEX & P & (S)D & Converts ASCII to Hex \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{HEX, HEXP: 7 steps} \\
\hline S & & & & & & * & * & * & & * & * & & * & * & & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for source data
D: Start device for storing the converted result
n : Number of bits to be converted

\section*{Explanations:}
1. Range of \(\mathbf{n}: 1 \sim 256\)
2. See the specifications of each model for their range of use.
3. Flag: M1161 (8/16 bit mode switch)
4. 16 -bit conversion mode: When M1161 = Off, the instruction is in 16 -bit conversion mode. ASCII codes of the 8 high bits and 8 low bits of the hex data in \(\mathbf{S}\) are converted into hex value and sent to \(\mathbf{D}\) (every 4 bits as a group). \(\mathbf{n}\) \(=\) the number of bits converted into ASCII codes.
5. 8-bit conversion mode: When M1161 = On, the instruction is in 8-bit conversion mode. Every bit of the hex data in \(\mathbf{S}\) are converted into ASCII codes and sent to the 8 low bits of \(\mathbf{D} . \mathbf{n}=\) the number of converted bits. (All 8 high bits of \(\mathbf{D}=0\) )
6. If the ASClI code is not in the range of \(\mathrm{H} 30 \sim \mathrm{H} 39(0 \sim 9)\) or is not in the range \(\mathrm{H} 41 \sim \mathrm{H} 46\) (A~F), HEX will set M1067, and the conversion of the ASCII code into a hexadecimal value will stop.

\section*{Program Example 1:}
1. M1161 = Off: The 16-bit conversion mode
2. When \(\mathrm{XO}=\mathrm{On}\), convert the ASCII codes stored in the registers starting from D20 into hex value and send the result (every 4 bits as a group) to registers starting from D10. \(\mathbf{n}=4\).

3. Assume
\begin{tabular}{|l|c|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ S } & ASCII code & Converted to hex & \multicolumn{1}{|c|}{ S } & ASCII code & Converted to hex \\
\hline D20 low byte & H 43 & "C" & D24 low byte & H 34 & "4" \\
\hline D20 high byte & H 44 & "D" & D24 high byte & H 35 & "5" \\
\hline D21 low byte & H 45 & "E" & D25 low byte & H 36 & \(" 6 "\) \\
\hline D21 high byte & H 46 & "F" & D25 high byte & H 37 & "7" \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|l|c|c|}
\hline \multicolumn{1}{|c|}{ S } & ASCII code & Converted to hex & \multicolumn{1}{|c|}{ S } & ASCII code & Converted to hex \\
\hline D22 low byte & H 38 & "8" & D26 low byte & H 30 & "0" \\
\hline D22 high byte & H 39 & "9" & D26 high byte & H 31 & "1" \\
\hline D23 low byte & H 41 & "A" & D27 low byte & H 32 & "2" \\
\hline D23 high byte & H 42 & "B" & D27 high byte & H 33 & "3" \\
\hline
\end{tabular}
4. When \(\mathbf{n}=4\), the bit structure will be as:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline D20 & & & 1 & 0 & 10 & 0 & 0 & 1 & 0 & & 0 & 0 & & & - & 0 & 0 & 0 & 1 & & \\
\hline & & & H & H & - & \(\rightarrow\) & \(\rightarrow\) & & & & & I & & & H & & \(\rightarrow\) & \(\rightarrow\) & & & \\
\hline
\end{tabular}

\begin{tabular}{c} 
D10 \\
\hline 1
\end{tabular} \begin{tabular}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
5. When \(\mathbf{n}=1 \sim 16\) :
\begin{tabular}{|c|c|c|c|c|}
\hline  & D13 & D12 & D11 & D10 \\
\hline 1 & \multirow{12}{*}{The undesignated parts in the registers in use are all 0 .} & & & *** CH \\
\hline 2 & & & & **CD H \\
\hline 3 & & & & *CDE H \\
\hline 4 & & & & CDEF H \\
\hline 5 & & & ***C H & DEF8 H \\
\hline 6 & & & **CD H & EF89 H \\
\hline 7 & & & *CDE H & F89A H \\
\hline 8 & & & CDEF H & 89AB H \\
\hline 9 & & *** CH & DEF8 H & 9AB4 H \\
\hline 10 & & **CD H & EF89 H & AB45 H \\
\hline 11 & & *CDE H & F89A H & B456 H \\
\hline 12 & & CDEF H & 89AB H & 4567 H \\
\hline 13 & *** CH & DEF8 H & 9AB4 H & 5670 H \\
\hline 14 & **CD H & EF89 H & AB45 H & 6701 H \\
\hline 15 & *CDE H & F89A H & B456 H & 7012 H \\
\hline 16 & CDEF H & 89AB H & 4567 H & 0123 H \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. \(\mathrm{M} 1161=\mathrm{On}\) : The 8 -bit converstion mode

2. Assume
\begin{tabular}{|c|c|c|c|c|c|}
\hline S & ASCII code & Converted to hex & S & ASCII code & Converted to hex \\
\hline D20 & H 43 & "C" & D28 & H 34 & "4" \\
\hline D21 & H 44 & "D" & D29 & H 35 & " \(5 "\) \\
\hline D22 & H 45 & "E" & D30 & H 36 & " \(6 "\) \\
\hline D23 & H 46 & "F" & D31 & H 37 & "7" \\
\hline D24 & H 38 & "8" & D32 & H 30 & "0" \\
\hline D25 & H 39 & \(" 9 "\) & D33 & H 31 & "1" \\
\hline D26 & H 41 & "A" & D34 & H 32 & "2" \\
\hline D27 & H 42 & "B" & D35 & H 33 & "3" \\
\hline
\end{tabular}
3. When \(\mathbf{n}=2\), the bit structure will be as:
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{D20} \\
\hline \\
\hline
\end{tabular}


4. When \(\mathbf{n}=1 \sim 16\) :
\begin{tabular}{|c|c|c|c|c|}
\hline  & D13 & D12 & D11 & D10 \\
\hline 1 & \multirow{12}{*}{The used registers which are not specified are all 0} & & & ***C H \\
\hline 2 & & & & \({ }^{* *} \mathrm{CD} \mathrm{H}\) \\
\hline 3 & & & & *CDE H \\
\hline 4 & & & & CDEF H \\
\hline 5 & & & *** CH & DEF8 H \\
\hline 6 & & & **CD H & EF89 H \\
\hline 7 & & & *CDE H & F89A H \\
\hline 8 & & & CDEF H & 89AB H \\
\hline 9 & & *** CH & DEF8 H & 9AB4 H \\
\hline 10 & & **CD H & EF89 H & AB45 H \\
\hline 11 & & *CDE H & F89A H & B456 H \\
\hline 12 & & CDEF H & 89AB H & 4567 H \\
\hline 13 & *** CH & DEF8 H & 9AB4 H & 5670 H \\
\hline 14 & **CD H & EF89 H & AB45 H & 6701 H \\
\hline 15 & *CDE H & F89A H & B456 H & 7012 H \\
\hline 16 & CDEF H & 89AB H & 4567 H & 0123 H \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 84 & & CCD & P & S \(D\) D & Check Code
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & Kn & & KnY & \multicolumn{2}{|l|}{KnM} & KnS & \multicolumn{2}{|c|}{T} & C & D & E & F & \multicolumn{9}{|l|}{CCD, CCDP: 7 steps} \\
\hline S & & & & & & & & * & & * & * & & * & & & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & * & & * & & & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & & & & PUL & & & & & & & & & & -bit & & & & & & & & 32-1 & & & & \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & S & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start device for source data
D: Device for storing the sum check result
\(\mathbf{n}\) : Number of data

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathbf{1 \sim 2 5 6}\)
2. See the specifications of each model for their range of use.
3. Flag: M1161 (8/16 bit mode switch)
4. The sum check is used for ensuring the correctness of the data transmission.
5. 16-bit conversion mode: When M1161 = Off, the instruction is in 16-bit conversion mode. The instruction sums up \(\mathbf{n}\) data ( 8 bits as a unit) from the start register designated in \(\mathbf{S}\) and stores the results in the registers designated in \(\mathbf{D}\). The parity bits are stored in \(\mathbf{D}+1\).
6. 8-bit conversion mode: When M1161 = On, the instruction is in 8-bit conversion mode. The instruction sums up \(\mathbf{n}\) data ( 8 bits as a unit; only 8 low bits are valid) from the start register designated in \(\mathbf{S}\) and stores the results in the registers designated in \(\mathbf{D}\). The parity bits are stored in \(\mathbf{D}+1\).

\section*{Program Example 1:}
1. \(\mathrm{M} 1161=\) Off: The 16-bit conversion mode
2. When \(X 0=O n\), the instruction will sum up 6 data stored in the register designated in \(D 0\) ( 8 bits as a unit; \(\mathbf{n}=6\) indicates D0 ~ D2 are designated) and store the result in the register designated in D100. The parity bits are stored in D101.



D100 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}
D101 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. \(\mathrm{M} 1161=\mathrm{On}\) : The 8 -bit conversion mode
2. When \(X 0=O n\), the instruction will sum up 6 data stored in the register designated in \(D 0\) ( 8 bits as a unit; \(\mathbf{n}=6\) indicates D0 ~ D5 are designated) and store the result in the register designated in D100. The parity bits are stored in D101.



D101 \begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 85 & & VRRD & P & S \(D\) & Volume Read
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{VRRD, VRRDP: 5 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & * & & * & & * & * & & * & * & * & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & & & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}

S: No. of VR \(\quad\) : Device for storing the volume of VR

\section*{Explanations:}
1. Range of \(\mathbf{S}: 0 \sim 7\); without function card: \(0 \sim 1\).
2. See the specifications of each model for their range of use.
3. Flags: M1178, M1179. See remarks for more details.
4. VRRD instruction is used for reading 2 points (No.O, No.1) of PLC or the VR rotary switch volume change in the 6 points of the function cards (No. \(2 \sim\) No.7) and converting the data into values \(0 \sim 255\) (stored in D).
5. If you are to set up the timer by the VR volume, simply rotate the VR to modify the set time in the timer. If you are to acquire a value larger than 255 , multiply \(\mathbf{D}\) by a constant.

\section*{Program Example 1:}
1. When \(\mathrm{XO}=\mathrm{On}, \mathrm{VRO}\) volume changed will be converted into an 8 -bit BIN value \((0 \sim 255)\) and stored in D0.
2. When \(\mathrm{X} 1=\mathrm{On}\), the imer T 0 will start to time with the content in D 0 as the set value in the timer.


\section*{Program Example 2:}
1. Read the VR volume in order: The VR0 ~ VR7 rotary switches on the PLC correspond to \(\mathbf{S}=\mathrm{KO} \sim \mathrm{K} 7\) of VRRD instruction. E index register modification is used in the example below, K0E \(=\mathrm{KO} \sim \mathrm{K} 7\).
2. The timer converts the scale \(0 \sim 10\) on the rotary switch into \(0 \sim 255\). The timing unit of \(\mathrm{T} 0 \sim \mathrm{~T} 7\) is 0.1 second; therefore, the set time in the timer will be \(0 \sim 25.5\) seconds.


3. Operation of FOR ~NEXT instruction:
a) In the area between FOR ~ NEXT instruction, FOR designating K8 indicates the loop between FOR ~ NEXT will be executed repeatedly for 8 times before the next instruction is executed.
b) Between FOR ~ NEXT (INC E), E will be \(0,1,2, \ldots 7\) plusing 1. Therefore, the 8 VR rotary switch volumes will be \(\mathrm{VR} 0 \rightarrow \mathrm{D} 100, \mathrm{VR} 1 \rightarrow \mathrm{D} 101, \mathrm{VR} 2 \rightarrow \mathrm{D} 102 \ldots \mathrm{VR} 7 \rightarrow \mathrm{D} 107\) and be read to designated registers in order.

\section*{Remarks:}
1. VR refers to Variable Resister.
2. The 2 points of VR rotary switch built in SA/SX/SC/EH/EH2/SV/EH3/SV2 series MPU can be used together with special D and special M.
\begin{tabular}{|l|l|}
\hline Device & \multicolumn{1}{|c|}{ Function } \\
\hline M1178 & Enabling VR0 \\
\hline M1179 & Enabling VR1 \\
\hline D1178 & VR0 value \\
\hline D1179 & VR1 value \\
\hline
\end{tabular}
3. If there is no VR extension card inserted in the PLC, setting up the No. of rotary switches as K2 ~K7 in VRRD and VRSC instruction in the program will result in errors in grammar check.
\begin{tabular}{|c|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & Operands & & Function \\
\hline 86 & VRSC & P & (S) D & Volume Scale & \\
\hline
\end{tabular}


\section*{Operands:}

S: No. of VR D: Device for storing the scale of VR

\section*{Explanations:}
1. Range of \(\mathbf{S}: \mathbf{0} \sim 7\); without function card: \(0 \sim 1\)
2. See the specifications of each model for their range of use.
3. VRSC instruction is used for reading 2 points (No.0, No.1) of PLC or the VR rotary switch scale ( \(0 \sim 10\) ) in the 6 points of the function cards (No. \(2 \sim\) No.7) and storing the data in \(\mathbf{D}\). If the position of the VR falls in the middle of two scales, VRSC will round up the value into an integer of \(0 \sim 10\).

\section*{Program Example 1:}

When \(\mathrm{XO}=\mathrm{On}\), the scale of VR0 \((0 \sim 10)\) will be stored in D10.
\begin{tabular}{|l|l|l|l|}
\hline X0 & VRSC & K0 & D10 \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. When the VR is used as DIP switch, they will correspond to scale \(0 \sim 10\) and only one of M10~M20 will be On. Use API 41 DECO instruction to decode the scales into M10 ~ M25.
2. When \(\mathrm{X0}=\mathrm{On}\), store the scale \((0 \sim 10)\) of VR1 into D1.
3. When \(\mathrm{X} 1=\mathrm{On}\), use API 41 DECO to decode the scales into M10 \(\sim \mathrm{M} 25\).


\section*{Remarks:}

If the MPU is not inserted with a VR extension card, and the No. of the rotary switches inVRRD or VRSC instruction in the program are set as \(\mathrm{K} 2 \sim \mathrm{~K} 7\), errors will occur in the execution of grammar check.
\begin{tabular}{|c|c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & Operands & & Function \\
\hline \multicolumn{8}{|c|}{} & D & ABS & P & D & Absolute Value & \\
\hline
\end{tabular}


\section*{Operands:}

D: Device of the absolute value

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. This instruction obtains the absolute value of the content in the designated in \(\mathbf{D}\).
3. This instruction adopts pulse execution instructions (ABSP, DABSP).

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{Off} \rightarrow \mathrm{On}\), obtain the absolute value of the content in D0.
\begin{tabular}{|c||c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \\
\hline 88 & D & PID & & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\qquad\)} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & Kn & & KnY & Kn & M & & nS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{PID : 9 steps DPID: 17 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathrm{S}_{1}\) : Set value (SV)
\(\mathbf{S}_{2}\) : Present value (PV)
\(\mathbf{S}_{3}\) : Parameter
D: Output value (MV)

\section*{Explanations:}
1. In the 16 -bit instruction, \(\mathbf{S}_{\mathbf{3}}\) will occupy 20 consecutive devices; in the 32 -bit instruction, \(\mathbf{S}_{\mathbf{3}}\) will occupy 21 consecutive devices.
2. See the specifications of each model for their range of use.
3. See the Remarks below for the times of using PID instruction allowed in the program.
4. This instruction is specifically for PID control. PID operation will be executed by the scan only when the sampling time is reached. PID refers to "proportion, integration and differential". PID control is widely applied to many machines, pneumatic and electronic equipments.
5. For the 16-bit instruction, the parameters are \(\mathbf{S}_{\mathbf{3}} \sim \mathbf{S}_{\mathbf{3}}+19\); for the 32 -bit instruction, the parameters are \(\mathbf{S}_{\mathbf{3}} \sim \mathbf{S}_{\mathbf{3}}+20\). After all the parameters are set up, PID instruction will start to be executed and the results will be stored in D. D has to be the data register area without latched function. (If you wish to designate a latched data register area, place the data register in the latched area at the beginning of the program and clear it as 0 .)

\section*{Program Example:}
1. Complete the parameter setting before executing PID instruction.
2. When \(\mathrm{X0}=\mathrm{On}\), the instruction will be executed and the result will be stored in D150. When \(\mathrm{X0}\) goes Off, the instruction will not be executed and the data prior to the instruction will stay intact.
\begin{tabular}{|l|l|l|l|l|l|}
\hline X0 & PID & D0 & D1 & D100 & D150 \\
\hline
\end{tabular}

\section*{Remarks:}
1. ES/EX/SS series MPU V5.7 (and above) supports PID instruction. Other versions do not support the instruction.
2. There is no limitation on the times of using this instruction. However, the register No. designated in \(\mathbf{S}_{\mathbf{3}}\) cannot be repeated.
3. For the 16-bit instruction, \(\mathbf{S}_{\mathbf{3}}\) will occupy 20 registers. In the program example above, the area designated in \(\mathbf{S}_{\mathbf{3}}\) is D100 ~ D119. Before the execution of PID instruction, you have to transmit the setting value to the designated register area by MOV instruction, If the designated registers are latched, use MOVP instruction to transmit all setting value at a time.
4. Settings of \(\mathbf{S}_{\mathbf{3}}\) in the 16-bit instruction
\begin{tabular}{|c|c|c|c|}
\hline Device No. & Function & Setup Range & Explanation \\
\hline \(\mathrm{S}_{3}\) : & \begin{tabular}{l}
Sampling time ( \(\mathrm{T}_{\mathrm{s}}\) ) \\
(unit: 10ms)
\end{tabular} & \[
\begin{aligned}
& 1 \sim 2,000 \\
& \text { (unit: } 10 \mathrm{~ms} \text { ) }
\end{aligned}
\] & If \(T_{S}\) is less than 1 program scan time, PID instruction will be executed for 1 program scan time. If \(T_{S}=0\), PID instruction will not be enabled. The minimum \(T_{S}\) has to be longer than the program scan time. \\
\hline \(\mathrm{S}_{3}+1\) & Proportional gain ( \(\mathrm{K}_{\mathrm{P}}\) ) & 0 ~ 30,000 (\%) & The magnified error proportional value between SV - PV. \\
\hline \(\mathrm{S}_{3}\) & Integral gain ( \(\mathrm{K}_{\mathrm{l}}\) ) & 0 ~ 30,000 (\%) & For control mode K0~K8 \\
\hline \(\mathrm{S}_{3}+3\) : & Differential gain ( \(\mathrm{K}_{\mathrm{D}}\) ) & -30,000 ~ 30,000 (\%) & For control mode K0~K8 \\
\hline \(\mathrm{S}_{3}+4\) : & Control mode & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : automatic control \\
1: forward control ( \(\mathrm{E}=\mathrm{SV}-\mathrm{PV}\) ) \\
2: inverse control \((E=P V-S V)\) \\
3: Auto-tuning of parameter exclusively for the temperature control. The device will automatically become K4 when the auto-tuning is completed and be filled in with the appropriate parameter \(K_{p}, K_{1}\) and \(K_{D}\) (not avaliable in the 32-bit instruction). \\
4: Exclusively for the adjusted temperature control (not avaliable in the 32-bit instruction). \\
5: Auto direction control (limited integrall upper/lower limit) \\
P.S. K5 mode is only available in SV/EH2/EH3/SV2 V1.2, SA/SX V1.8 and SC V1.6, and EH3/SV2 V1.0. \\
7: Manual control 1: Users set an MV. The accumulated integral value increases according to the error. It is suggested that the control mode should be used in a control environment which changes more slowly. EH3 V1.62 and SV2 V1.62 are supported. \\
8: Manual control 2: Users set an MV. The accumulated integral value will stop increasing. When the control mode becomes the automatic mode (the control mode K5 is used), the instruction PID outputs an appropriate accumulated integral value according to the last MV. EH3 V1.62 and SV2 V1. 62 are supported.
\end{tabular}} \\
\hline \(\mathrm{S}_{3}+5\) : & The range that error value (E) doesn't work & 0~32,767 & \(E=\) the error of \(S V-P V\). When \(S_{3}+5=K 0\), the function will not be enabled, e.g. when \(S_{3}+5\) is set as 5 , MV of \(E\) between -5 and 5 will be 0 . \\
\hline \(\mathrm{S}_{3}+6\) : & Upper bound of output value (MV) & -32,768 ~ 32,767 & Ex: if \(\mathbf{S}_{\mathbf{3}}+6\) is set as 1,000 , the output will be 1,000 when MV is bigger than \(1,000 . \mathbf{S}_{3}+6\) has to be bigger or equal \(\mathbf{S}_{3}+7\); otherwise the upper bound and lower bound will switch. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device No. & Function & Setup Range & Explanation \\
\hline \(\mathrm{S}_{3}+7\) : & Lower bound of output value (MV) & \(-32,768 \sim 32,767\) & Ex: if \(S_{3}+7\) is set as \(-1,000\), the output will be \(-1,000\) when MV is smaller than \(-1,000\). \\
\hline \(\mathrm{S}_{3}+8\) : & Upper bound of integral value & -32,768~32,767 & Ex: if \(S_{3}+8\) is set as 1,000 , the output will be 1,000 when the integral value is bigger than 1,000 and the integration will stop. \(\mathbf{S}_{3}+8\) has to be bigger or equal \(\mathbf{S}_{3}+9\); otherwier the upper bound and lower bound will switch. \\
\hline \(\mathrm{S}_{3}+9\) : & Lower bound of integral value & -32,768 ~ 32,767 & Ex: if \(S_{3}+9\) is set as \(-1,000\), the output will be \(-1,000\) when the integral value is smaller than \(-1,000\) and the integration will stop. If \(\mathbf{S}_{\mathbf{3}}+8\) and \(\mathbf{S}_{3}+9\) are set to 0 , there will be no upper limit for integration. \\
\hline \(\mathrm{S}_{3}+10,11\) : & Accumulated integral value & 32-bit floating point & The accumulated integral value is only for reference. You can still clear or modify it (in 32-bit floating point) according to your need. \\
\hline \(\mathrm{S}_{3}+12\) : & The previous PV & -32,768~32,767 & The previous PV is only for reference. You can still modify it according to your need. \\
\hline \[
\begin{gathered}
\mathrm{S}_{\mathbf{3}}+13: \\
1 \\
\mathrm{~S}_{\mathbf{3}}+19
\end{gathered}
\] & \multicolumn{3}{|l|}{For system use only.} \\
\hline
\end{tabular}
5. When parameter setting exceeds its range, the upper bound and lower bound will become the setting value.

However, if the motion direction (DIR) exceeds the range, it will be set to 0 .
6. PID instruction can be used in interruption subroutines, step points and CJ instruction.
7. The maximum error of sampling time \(T_{S}=-(1\) scan time \(+1 \mathrm{~ms}) \sim+(1\) scan time \()\). When the error affects the output, please fix the scan time or execute PID instruction in the interruption subroutine of the timer.
8. PV of PID instruction has to be stable before the execution of PID instruction. If you are to extract the input value of DVP04AD/04DA/06XA/04PT/04TC for PID operation, please be aware of the A/D conversion time of these modules.
9. For the 32 -bit instruction, If \(\mathbf{S}_{3}\) designates the parameter setting area of PID instruction as D100 \(\sim \mathrm{D} 120, \mathbf{S}_{\mathbf{3}}\) occupies 21 registers. Before the execution of PID instruction, you have to use MOV instrction first to send the setting value to the register area for setup. If the designated registers are latched one, use MOVP instruction to send all the setting value at a time.
10. Settings of \(\mathbf{S}_{\mathbf{3}}\) in the 32-bit instruction
\begin{tabular}{|l|l|l|l|}
\hline Device No. & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{|c|}{ Setup range } & \multicolumn{1}{c|}{ Explanation } \\
\hline \(\mathbf{S}_{3}:\) & \begin{tabular}{l} 
Sampling time \(\left(\mathrm{T}_{\mathrm{s}}\right)\) \\
(unit: 10 ms )
\end{tabular} & \begin{tabular}{l}
\(1 \sim 2,000\) \\
(unit: 10 ms )
\end{tabular} & \begin{tabular}{l} 
If \(\mathrm{T}_{\mathrm{s}}\) is less than 1 program scan time, PID \\
instruction will be executed for 1 program \\
scan time. If \(\mathrm{T}_{\mathrm{s}}=0, \mathrm{PID}\) instruction will not be \\
enabled. The minimum \(\mathrm{T}_{\mathrm{s}}\) has to be longer \\
than the program scan time.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Device No. & Function & Setup range & Explanation \\
\hline \(\mathrm{S}_{3}+1\) : & Proportional gain ( \(\mathrm{K}_{\mathrm{P}}\) ) & 0 ~ 30,000 (\%) & The magnified error proportional value between SV - PV. \\
\hline \(\mathrm{S}_{3}+2\) : & Integral gain ( \(\mathrm{K}_{\mathrm{l}}\) ) & 0 ~ 30,000 (\%) & For control mode K0~K2, K5 \\
\hline \(\mathrm{S}_{3}+3\) : & Differential gain ( \(\mathrm{K}_{\mathrm{D}}\) ) & -30,000 ~ 30,000 (\%) & For control mode K0~K2, K5. \\
\hline \(\mathrm{S}_{3}+4\) : & Control direction (DIR) & \multicolumn{2}{|l|}{\begin{tabular}{l}
0 : automatic control \\
1: forward control ( \(\mathrm{E}=\mathrm{SV}-\mathrm{PV}\) ) \\
2: inverse control ( \(E=P V-S V\) ) \\
5: Automatic mode with MV upper/lower bound control. When MV reaches upper/lower bound, the accumulation of integral value stops.
\end{tabular}} \\
\hline \(\mathrm{S}_{3}+5,6:\) & The range that 32-bit error value (E) doesn't work & 0 ~ 2,147,483,647 & \(\mathrm{E}=\) the error of \(\mathrm{SV}-\mathrm{PV}\). When \(\mathbf{S}_{\mathbf{3}}+5,6=\mathrm{KO}\), the function will not be enabled, e.g. when \(\mathrm{S}_{3}\) \(+5,6\) is set as 5 , MV of \(E\) between -5 and 5 will be 0 . \\
\hline \(\mathrm{S}_{3}+7,8\) : & Upper bound of 32-bit output value (MV) & \[
\begin{aligned}
& -2,147,483,648 ~ ~ \\
& 2,147,483,647
\end{aligned}
\] & Ex: if \(\mathbf{S}_{3}+7,8\) is set as 1,000 , the output will be 1,000 when MV is bigger than \(1,000 . \mathbf{S}_{3}\) \(+7,8\) has to be bigger or equal \(\mathbf{S}_{3}+9,10\); otherwise the upper bound and lower bound will switch. \\
\hline \(\mathrm{S}_{3}+9,10\) : & Lower bound of 32-bit output value (MV) & \[
\begin{aligned}
& -2,147,483,648 ~ \\
& 2,147,483,647 \\
& \hline
\end{aligned}
\] & Ex: if \(\mathbf{S}_{3}+9,10\) is set as \(-1,000\), the output will be \(-1,000\) when MV is smaller than \(-1,000\). \\
\hline \(\mathrm{S}_{3}+11,12\) : & Upper bound of 32-bit integral value & \[
\begin{aligned}
& -2,147,483,648 ~ \\
& 2147483647
\end{aligned}
\] & Ex: if \(\mathbf{S}_{3}+11,12\) is set as 1,000 , the output will be 1,000 when the integral value is bigger than 1,000 and the integration will stop. \(\mathbf{S}_{3}+11,12\) has to be bigger or equal \(\mathbf{S}_{3}\) \(+13,14\); otherwier the upper bound and lower bound will switch. \\
\hline \(\mathrm{S}_{3}+13,14\) : & Lower bound of 32-bit integral value & \[
\begin{aligned}
& -2,147,483,648 ~ ~ \\
& 2,147,483,647
\end{aligned}
\] & Ex: if \(\mathbf{S}_{3}+13,14\) is set as \(-1,000\), the output will be \(-1,000\) when the integral value is smaller than -1,000 and the integration will stop. \\
\hline \(\mathrm{S}_{3}+15,16:\) & 32-bit accumulated integral value & 32-bit floating point & The accumulated integral value is only for reference. You can still clear or modify it (in 32-bit floating point) according to your need. \\
\hline \(\mathrm{S}_{3}+17,18\) : & 32-bit previous PV & & The previous PV is only for reference. You can still modify it according to your need. \\
\hline \begin{tabular}{l}
\(\mathrm{S}_{3}+19\) : \\
\(S_{3}+20\) :
\end{tabular} & \multicolumn{3}{|l|}{For system use only.} \\
\hline
\end{tabular}
11. The explanation of 32 -bit \(\mathbf{S}_{\mathbf{3}}\) and 16 -bit \(\mathbf{S}_{\mathbf{3}}\) are almost the same. The difference is the capacity of \(\mathbf{S}_{\mathbf{3}}+5 \sim \mathbf{S}_{\mathbf{3}}+20\).

\section*{PID Equations:}
1. The PID operation is conducted according to the speed and the differential PV.
2. The PID operation has three control directions: automatic, foreward and inverse. Forward or inverse are designated in \(\mathbf{S}_{\mathbf{3}}+4\). Other relevant settings of PID operation are set by the registers designated in \(\mathbf{S}_{\mathbf{3}} \sim \mathbf{S}_{\mathbf{3}}+5\).
3. Basic PID equation:
\(M V=K_{P} * E(t)+K_{I} * E(t) \frac{1}{S}+K_{D} * P V(t) S\)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Control direction } & PID equation \\
\hline Forward, automatic & \(\mathrm{E}(\mathrm{t})=\mathrm{SV}-\mathrm{PV}\) \\
\hline Inverse & \(\mathrm{E}(\mathrm{t})=\mathrm{PV}-\mathrm{SV}\) \\
\hline
\end{tabular}
\(P V(t) S\) is the differential value of \(P V(t) ; E(t) \frac{1}{S}\) is the integral value of \(E(t)\). When \(E(t)\) is less than 0 as the control direction is selected as forward or inverse, \(E(t)\) will be regarded as " 0 ".
The equation above illustrates that this instruction is different from a general PID instruction by the variable use of the differential value. To avoid the flaw that the transient differential value is too big when a general PID instruction is executed for the first time, our PID instruction monitors the differentiation status of the PV. When the variation of PV is too big, this instruction will reduce the output of MV.
4. Symbol explanation:
\(M V\) : Output value
\(K_{P}\) : Proprotional gain
\(E(t)\) : Error value
\(P V\) : Present measured value
\(S V\) : Target value
\(K_{\mathrm{D}}\) : Differential gain
\(P V(t) S\) : Differential value of \(\mathrm{PV}(\mathrm{t})\)
\(K_{I}\) : Integral gain
\(E(t) \frac{1}{S}\) : Integral value of \(E(\mathrm{t})\)
5. Temperature Control Equation:

When \(\mathbf{S}_{3}+4\) is K3 and \(K 4\), the equation used in diagram 2 (see below) will be changed as:
\[
M V=\frac{1}{K_{P}}\left[E(t)+\frac{1}{K_{I}}\left(E(t) \frac{1}{S}\right)+K_{D} * P V(t) S\right]
\]

In which the error value is fixed as \(E(t)=S V-P V\)
This equation is exclusively designed for temperature control. Therefore, when the sampling time ( \(T_{s}\) ) is set as 4 seconds (K400), the range of output value (MV) will be K0 ~ K4,000 and the cycle time of GPWM instruction used together has to be set as 4 seconds ( K 4000 ) as well.

If you have no idea how to adjust the parameters, you can select K3 (auto-tuning) and after all the parameters are adjusted (the control direction will be automatically set as K4), you can modify your parameters to better ones according to the result of the control.
6. Control diagrams:


Diagram 1: \(\mathbf{S}_{3}+4=\mathrm{K} 0 \sim \mathrm{~K} 2\)

In Diagram 1, S is differentiation, referring to "PV - previous PV / sampling time". 1 / S is integration, referring to "(previous integral value + error value) \(\times\) sampling time". G(S) refers to the device being controlled.


Diagram 2: \(\mathbf{S}_{3}+4=\mathrm{K} 3 \sim \mathrm{~K} 4\)

In Diagram 2, \(1 / K_{l}\) and \(1 / K_{P}\) refer to "divided by \(K_{l}\) " and "divided by \(K_{p}\) ". Due to that this is exclusively for temperature control, you have to use PID instruction together with GPWM instruction. See Application 3 for more details.
7. Notes:
a) \(\mathbf{S}_{3}+6 \sim \mathbf{S}_{3}+13\) are only available in SA/SX/SC/EH/EH2/SV series, and ES/EX/SS (v5.7 and above) series MPU.
b) PID instruction can only be used once in ES/EX/SS (v5.6 and below) series MPU. There is no limitation on the times of using PID instruction in ES/EX/SS (v5.7 and above) series and SA/SX/SC/EH/EH2/SV/EH3/SV2 series MPU.
c) \(\mathbf{S}_{3}+3\) of ES/EX/SS (v5.7 and below), SA/SX/SC (v1.1 and below) and EH (v1.0 and below) series MPU can only be the value within \(0 \sim 30,000\).
d) There are a lot of circumstances where PID instruction can be applied; therefore, please choose the control functions appropriately. For example, when you select parameter auto-tuning for the temperature \(\left(\mathbf{S}_{3}+4=\right.\) K3), you cannot use it in a motor control environment in case improper control may occur.
e) When you adjust the three main parameters, \(K_{P}, K_{1}\) and \(K_{D}\left(S_{3}+4=K 0 \sim K 2\right)\), you have to adjust \(K_{P}\) first (according to your experiences) and set \(\mathrm{K}_{1}\) and \(\mathrm{K}_{\mathrm{D}}\) as 0 . When you can roughly handle the control, you then adjust \(K_{1}\) (increasingly) and \(K_{D}\) (increasingly) (see example 4 below for how to adjust). \(K_{P}=100\) refers to \(100 \%\), i.e. the gain of the error is \(1 . K_{P}<100 \%\) will decrease the error and \(K_{P}>100 \%\) will increase the error.
f) When you select the parameter exclusively for temperature control \(\left(S_{3}+4=K 3\right.\), \(\left.K 4\right)\), it is suggested that you store the parameter in D register in the latched area in case the automatically adjusted parameter will disappear after the power is cut off. There is no guarantee that the adjusted parameter is suitable for every control. Therefore, you can modify the adjusted parameter according to your actual need, but it is suggested that you modify only \(\mathrm{K}_{1}\) or \(\mathrm{K}_{\mathrm{D}}\).
g) PID instruction can to work with many parameters; therefore please do not randomly modify the parameters in case the control cannot be executed normally.
Example 1: Diagram of using PID instruction in position control \(\left(S_{3}+4=0\right)\)


Example 2: Diagram of using PID instruction with AC motor drive on the control ( \(\mathbf{S}_{3}+4=0\) )


Example 3: Diagram of using PID instruction in temperature control ( \(\mathbf{S}_{3}+4=1\) )


\section*{Example 4: How to adjust PID parameters}

Assume that the transfer function of the controlled device \(G(S)\) in a control system is a first-order function \(G(s)=\frac{b}{s+a}\) (most models of motors are first-order function), SV \(=1\), and sampling time \(\left(\mathrm{T}_{\mathrm{s}}\right)=10 \mathrm{~ms}\), we suggest you to follow the steps below for adjusting the parameters.

Step 1: Set \(K_{1}\) and \(K_{D}\) as 0 and \(K_{P}\) as \(5,10,20\) and 40 . Record the SV and PV respectively and the results are as the figure below.


Step 2: From the figure, we can see that when \(K_{P}=40\), there will be over-reaction, so we will not select it. When \(K_{P}=20\), the PV reaction curve will be close to SV and there will not be over-reaction, but due to its fast start-up with big transient MV, we will consider to put it aside. When \(K_{P}=10\), the PV reaction curve will get close to SV value more smoothly, so we will use it. Finally when \(K_{P}=5\), we will not consider it due to the slow reaction.

Step 3: Select \(K_{P}=10\) and adjust \(K_{1}\) from small to big (e.g. 1, 2, 4 to 8). \(\mathrm{K}_{1}\) should not be bigger than \(\mathrm{K}_{\mathrm{P}}\). Adjust \(K_{D}\) from small to big (e.g. 0.01, 0.05, 0.1 and 0.2 ). \(K_{D}\) should not exceed \(10 \%\) of \(K_{P}\). Finally we obtain the figure of PV and SV below.


Note: This example is only for your reference. Please adjust your parameters to proper ones according to your actual condition of the control system.

Example 5: Switching between the manual mode (K7) and the automatic mode (K5)
If the setting of the PID parameters is complete, and the control mode is the manual mode (K7), the control curve will be as shown below.


If the control mode becomes the automatic mode (K5), the output value MV changes from the output value set by users to the output value of the PID operation.

Example 6: Switching between the manual mode (K8) and the automatic mode (K5)
If the setting of the PID parameters is complete, and the control mode is the manual mode (K8), the control curve will be as shown below.


If the control mode becomes the automatic mode (K5), the accumulated integral value will be the integral value converted from the last MV, and the accumulated integral value will be converted into the output value of the PID operation.
The program for example 5 and program 6 are shown below. In the figure below, M0 is a flag for enabling the instruction PID. When M1 is On, the manual mode is used. When M1 is Off, the automatic mode is used.


\section*{Application Examples:}

Application 1 Using PID instruction in the pressure control system (use the diagram of Example 1).
Purpose: Enabling the control system to reach the target pressure.

Explanation: The system requires a gradual control. Therefore, the system will be overloaded or out of control if the process progresses too fast.

\section*{Suggested solution:}

Solution 1: Longer sampling time
Solution 2: Using delay instruction. See the figure below.




The example program of the instruction delay:


Application 2 Speed control system and pressure control system work individually (use diagram of Example 2).
Purpose: After the speed control operates in open loop for a period of time, adding into it the pressure control system (PID instruction) for close loop control.

Explanation: Since the speed and pressure control systems are not interrelated, we have to structure an open loop for speed control first following by a close loop pressure control. If you fear that the control instruction of the pressure control system changes too fast, you can consider adding the instruction delay illustrated in Application 1 into the control. See the control diagram below.


Part of the example program:


\section*{Application 3 Using auto-tuning on the parameter for the temperature control.}

Purpose: Using auto-tuning to calculate the most suitable parameters for PID temperature control.
Explanation: You may not be familiar with the temperature environment for the first time, so you can use auto-tuning \(\left(S_{3}+4=K 3\right)\) for an initial adjustment. After this, PID instruction will become exclusively for temperature control \(\left(S_{3}+4=K 4\right)\). In this example, the control environment is an oven. See the example program below.



The experiment result of auto-tuning:


The experiment result of using the adjusted parameter exclusively for temperature control after auto-tuning:


From the figure above, we can see that the temperature control after auto-tuning is working fine and we use only approximately 20 minutes for the control. Next, we modify the target temperature from \(80^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) and obtain the result below.


From the result above, we can see that when the parameter is \(100^{\circ} \mathrm{C}\), we can still control the temperature without spending too much time.
\begin{tabular}{|c|c|c|cc|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 100 & MODRD & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{n}\) \\
& & Read Modbus Data & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{MODRD: 7 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Address of communication device
\(\mathbf{S}_{2}\) : Address of data to be read
\(\mathbf{n}\) : Length of read data

\section*{Explanations:}
1. Range of \(\mathbf{S}_{1}: K 0 \sim \mathrm{~K} 254\)
2. Range of \(\mathbf{n}\) : \(\mathrm{K} 1 \leq \mathrm{n} \leq \mathrm{K} 6\)
3. See the specifications of each model for their range of use.
4. ES/EXISS series MPU does not support E, F index register modification.
5. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
6. MODRD is a drive instruction exclusively for peripheral communication equipment in MODBUS ASCII mode /RTU mode. The built-in RS-485 communication ports in Delta VFD drives (except for VFD-A series) are all compatible with MODBUS communication format. MODRD can be used for controlling communication (read data) of Delta drives.
7. If the address of \(\mathbf{S}_{\mathbf{2}}\) is illegal to the designed communication device, the device will respond with an error, PLC will records the error code in D1130 and M1141 will be On.
8. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1085. After receiving the feedback data is completed, PLC will auto-check if all data are correct. If there is an error, M1140 will be On.
9. In ASCII mode, due to that the feedback data are all in ASCII, PLC will convert the feedback data into numerals and store them in D1050 ~ D1055. D1050 ~ D1055 will be invalid in RTU mode.
10. After M1140 or M1141 turn On, the program will send a correct datum to the peripheral equipment. If the feedback datum is correct, M1140 and M1141 will be reset.

\section*{Program Example 1:}

Communication between PLC and VFD-S series AC motor drives (ASCII Mode, M1143 = Off)



PLC \(\Rightarrow\) VFD-S, PLC sends: "01 0321010006 D4"
VFD-S \(\Rightarrow\) PLC , PLC receives: "01 \(030 C 010017660000000001360000\) 3B"
Registers for sent data (sending messages)
\begin{tabular}{|l|c|r|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & \multicolumn{2}{|c|}{ DATA } & \multicolumn{2}{l|}{ Explanation } \\
\hline D1089 low & ' 0 ' & 30 H & ADR 1 & Address of AC motor \\
drive: ADR (1,0)
\end{tabular}

Registers for received data (responding messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1070 low & '0' & 30 H & ADR 1 & \\
\hline D1070 high & '1' & 31 H & ADR 0 & \\
\hline D1071 low & '0' & 30 H & CMD 1 & \\
\hline D1071 high & '3' & 33 H & CMD 0 & \\
\hline D1072 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Number of data (counted by byte)}} \\
\hline D1072 high & 'C' & 43 H & & \\
\hline D1073 low & '0' & 30 H & \multirow{4}{*}{Content of address 2101 H} & \multirow[t]{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1050 \(=0100 \mathrm{H}\)} \\
\hline D1073 high & '1' & 31 H & & \\
\hline D1074 low & '0' & 30 H & & \\
\hline D1074 high & '0' & 30 H & & \\
\hline D1075 low & '1' & 31 H & \multirow{4}{*}{Content of address 2102 H} & \multirow[t]{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1051 = 1766 H} \\
\hline D1075 high & '7' & 37 H & & \\
\hline D1076 low & '6' & 36 H & & \\
\hline D1076 high & '6' & 36 H & & \\
\hline D1077 low & '0' & 30 H & \multirow{4}{*}{Content of address 2103 H} & \multirow[t]{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1052 \(=0000 \mathrm{H}\)} \\
\hline D1077 high & '0' & 30 H & & \\
\hline D1078 low & '0' & 30 H & & \\
\hline D1078 high & '0' & 30 H & & \\
\hline D1079 low & '0' & 30 H & \multirow{4}{*}{Content of address 2104 H} & \multirow[t]{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in
\[
\text { D1053 = } 0000 \mathrm{H}
\]} \\
\hline D1079 high & '0' & 30 H & & \\
\hline D1080 low & '0' & 30 H & & \\
\hline D1080 high & '0' & 30 H & & \\
\hline D1081 low & '0' & 30 H & \multirow{4}{*}{Content of address 2105 H} & \multirow[t]{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1054 \(=0136 \mathrm{H}\)} \\
\hline D1081 high & '1' & 31 H & & \\
\hline D1082 low & '3' & 33 H & & \\
\hline D1082 high & '6' & 36 H & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|r|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & \multicolumn{2}{|c|}{ DATA } & \multicolumn{2}{c|}{ Explanation } \\
\hline D1083 low & '0' & 30 H & & \begin{tabular}{l} 
PLC automatically convert \\
ASCII codes to numerals
\end{tabular} \\
\hline D1083 high & Co' & 30 H & Content of \\
and store the numeral in \\
address 2106 H
\end{tabular}

\section*{Program Example 2:}

Communication between PLC and VFD-S series AC motor drives (RTU Mode, M1143 = On)


PLC \(\Rightarrow\) VFD-S, PLC sends: 010321020002 6F F7
VFD-S \(\Rightarrow\) PLC, PLC receives: 01030417700000 FE 5C
Registers for sent data (sending messages)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1089 low & 01 H & Address \\
\hline D1090 low & 03 H & Function \\
\hline D1091 low & 21 H & \multirow{2}{*}{ Starting data address } \\
\hline D1092 low & 02 H & \\
\hline D1093 low & 00 H & \multirow{2}{*}{ Number of data (counted by words) } \\
\hline D1094 low & 02 H & \\
\hline D1095 low & 6 FH & CRC CHK Low \\
\hline D1096 low & F7 H & CRC CHK High \\
\hline
\end{tabular}

Registers for received data (responding messages)
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1070 low & 01 H & Address \\
\hline D1071 low & 03 H & Function \\
\hline D1072 low & 04 H & Number of data (counted by bytes) \\
\hline D1073 low & 17 H & \multirow{2}{*}{ Content of address 2102 H} \\
\hline D1074 low & 70 H & \\
\hline D1075 low & 00 H & \multirow{2}{*}{ Content of address 2103 H} \\
\hline D1076 low & 00 H & \\
\hline D1077 low & FE H & CRC CHK Low \\
\hline D1078 low & 5 H H & CRC CHK High \\
\hline
\end{tabular}

\section*{Program Example 3:}
1. In the communication between PLC and VFD-S series AC motor drive (ASCII Mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur.
2. When \(\mathrm{XO}=\mathrm{On}, \mathrm{PLC}\) will read the data in VFFD-S data adress H 2100 of device 01 and stores the data in ASCII format in D1070 ~ D1085. PLC will automatically convert the data into numerals and stores them in D1050 ~ D1055.
3. M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for reading the data again.
4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for reading the data again.
5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for reading the data again.


\section*{Remarks:}
1. The activation criteria placed before the three instructions, API 100 MODRD, API 105 RDST, and API 150 MODRW (Function Code H03), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stores in the receiving registers will be incorrect.
2. M1127 for MODRD instruction stands for the response of data is completed. M1127 will only be On if the responded data are correct. M1123 will be On no matter the responded data are correct or wrong.
3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.
\begin{tabular}{|c|c|c|l|l|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 101 & MODWR & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{n}\) \\
& Write Modbus Data & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{MODWR: 7 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & \multicolumn{2}{|l|}{SX SC} & \multicolumn{2}{|l|}{EH SV} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES Ex & EX & SS & SA & SX & SC & & & V & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\hline \mathrm{EH} \\
\mathrm{sV} & \mathrm{SH} \\
\mathrm{SV}
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Address of communication device
\(\mathbf{S}_{2}\) : Address of data to be read
n : Data to be written

\section*{Explanations:}
1. Range of \(\mathbf{S}_{1}: K 0 \sim \mathrm{~K} 254\)
2. See the specifications of each model for their range of use.
3. ES/EXISS series MPU does not support E, F index register modification.
4. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
5. MODWR is a drive instruction exclusively for peripheral communication equipment in MODBUS ASCII mode/RTU mode. The built-in RS-485 communication ports in Delta VFD drives (except for VFD-A series) are all compatible with MODBUS communication format. MODRD can be used for controlling communication (write data) of Delta drives.
6. If the address of \(\mathbf{S}_{2}\) is illegal to the designed communication device, the device will respond with an error, PLC will records the error code in D1130 and M1140 will be On. For example, if 8000 H is illegal to VFD-S, M1141 will be On and D1130 = 2. For error codes, see the user manual of VFD-S.
7. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1076. After receiving the feedback data is completed, PLC will auto-check if all data are correct. If there is an error, M1140 will be On.
8. After M1140 or M1141 turn On, the program will send a correct datum to the peripheral equipment. If the feedback datum is correct, M1140 and M1141 will be reset.

\section*{Program Example 1:}

Communication between PLC and VFD-S series AC motor drives (ASCII Mode, M1143 = Off)


PLC \(\Rightarrow\) VFD-B, PLC sends: " 01060100177071 "

\section*{VFD-B \(\Rightarrow\) PLC, PLC receives: " 01060100177071 "}

Registers for sent data (sending messages)
\begin{tabular}{|l|c|c|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & \multicolumn{2}{|c|}{ DATA } & \multicolumn{2}{l|}{ Explanation } \\
\hline D1089 low & ' 0 ' & 30 H & ADR 1 & Address of AC motor drive: \\
\hline D1089 high & '1' & 31 H & ADR 0 & ADR (1,0)
\end{tabular}

PLC receiving data register (response messages)
\begin{tabular}{|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & Explanation \\
\hline D1070 low & '0' & 30 H & ADR 1 \\
\hline D1070 high & '1' & 31 H & ADR 0 \\
\hline D1071 low & '0' & 30 H & CMD 1 \\
\hline D1071 high & '6' & 36 H & CMD 0 \\
\hline D1072 low & '0' & 30 H & \multirow{4}{*}{Data address} \\
\hline D1072 high & '1' & 31 H & \\
\hline D1073 low & '0' & 30 H & \\
\hline D1073 high & '0' & 30 H & \\
\hline D1074 low & '1' & 31 H & \multirow{4}{*}{Data content} \\
\hline D1074 high & '7' & 37 H & \\
\hline D1075 low & '7' & 37 H & \\
\hline D1075 high & '0' & 30 H & \\
\hline D1076 low & '7' & 37 H & LRC CHK 1 \\
\hline D1076 high & '1' & 31 H & LRC CHK 0 \\
\hline
\end{tabular}

\section*{Program Example 2:}

Communication between PLC and VFD-S series AC motor drives (RTU Mode, M1143 = On)


PLC \(\Rightarrow\) VFD-S, PLC sends: 0106200000120207
VFD-S \(\Rightarrow\) PLC, PLC receives: 0106200000120207
Registers for sent data (sending messages)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1089 low & 01 H & Address \\
\hline D1090 low & 06 H & Function \\
\hline D1091 low & 20 H & \multirow{2}{*}{ Data address } \\
\hline D1092 low & 00 H & \\
\hline D1093 low & 00 H & \multirow{2}{*}{ Data contents } \\
\hline D1094 low & 12 H & \\
\hline D1095 low & 02 H & CRC CHK Low \\
\hline D1096 low & 07 H & CRC CHK High \\
\hline
\end{tabular}

Registers for received data (responding messages)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1070 low & 01 H & Address \\
\hline D1071 low & 06 H & Function \\
\hline D1072 low & 20 H & \multirow{2}{*}{ Data address } \\
\hline D1073 low & 00 H & \\
\hline D1074 low & 00 H & \multirow{2}{*}{ Data contents } \\
\hline D1075 low & 12 H & \\
\hline D1076 low & 02 H & CRC CHK Low \\
\hline D1077 low & 07 H & CRC CHK High \\
\hline
\end{tabular}

\section*{Program Example 3:}
1. In the communication between PLC and VFD-S series AC motor drive (ASCII Mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur.
2. When \(\mathrm{XO}=\mathrm{On}, \mathrm{PLC}\) will write \(\mathrm{H} 1770(\mathrm{~K} 6000)\) into VFD-S data adress H 0100 of device 01.
3. M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for writing the data again.
4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122
for writing the data again.
5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for writing the data again.


\section*{Program Example 4:}
1. In the communication between PLC and VFD-S series AC motor drive (ASCII Mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur. Times of retry = D0 (default = 3). When communication Retry is successful, the user can return to controlling by triggering criteria.
2. When \(\mathrm{X0}=\mathrm{On}, \mathrm{PLC}\) will write \(\mathrm{H} 1770(\mathrm{~K} 6000)\) into VFD-S data adress H0100 of device 01.
3. M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for writing the data again. Times of Retry = D0 (default = 3)
4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for writing the data again. Times of Retry = D0 (default = 3)
5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for writing the data again. Times of Retry = D0 (default = 3)


\section*{Remarks:}
1. For the registers for flag settings, see explanations in API 80 RS.
2. M1127 for MODWR instruction stands for the response of data is completed. M1127 will only be On if the responded data are correct. M1123 will be On no matter the responded data are correct or wrong.
3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

\begin{tabular}{|c|c|c|c|c|}
\hline API & Mnemonic & Operands & Function & Controllers \\
\hline 103 & REV & (S1) \(\mathbf{S}_{2}\) & Reverse Running of VFD-A & ES/EX/SS \({ }^{\text {SA/SXISC }}\) EH/SV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & Kn & & KnY & & M & Kn & & T & C & D & & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{REV: 7 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline n & & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|r|}{32-bit} \\
\hline & & & EX & & S & SA & Sx & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH3} \\
\mathrm{SV2} \\
\hline
\end{array}
\] & E & EX & SS & S & & & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{l|l}
\hline \text { SV3 } \\
\text { SV2 }
\end{array}
\]} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline API & Mnemonic & Operands & Function & Controllers \\
\hline 104 & STOP & (S1) \(S_{2}\) n & Stop VFD-A & ES/EX/SS \({ }^{\text {SA/SXISC }}\) EH/SV \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Address of communication device
\(\mathbf{S}_{2}\) : Rotation frequency of \(A C\) motor drive
n : Target to be instructed

\section*{Explanations:}
1. Range of \(\mathbf{S}_{1}\) : \(\mathrm{K} 0 \sim \mathrm{~K} 31\)
2. Range of \(\mathbf{n}\) : K 1 or K 2
3. See the specifications of each model for their range of use.
4. ES series MPU does not support E, F index register modification.
5. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
6. FWD/REV/STOP are handy instructions exclusively for Delta VFD-A/H series AC motor drive to perform forward running/reverse running/stop. Be sure to set up communication time-out (D1129) when executing this instruction.
7. \(\mathbf{S}_{2}=\) operation frequency of \(A C\) motor drive. Set frequency in A-series \(A C\) motor drive: \(\mathrm{KO} \sim \mathrm{K} 4,000 \quad(0.0 \mathrm{~Hz} \sim\) \(400.0 \mathrm{~Hz})\). Set frequency in H-series: K0 ~ K1,500 (0Hz ~ 1,500Hz).
8. \(\mathbf{n}=\) instructed target. \(\mathbf{n}=1\) : AC motor drive at designated address. \(\mathbf{n}=2\) : all connected \(A C\) motor drives.
9. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1080. After receiving the feedback data is completed, PLC will auto-check if all data are correct. If there is an error, M1142 will be On. When \(\mathbf{n}=2\), PLC will not receive any data.

\section*{Program Example:}

Communication between PLC and VFD-A series AC drives, retry for communication time-out and received data error.


PLC \(\Rightarrow\) VFD-A, PLC sends: "C \(\vee 00010500\) "
VFD-A \(\Rightarrow\) PLC, PLC sends: "C \(\mathbf{~ \& ~} 00010500\) "
Registers for sent data (sending messages)


Registers for received data (responding messages)
\begin{tabular}{|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & Explanation \\
\hline D1070 low & 'C' & 43 H & Start word of instruction \\
\hline D1071 low & ' \({ }^{\prime}\) & 03 H & Checksum \\
\hline D1072 low & 'A' & 06 H & Reply authorization (correct: 06H, incorrect: 07 H ) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & Explanation \\
\hline D1073 low & '0' & 30 H & \multirow{4}{*}{Communication address} \\
\hline D1074 low & '0' & 30 H & \\
\hline D1075 low & '0' & 30 H & \\
\hline D1076 low & '1' & 31 H & \\
\hline D1077 low & '0' & 30 H & \multirow{4}{*}{Running instruction} \\
\hline D1078 low & '5' & 35 H & \\
\hline D1079 low & '0' & 30 H & \\
\hline D1080 low & '0' & 30 H & \\
\hline
\end{tabular}

\section*{Remarks:}

There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.
\begin{tabular}{|c|c|c|ll|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 105 & RDST & S & \(\mathbf{n}\) & Read VFD-A Status
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{RDST: 5 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & sX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
S: Address of communicatino device
n: Target to be instructed

\section*{Explanations:}
1. Range of \(\mathbf{S}: \mathrm{KO} \sim \mathrm{K} 31\)
2. Range of \(\mathbf{n}: K 0 \sim K 3\)
3. See the specifications of each model for their range of use.
4. ES series MPU does not support E, F index register modification.
5. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
6. \(\mathbf{n}\) : Instructed target (to be read) in AC motor drive
\(\mathrm{n}=0\), frequency
\(\mathrm{n}=1\), output frequency
\(\mathrm{n}=2\), output current
\(\mathrm{n}=3\), running instruction
7. Data sent back (feedback) from AC motor drive (11 bytes, see VFD-A user manual) are stored in the low bytes of D1070 ~ D1080.
"Q, S, B, Uu, Nn, ABCD"



\section*{Remarks:}
1. The activation criteria placed before the three instructions, API 100 MODRD, API 105 RDST and API 150 MODRW (Function Code 03), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stores in the receiving registers will be incorrect.
2. For the registers for flag settings, see explanations in API 80 RS.
3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.
\begin{tabular}{|c|c|c|ll|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 106 & RSTEF & S & n & Reset Abnormal VFD-A \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{RSTEF: 5 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & S & & & & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Address of communication device
\(\mathbf{n}\) : Target to be instructed

\section*{Explanations:}
1. Range of \(\mathbf{S}: \mathrm{KO} \sim \mathrm{K} 31\)
2. Range of \(\mathbf{n}: \mathrm{K} 1\) or K 2
3. See the specifications of each model for their range of use.
4. Flags: See API 80 RS for explanations on M1120 ~ M1131, M1140 ~ M1143
5. RSTEF is a handy communication instruction exclusively for Delta VFD-A series AC motor drives and is used for reset when the AC motor drive operates abnormally.
6. \(\mathbf{n}\) : instructed target. \(\mathbf{n}=1\) : AC motor drive at assigned address. \(\mathbf{n}=2\) : all connected AC motor drives.
7. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1089. If \(\mathbf{n}=2\), there will be no feedback data.

\section*{Remarks:}
1. The activation criteria placed before the three instructions, API 100 MODRD, API 105 RDST and API 150 MODRW (Function Code 03), cannot use rising-edge contacts (LDP, ANDP ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stores in the receiving registers will be incorrect.
2. For the registers for flag settings, see explanations in API 80 RS.
3. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.
\begin{tabular}{|c|c|c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\multicolumn{1}{c|}{ Function } \\
\hline 107 & & LRC & P & S & n \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & & H & Kn & & KnY & & M & & S & T & & C & D & E & F & \multicolumn{9}{|l|}{LRC, LRCP: 7 steps} \\
\hline S & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & & SS & SA & SX & & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & & S & A & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start operation device for ASCII mode checksum
n: Number of calculated bits
D: Start device for storing the operation result LRC checksum: See remarks.

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. See the specifications of each model for their range of use.
3. Flag: M1161 (switching between \(8 / 16\) bit modes)
4. \(\mathbf{n}\) has to be even. If \(\mathbf{n}\) does not fall within its range, an operation error will occur, the instruction will not be executed, M1067, M1068 = On and D1067 will record the error code H'0E1A.
5. In 16-bit conversion mode: When M 1161 = Off, \(\mathbf{S}\) divides its hex data area into higher 8 bits and lower 8 bits and performs LRC checksum operation on each bit. The data will be sent to the higher 8 bits and lower 8 bits in D. \(\mathbf{n}=\) the number of calculated bits.
6. In 8-bit conversion mode: When \(\mathrm{M} 1161=\mathrm{On}, \mathbf{S}\) divides its hex data area into higher 8 bits (invalid data) and lower 8 bits and performs LRC checksum operation on each bit. The data will be sent to the lower 8 bits in \(\mathbf{D}\) and occupy 2 registers. \(\mathbf{n}=\) the number of calculated bits. (All higher bits in \(\mathbf{D}\) are " 0 ".)

\section*{Program Example:}

When PLC communicates with VFD-S series AC motor drives (In ASCII mode, M1143 = Off), (In 8-bit mode, M1161 = On), the sent data write in advance the 6 data read starting from H 2101 of VFD-S.


PLC \(\Rightarrow\) VFD-S, PLC sends: ": 010321010006 D4 CR LF "
Registers for sent data (sending messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|c|}{Explanation} \\
\hline D100 low & ':' & 3A H & STX & \\
\hline D101 low & '0' & 30 H & ADR 1 & \multirow[t]{2}{*}{Address of AC motor drive: ADR \((1,0)\)} \\
\hline D102 low & '1' & 31 H & ADR 0 & \\
\hline D103 low & '0' & 30 H & CMD 1 & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Instruction code: CMD } \\
& (1,0)
\end{aligned}
\]} \\
\hline D104 low & '3' & 33 H & CMD 0 & \\
\hline D105 low & '2' & 32 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting data address}} \\
\hline D106 low & '1' & 31 H & & \\
\hline D107 high & '0' & 30 H & & \\
\hline D108 low & '1' & 31 H & & \\
\hline D109 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Number of data (counted by words)}} \\
\hline D110 low & '0' & 30 H & & \\
\hline D111 low & '0' & 30 H & & \\
\hline D112 low & '6' & 36 H & & \\
\hline D113 low & 'D' & 44 H & LRC CHK 1 & \multirow[t]{2}{*}{Error checksum: LRC CHK (0,1)} \\
\hline D114 low & '4' & 34 H & LRC CHK 0 & \\
\hline D115 low & CR & A H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{END}} \\
\hline D116 low & LF & D H & & \\
\hline
\end{tabular}

The error checksum \(\operatorname{LRC} \operatorname{CHK}(0,1)\) can be calculated by LRC instruction (in 8-bit mode, \(\mathrm{M} 1161=\mathrm{On}\) ).


LRC checksum: \(01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+01 \mathrm{H}+00 \mathrm{H}+06 \mathrm{H}=2 \mathrm{CH}\). Obtain 2's complement, D 4 H , and store 'D' \((44 \mathrm{H})\) in the lower 8 bits of D113 and ' 4 ' \((34 \mathrm{H})\) in the lower 8 bits of D114.

\section*{Remarks:}
1. The format of ASCII mode with a communication datum
\begin{tabular}{|c|c|c|}
\hline STX & ':' & Start word = ': ' (3AH) \\
\hline Address Hi & '0' & \multirow[t]{2}{*}{\begin{tabular}{l}
Communication: \\
8-bit address consists of 2 ASCll codes
\end{tabular}} \\
\hline Address Lo & '1' & \\
\hline Function Hi & '0' & \multirow[t]{2}{*}{\begin{tabular}{l}
Function code: \\
8 -bit function consists of 2 ASCll codes
\end{tabular}} \\
\hline Function Lo & '3' & \\
\hline DATA (n-1) & '2' & \multirow[t]{8}{*}{Data content: \(n \times 8\)-bit data consists of \(2 n\) ASCII codes} \\
\hline & '1' & \\
\hline DATA 0 & '0' & \\
\hline & '2' & \\
\hline & '0' & \\
\hline & '0' & \\
\hline & '0' & \\
\hline & '2' & \\
\hline LRC CHK Hi & ' D ' & \multirow[t]{2}{*}{LRC checksum: 8 -bit checksum consists of 2 ASCll codes} \\
\hline LRC CHK Lo & '7' & \\
\hline END Hi & CR & \multirow[t]{2}{*}{End word:
END Hi = CR (ODH), END Lo = LF(OAH)} \\
\hline END Lo & LF & \\
\hline
\end{tabular}
2. LRC checksum: 2's complement of the summed up value of communication address and data. For example, \(01 \mathrm{H}+03 \mathrm{H}+21 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=29 \mathrm{H}\). Obtain 2's complement = D7H.
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & Operands & Function \\
\hline 108 & CRC & P & (S) D (D) & Checksum CRC Mode \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & & H & Kn & X & KnY & & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{CRC, CRCP: 7 steps} \\
\hline S & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & & S & SA & & S & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & S & & A & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Start operation device for RTU mode checksum
n : Number of calculated bits
D: Start device for storing the operation result CRC checksum: See remarks.

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. Flags: M1161 (switching between \(8 / 16\)-bit modes)
3. If \(\mathbf{n}\) does not fall within its range, an operation error will occur, the instruction will not be executed, M1067, M1068 = On and D1067 will record the error code H'0E1A.
4. In 16-bit conversion mode: When M1161 = Off, \(\mathbf{S}\) divides its hex data area into higher 8 bits and lower 8 bits and performs CRC checksum operation on each bit. The data will be sent to the higher 8 bits and lower 8 bits in D. \(\mathbf{n}=\) the number of calculated bits.
5. In 8-bit conversion mode: When \(\mathrm{M} 1161=\mathrm{On}, \mathbf{S}\) divides its hex data area into higher 8 bits (invalid data) and lower 8 bits and performs CRC checksum operation on each bit. The data will be sent to the lower 8 bits in \(\mathbf{D}\) and occupy 2 registers. \(\mathbf{n}=\) the number of calculated bits. (All higher 8 bits in \(\mathbf{D}\) are " 0 ".)

\section*{Program Example:}

When PLC communicates with VFD-S series AC motor drives (In RTU mode, M1143 = On), (In 16-bit mode, M1161 = On), the sent data write in advance H 12 into H 2000 of VFD-S.



PLC \(\Rightarrow\) VFD-S, PLC sends: 0106200000120207
Registers for sent data (sending messages)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & Explanation \\
\hline D100 low & 01 H & Address \\
\hline D101 low & 06 H & Function \\
\hline D102 low & 20 H & \multirow{2}{*}{ Data address } \\
\hline D103 low & 00 H & \\
\hline D104 low & 00 H & \multirow{2}{*}{ Data content } \\
\hline D105 low & 12 H & \\
\hline D106 low & 02 H & CRC CHK 0 \\
\hline D107 low & 07 H & CRC CHK 1 \\
\hline
\end{tabular}

The error checksum \(\operatorname{CRC} \operatorname{CHK}(0,1)\) can be calculated by CRC instruction (in 8-bit mode, M1161 = On).
\begin{tabular}{|l|l|l|l|l|}
\hline M1000 & CRC & D100 & K6 & D106 \\
\hline
\end{tabular}

CRC checksum: 02 H is stored in the lower 8 bits of D106 and 07 H in the lower 8 bits of D107,

\section*{Remarks:}
1. The format of RTU mode with a communication datum
\begin{tabular}{|c|l|}
\hline START & Time interval \\
\hline Address & Communication address: 8-bit binary \\
\hline Function & Function code: 8-bit binary \\
\cline { 1 - 1 } DATA \((\mathrm{n}-1)\) & Data content: \\
\cline { 1 - 1 } \(\mathrm{n} \times \ldots\)-bit data
\end{tabular}
2. CRC checksum starts from Address and ends at Data content.

The operation of CRC checksum:
Step 1: Make the 16-bit register (CRC register) \(=\) FFFFH
Step 2: Exclusive OR the first 8-bit byte message instruction and the low-bit 16-bit CRC register. Store the result in CRC register.
Step 3: Shift the CRC register one bit to the right and fill 0 in the higher bit.
Step 4: Check the value that shifts to the right. If it is 0 , store the new value from Step 3 into the CRC register, otherwise, Exclusive OR A001H and the CRC register, and store the result in the CRC register.
Step 5: Repeat Step \(3 \sim 4\) and finish calculating the 8 bits.
Step 6: Repeat Steps \(2 \sim 5\) for obtaining the next 8 -bit message instruction until all the message instructions are calculated. In the end, the obtained CRC register value is the CRC checksum. Be aware that CRC checksum should be placed in the checksum of the message instruction.
\begin{tabular}{|c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 109 & & SWRD & P & D & Read Digital Switch
\end{tabular}


\section*{Operands:}

D: Device for storing the read value

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1104 ~ M1111 (status of digital switch)
3. This instruction stores the value read from digital switch function card into \(\mathbf{D}\).
4. The read value is stored in the low byte in D. Every switch has a corresponding bit.
5. When there is no digital function card inserted, the error message C400 (hex) will appear in grammar check.

\section*{Program Example:}
1. There are I 8 DIP switches on the digital switch function card. After the switches are read by SWRD instruction, the status of each switch will correspond to M0 ~M7.

2. The status of \(M 0 \sim M 7\) can be executed by each contact instruction.
3. The execution of END instruction indicates that the process of input is completed. REF (I/O refresh) instruction will be invalid.
4. When SWRD instruction uses the data in digital switch function card, it can read minimum 4 bits (K1Y*, K1M* or K1S*).

\section*{Remarks:}

When digital switch function card is inserted, the status of the 8 DIP switches will correspond to M1104 ~ M1111.
\begin{tabular}{|c||c|c|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 110 & D & ECMP & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Floating Point Compare & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{DECMP, DECMPP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & * & * & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & \multicolumn{2}{|l|}{SX SC} & \multicolumn{2}{|l|}{EH SV} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & \multicolumn{2}{|l|}{SS S} & & SX & X S & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Binary floating point comparison value 1
\(\mathbf{S}_{\mathbf{2}}\) : Binary floating point comparison value 2
D: Comparison result

\section*{Explanations:}
1. D occupies 3 consecutive devices.
2. See the specifications of each model for their range of use.
3. The binary floating point values \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) are compared with each other. The comparison result \((>,=,<)\) is stored in D.
4. If \(\mathbf{S}_{1}\) or \(\mathbf{S}_{2}\) is an designated constant K or H , the instruction will convert the constant into a binary floating point value before the comparison.

\section*{Program Example:}
1. Designated device M10 and M10 ~ M12 are automatically occupied.
2. When \(\mathrm{XO}=\mathrm{On}\). DECMP instruction will be executed and one of \(\mathrm{M} 10 \sim \mathrm{M} 12\) will be On. When \(\mathrm{XO}=\mathrm{Off}, \mathrm{DECMP}\) instruction will not be executed and \(\mathrm{M} 10 \sim \mathrm{M} 12\) will remain their status before \(\mathrm{X0}=\mathrm{Off}\).
3. To obtain results \(\geqq, \leqq, \neq\), serial-parallel M10 \(\sim\) M12.
4. Use RST or ZRST instruction to clear the result.


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } & \\
\hline 111 & D & EZCP & P & \(S_{1}\) & \(S_{2}\) & S & D \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & Kn & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{DEZCP, DEZCPP: 17 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & * & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & SX & SC & EH S & \[
\begin{array}{l|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & & & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Lower bound of binary floating point
\(\mathbf{S}_{2}\) : Upper bound of binary floating point
S: Binary floating point comparison result
D: Comparison result

\section*{Explanations:}
1. D occupied 3 consecutive devices.
2. \(S_{1} \leq S_{2}\). See the specifications of each model for their range of use.
3. \(\mathbf{S}\) is compared with \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) and the result ( \(>,=,<\) ) is stored in \(\mathbf{D}\).
4. If \(\mathbf{S}_{\mathbf{1}}\) or \(\mathbf{S}_{\mathbf{2}}\) is andesignated constant K or H , the instruction will convert the constant into a binary floating point value before the comparison.
5. When \(\mathbf{S}_{1}>\mathbf{S}_{2}, \mathbf{S}_{1}\) will be used as upper/lower bound for the comparison.

\section*{Program Example:}
1. Designated device M 0 and \(\mathrm{MO} \sim \mathrm{M} 2\) are automatically occupied.
2. When \(\mathrm{XO}=\mathrm{On}\). DEZCP instruction will be executed and one of \(\mathrm{MO} \sim \mathrm{M} 2\) will be On. When \(\mathrm{XO}=\mathrm{Off}, \mathrm{EZCP}\) instruction will not be executed and \(\mathrm{MO} \sim \mathrm{M} 2\) will remain their status before \(\mathrm{X} 0=\mathrm{Off}\).
3. Use RST or ZRST instruction to clear the result.


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 112 & D & MOVR & P & S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & Kn & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DMOVR, DMOVRP: 9 steps} \\
\hline S & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{|c} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
S:Source floating point data
D : Destination device

\section*{Explanations:}
1. S can only be a floating-point constant value.
2. See the specifications of each model for their range of use.
3. This instruction is able to enter floating point values directly in \(\mathbf{S}\).
4. When the instruction is executed, the content in \(\mathbf{S}\) is moved directly into \(\mathbf{D}\). When the instruction is not executed, the content in \(\mathbf{D}\) will not be modified.
5. If users want to move the floating-point value in registers, they have to use DMOV.

\section*{Program Example:}
1. User DMOVR instruction to move 32-bit floating point data.
2. When \(\mathrm{XO}=\mathrm{Off}\), the content in (D11, D10) remains unchanged. When \(\mathrm{XO}=\mathrm{On}\), the present value F1. 20000004768372 will be moved to data registers (D11, D10).


\section*{Remarks:}

This instruction only supports ES V6.1, SA/SX_V1.1, SV_V1.2, EH_V1.2, EH2/SV/EH3/SV2_V1.0 and above versions.
\begin{tabular}{|c|c|c|c|l|l|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 113 & & ETHRW & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(D\) \\
& & D & Ethernet communication \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{4}{|l|}{Bit Devices} & \multicolumn{13}{|c|}{Word devices} & \multicolumn{12}{|c|}{Program Steps} \\
\hline & X & Y & M & S & K & H & KnX & KnY & & KM & KnS & T & & C & D & E & F & \multicolumn{12}{|l|}{ETHRW: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & * & * & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline n & & & & & * & * & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX \({ }_{\text {Sc }}\) & EH & SV &  & 2 ES & & X & SS & SA & SX & SC & EH & Sv & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : IP address, communication port number, and read/write mode \(\quad \mathbf{S}_{2}\) : Device address \(\quad\) D: Source/Destination data register \(\quad \mathbf{n}\) : Data length (Unit: Word; Range: K1~K96)

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: D1395 and D1396
3. \(\quad \mathbf{S}_{1}\) : IP address, communication port number, and read/write mode

The operand \(\mathbf{S}_{1}\) occupies five consecutive data registers. The functions are as follows.
- IP address: Two data registers are occupied, that is, \(\mathbf{S}_{\mathbf{1}}+0\) and \(\mathbf{S}_{\mathbf{1}}+1\).

IP address \(\rightarrow\) IP3.IP2.IP1.IP0 \(\rightarrow\) 192.168.0.2
If \(S_{1}\) is D100, the values in D100 and D101 are H'0002 and H'C0A8 respectively.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ D100 \(\left(\mathbf{S}_{1}+0\right)\)} & \multicolumn{2}{c|}{ D101 \(\left(\mathbf{S}_{1}+1\right)\)} \\
\hline High & Low & High & Low \\
\hline IP1 & IP0 & IP3 & IP2 \\
\hline 0 & 2 & 192 & 168 \\
\hline \multicolumn{2}{|c|}{ H'0002 } & \multicolumn{2}{c|}{ H'C0A8 } \\
\hline
\end{tabular}
- \(\quad \mathbf{S}_{1}+2\) : Communication port number

The communication port number of the Ethernet communication card installed in DVP-EH3 is K108. The communication ports on the left-side Ethernet modules connected to a CPU module are numbered according to their distances from the CPU module. The numbers start from K100 to K107.
- \(\quad \mathbf{S}_{1}+3\) : Station address of a slave
- \(\quad \mathbf{S}_{1}+4\) : Read/Write mode

The definition is the same as Modbus. The function codes supported are H'03, H'04, H'06, and H'10.
4. \(\mathbf{S}_{\mathbf{2}}\) : Device address

The definition is the same as Modbus.
5. The operand \(\mathbf{D}\) specifies a source data register or a destination data register. If the operand \(\mathbf{D}\) specifies D 10 , and two pieces of communication data is read by means of the function code \(\mathrm{H}^{\prime} 03\), the communication data will be stored in D10 and D11.
6. \(\mathbf{n}\) : Length of data (Unit: word)

The setting range is K1~K96. If \(\mathbf{n}\) exceeds the range, it will be taken as the maximum value or the minimum value.
7. Whenever the instruction is executed, the communication command is sent. Users do not need to enable a special flag to send the communication command.
8. The instruction can be used several times. However, if an ETHRW instruction specifies a module, other ETHRW instructions can not send communication commands to the module. The next communication command can not be sent until the reception is complete or the module replies that an error occurs.
9. If a communication command is being received, the reception stops when the execution of the instruction stops. Besides, the flag related to the command's having being received and the error flag are not ON.
10. The communication timeout is stored in D1394. The default timeout is 3000 milliseconds. The range of digital values is \(1 \sim 32767\). If the communication timeout exceeds the range, it will be taken as 3000 milliseconds.
11. The values of bit0~bit8 in D1395 indicate which communication port has received a command. Bit8 represents an Ethernet communication card. For example, if the Ethernet communication card installed in DVP-EH3 has received a command, "BLD D1395 K8" is satisfied.
12. The values of bit0~bit8 in D1396 indicate which module does not receive a command correctly. For example, if a reception error occurs in the first left-side module DVP-EN01, "BLD D1396 K0" is satisfied.
13. When the instruction is executed, user can not use the online editing function. Otherwise, the data received will not be stored correctly.
14. The instruction supports EH3 version 1.20 (and above), and SV2 version 1.00 (and above).

\section*{Program Example:}
(The command is sent and received through the first left-side module (DVP-EN01) connected to DVP-EH3-L.) The IP address stored in D100 and D101 is 192.168.0.2, the communication port number stored in D102 is K100, the station address stored in D103 is K1, and the function code stored in D104 is H'03. The device address is H'1000, and two pieces of data are read. When MO is ON, ETHRW is executed. After the reception of the communication command is complete, bit0 in D1395 is ON. The data received is stored in D10 and D11.




\section*{Operands:}
\(S_{1}\) : Multiplicand
\(\mathrm{S}_{2}\) : Multiplicator
D: Product

\section*{Explanations:}
1. In 16-bit instruction, D occupies one device.
2. In 32-bit instruction, D occupies 2 consecutive devices.
3. See the specifications of each model for their range of use.
4. Flag: M1022 (carry flag)
5. This instruction multiplies \(\mathbf{S}_{1}\) by \(\mathbf{S}_{2}\) in BIN format and stores the result in \(\mathbf{D}\). Be careful with the positive/negative signs of \(\mathbf{S}_{1}, \mathbf{S}_{2}\) and \(\mathbf{D}\) when doing 16 -bit and 32 -bit operations.
6. The instruction supports EH3/EH3L/SV2 series PLCs whose version is 1.82 or above.
7. In 16-bit BIN multiplication,
\begin{tabular}{|c|c|c|}
\hline ( \(\mathrm{S}_{1}\) & (S2) & (D) \\
\hline b15..............b0 & \(x\) b15..............b0 & b15...............b0 \\
\hline b15 is a symbol bit. & b 15 is a symbol bit. & b15 is a symbol bit. \\
\hline
\end{tabular}

16 bits \(\times 16\) bits \(=16\) bits
Symbol bit = 0 refers to a positive value.
Symbol bit = 1 refers to a negative value .
When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying 16-bit data.
8. In 32-bit BIN multiplication,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ( \(\mathrm{S}_{1}+1\) & ( \(\mathrm{S}_{1}\) & ( \(\mathbf{S}_{2}+1\) & ( \({ }_{2}\) & (D)+1 & D \\
\hline b31.......b16 & b15.........b0 & \(x\) b31.......b16 & b15.........b0 & b31.......b16 & b15........b0 \\
\hline \multicolumn{2}{|l|}{b31 is a symbol bit} & \multicolumn{2}{|l|}{b31 is a symbol bit} & \multicolumn{2}{|l|}{b31 is a symbol bit} \\
\hline
\end{tabular}

32 bits \(\times 32\) bits \(=32\) bits
Symbol bit = 0 refers to a positive value.
Symbol bit = 1 refers to a negative value.
When \(D\) serves as a bit device, it can designate \(K 1 \sim K 8\) and construct a 32-bit result, occupying consecutive 32-bit data.

\section*{Program Example 1:}

If M0 is On, the 16 -bit D0 is multiplied by the 16 -bit D10 and a 16 -bit product is produced. The 16 -bit data is stored in

D20. On/Off of the most left bit indicates the positive/negative status of the result value.
\begin{tabular}{|c|c|c|c|c|}
\hline & MUL16 & D0 & D10 & D20 \\
\hline
\end{tabular}

16 bits \(\times 16\) bits \(=16\) bits
\(\Rightarrow \mathrm{D} 0 \times \mathrm{D} 10=\mathrm{D} 20\)
\(\Rightarrow D 0=K 100, D 10=K 200, D 20=K 10,000\)

\section*{Program Example 2:}

If X0 is On, the 32-bit value K10,00 in (D1, D0) is multiplied by the 32-bit value K20,000 in (D11, D10) and a 32-bit product is produced. The 32-bit data is stored in (D21, D20). On/Off of the most left bit indicates the positive/negative status of the result value.
\begin{tabular}{|l|l|l|l|l|}
\hline M0 & MUL32 & D0 & D10 & D20 \\
\hline
\end{tabular}

> 32 bits \(\times 32\) bits \(=32\) bits
> \(\Rightarrow \quad(D 1, D 0) \times(D 11, D 10)=(D 21, D 20)\)
> \(\Rightarrow \quad(D 1, D 0)=K 10,000,(D 11, D 10)=K 20,000,(D 21, D 20)=K 200,000,000\)

\section*{Remarks:}
1. If the value gotten from the 16 -bit multiplication can not be represented by a 16 -bit signed value, and is greater than the maximum 16-bit positive value K32767 or less than the minimum 16-bit negative value K-32768, M1022 is On, and the low 16-bit data is stored.
2. If users need to get a complete value (32-bit value) from a 16-bit multiplication, they have to use API22 MUL/MULP. Please refer to the explanation of API22 MUL/MULP for more information.
3. If the value gotten from the 32-bit multiplication can not be represented by a 32-bit signed value, and is greater than the maximum 32-bit positive value K2147483647 or less than the minimum 16-bit negative value K-2147483648, M1022 is On, and the low 32-bit data is stored.
4. If users need to get a complete value (64-bit value) from a 32bit multiplication, they have to use API22 DMUL/DMULP. Please refer to the explanation of API22 DMUL/DMULP for more information.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|l|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & nY & KnM & Kn & , & T & & C & D & E & & \multicolumn{12}{|c|}{\multirow[t]{4}{*}{DIV, DIVP: 7 steps
DDIV, DDIVP: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & & * & * & * & & * & & * & * & * & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & & * & * & * & & * & & * & * & * & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & * & * & & * & & * & * & * & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{11}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & Sx & SC & \multicolumn{2}{|l|}{EH S} & \[
\begin{array}{l|l}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & & ES EX & \multicolumn{2}{|l|}{S} & S & S & \multicolumn{2}{|l|}{SC} & EH & SV & EH3 & S E & EX & Ss & S & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l}
\hline \mathrm{sv} & \begin{array}{l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Dividend
\(S_{2}\) : Divisor
D: Quotient and remainder

\section*{Explanations:}
1. In 16-bit instruction, D occupies one device.
2. In 32-bit instruction, D occupies 2 consecutive devices.
3. See the specifications of each model for their range of use.
4. This instruction divides \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) in BIN format and stores the result in D. Be careful with the positive/negative signs of \(\mathbf{S}_{1}, \mathbf{S}_{2}\) and \(\mathbf{D}\) when doing 16 -bit and 32 -bit operations.
5. The instruction supports EH3/EH3L/SV2 series PLCs whose version is 1.82 or above.
6. This instruction will not be executed when the divisor is 0 . M1067 and M1068 will be On and D1067 records the error code 0E19 (hex).
7. In 16-bit BIN division,


When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying a 16-bit quotient.
8. In 32-bit BIN division,
\begin{tabular}{|c|c|c|c|c|c|}
\hline ( \(\mathrm{S}_{1}\) +1 & ( \(S_{1}\) & ( \(\mathbf{S}_{2}+1\) & ( \({ }_{2}\) & D +1 & (D) \\
\hline b31.......b16 & b15.........b0 & b31.......b16 & b15.........b0 & b31.......b16 & b15........b0 \\
\hline \multicolumn{2}{|l|}{b31 is a symbol bit} & \multicolumn{2}{|l|}{b31 is a symbol bit} & \multicolumn{2}{|l|}{b31 is a symbol bit} \\
\hline
\end{tabular}

When \(D\) serves as a bit device, it can designate K1 ~ K8 and construct a 32-bit result, occupying a 32-bit quotient.

\section*{Program Example 1:}

If \(M 0=O n\), the value in \(D 0(K 103)\) will be divided by the value in \(D 10(K 5)\) and the quotient will be stored in D20.
On/Off of the highest bit indicates the positive/negative status of the result value.
\(\mathrm{H}^{\text {M0 }} |\)\begin{tabular}{|llll} 
& DIV16 & D0 & D10 \\
D20 \\
\hline
\end{tabular}
```

D0/D10=D20
KK103/K5=K20. The remainder is K3.
=> D20=K20 (The remainder is left out.)

```

\section*{Program Example 2:}

If \(M 0=O n\), the value in \((D 1, D 0)(K 81,000)\) will be divided by the value in \((D 11, D 10)(K 40,000)\) and the quotient will be stored in (D21, D20). On/Off of the highest bit indicates the positive/negative status of the result value.
\begin{tabular}{|l|l|l|l|l|}
\hline MO & DIV32 & D0 & D10 & D20 \\
\hline
\end{tabular}
(D1,D0)/(D11,D10)=(D21,D20)
\(\Rightarrow K 81,000 / K 40,000=K 2\). The remainder is \(\mathrm{K} 1,000\).
\(\Rightarrow \quad(D 21, D 20)=K 2\) (The remainder is left out.)

\section*{Remarks:}
1. If users need to record a remainder by a 16-bit division, they have to use API23 DIVIDIVP. Please refer to the explanation of API23 DIV/DIVP for more information.
2. If users need to record a remainder by a 32-bit division, they have to use API23 DDIV/DDIVP. Please refer to the explanation of API23 DDIV/DDIVP for more information.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & & Function \\
\hline 116 & D & RAD & P & (S) D & Angle \(\rightarrow\) Radian & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & Kn & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{DRAD, DRADP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & & & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Operands:
S: Source (angle)
D: Result (radian)

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. Radian \(=\) degree \(\times(\pi / 180)\)
4. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 = On.
5. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
6. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{On}\), designate the degree of binary floating point (D1, D0). Convert the angle into radian and store the result in binary floating point in (D11, D10).


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c|c|c|c|c|ll|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 117 & D & DEG & P & S & D & Radian \(\rightarrow\) Angle
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DDEG, DDEGP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & \[
\begin{array}{l|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{~V} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source (radian)
D: Result (angle)

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. Degree \(=\) radian \(\times(180 / \pi)\)
4. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 = On.
5. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
6. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\mathrm{On}\).

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{On}\), designate the angle of binary floating point (D1, D0). Convert the radian into angle and store the result in binary floating point in (D11, D10).


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|r|c|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\multicolumn{1}{c|}{ Function } \\
\hline 118 & D & EBCD & P & S & D \\
Float to Scientific Conversion \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DEBCD, DEBCDP: 9 steps} \\
\hline S & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & \[
\begin{array}{|c|c|}
\hline \text { EV3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & sX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

Operands:
S: Source
D: Result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. This instruction converts binary floating point value in the register designated by \(\mathbf{S}\) into decimal floating point value and stores it in the register designated by \(\mathbf{D}\).
4. PLC conducts floating point operation in binary format. DEBCD instruction is exclusively for converting floating points from binary to decimal.
5. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
6. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
7. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{On}\), the binary floating points in D1 and D0 will be converted into decimal floating points and stored in D3 and D2.


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|l|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
\multicolumn{1}{c|}{ Function } \\
\hline 119 & D & EBIN & P & S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DEBIN, DEBINP: 9 steps} \\
\hline S & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source
D: Result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flag: M1020 (zero flag)
3. This instruction converts decimal floating point value in the register designated by \(\mathbf{S}\) into binary floating point value and stores it in the register designated by \(\mathbf{D}\).
4. DEBIN instruction is exclusively for converting floating points from decimal to binary.
5. Range of decimal floating point real numbers: \(-9.999 \sim+9,999\). Range of exponants: \(-41 \sim+35\). Range of PLC decimal floating points: \(\pm 1,175 \times 10^{-41} \sim \pm 3,402 \times 10^{+35}\).
6. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Program Example 1:}

When X1 = On, the decimal floating points in D1 and D0 will be converted into binary floating points and stored in D3 and D2.


\section*{Program Example 2:}
1. Use FLT instruction (API 149) to convert BIN integer into binary floating point before performing floating point operation. The value to be converted must be BIN integer and use DEBIN instruction to convert the floating point into a binary one.
2. When \(\mathrm{XO}=\mathrm{On}\), move \(\mathrm{K} 3,140\) to D 0 and \(\mathrm{K}-3\) to D 1 to generate decimal floating point \(\left(3.14=3140 \times 10^{-3}\right)\).


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 120 & D & EADD & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Floating Point Addition & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DEADD, DEADDP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & \multicolumn{2}{|l|}{SX SC} & \multicolumn{2}{|l|}{EH SV} & \[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES Ex & EX & & SA & \multicolumn{2}{|l|}{X SC} & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EXS & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{SV \(\begin{gathered}\text { EH3 } \\ \text { SV2 }\end{gathered}\)} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Summand
\(\mathbf{S}_{2}\) : Addend
D: Sum

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}=\mathbf{D}\). The floating point value in the register designated by \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are added up and the result is stored in the register designated by \(\mathbf{D}\). The addition is conducted in binary floating point system.
4. If \(\mathbf{S}_{\mathbf{1}}\) or \(\mathbf{S}_{\mathbf{2}}\) is an designated constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
5. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the criteria contact in On, the register will be added once in every scan by pulse execution instruction DEADDP.
6. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
7. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
8. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Program Example 1:}

When \(\mathrm{X0} 0=\mathrm{On}\), binary floating point (D1, D0) + binary floating point (D3, D2) and the result is stored in (D11, D10).
\begin{tabular}{|l|l|l|l|l|}
\hline D0 & DEADD & D0 & D2 & D10 \\
\hline
\end{tabular}

\section*{Program Example 2:}

When X2 = On, binary floating point (D11, D10) + K1234 (automatically converted into binary floating point) and the result is stored in (D21, D20).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 121 & D & ESUB & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D \\
& & Floating Point Subtraction & \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Minuend
\(\mathbf{S}_{2}\) : Subtrahend
D: Remainder

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}=\mathbf{D}\). The floating point value in the register designated by \(\mathbf{S}_{\mathbf{2}}\) is subtracted from the floating point value in the register assigned by \(\mathbf{S}_{1}\) and the result is stored in the register designated by \(\mathbf{D}\). The subtraction is conducted in binary floating point system.
4. If \(\mathbf{S}_{1}\) or \(\mathbf{S}_{2}\) is an designated constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
5. \(\quad \mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the criteria contact in On, the register will be subtracted once in every scan by pulse execution instruction DESUBP.
6. If the absolute value of the result > maximum floating point available, the carry flag M1022 \(=\mathbf{O n}\).
7. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 \(=\mathrm{On}\).
8. If the result \(=0\), the zero flag M1020 \(=\) On.

\section*{Program Example 1:}

When X0 = On, binary floating point (D1, D0) - binary floating point (D3, D2) and the result is stored in (D11, D10).


\section*{Program Example 2:}

When X2 = On, K1234 (automatically converted into binary floating point) - binary floating point (D1, D0) and the result is stored in (D11, D10).
\begin{tabular}{|c|c|c|c|c|}
\hline\(\times 2\) & DESUB & K1234 & D0 & D10 \\
\hline
\end{tabular}

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 122 & D & EMUL & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Floating Point Multiplication \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{DEMUL, DEMULP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & \multicolumn{2}{|l|}{SX SC} & \multicolumn{2}{|l|}{EH SV} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & S EX & SS & SA & & \multicolumn{2}{|r|}{SC} & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & \multicolumn{2}{|l|}{sv \(\begin{gathered}\text { EH3 } \\ \text { SV2 }\end{gathered}\)} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Multiplicand \(\quad \mathbf{S}_{\mathbf{2}}\) : Multiplicator \(\quad \mathbf{D}\) : Product

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\mathbf{S}_{\mathbf{1}} \times \mathbf{S}_{\mathbf{2}}=\mathbf{D}\). The floating point value in the register assigned by \(\mathbf{S}_{\mathbf{1}}\) is multiplied with the floating point value in the register designated by \(\mathbf{S}_{2}\) and the result is stored in the register designated by \(\mathbf{D}\). The multiplication is conducted in binary floating point system.
4. If \(\mathbf{S}_{\mathbf{1}}\) or \(\mathbf{S}_{\mathbf{2}}\) is an designated constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
5. \(\quad \mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the criteria contact in On, the register will be multiplied once in every scan by pulse execution instruction DEMULP.
6. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
7. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
8. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Program Example 1:}

When \(\mathrm{X} 1=\) On, binary floating point (D1, D0) \(\times\) binary floating point (D11, D10) and the result is stored in (D21, D20).


\section*{Program Example 2:}

When X2 = On, K1234 (automatically converted into binary floating point) \(\times\) binary floating point (D1, D0) and the result is stored in (D11, D10).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 123 & D & EDIV & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Floating Point Division \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & Kn & & KnY & & & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{DEDIV, DEDIVP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & E & & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & & S & & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Dividend
\(S_{2}\) : Divisor
D: Quotient and remainder

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\mathbf{S}_{\mathbf{1}} \div \mathbf{S}_{\mathbf{2}}=\mathbf{D}\). The floating point value in the register designated by \(\mathbf{S}_{\mathbf{1}}\) is divided by the floating point value in the register assigned by \(\mathbf{S}_{2}\) and the result is stored in the register designated by \(\mathbf{D}\). The division is conducted in binary floating point system.
4. If \(\mathbf{S}_{\mathbf{1}}\) or \(\mathbf{S}_{\mathbf{2}}\) is an designated constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
5. If \(\mathbf{S}_{\mathbf{2}}=0\), operation error will occur, the instruction will not be executed, M1067, M1068 \(=\) On and D1067 will recorded the error code H'OE19.
6. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
7. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
8. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Program Example 1:}

When \(\mathrm{X} 1=\) On, binary floating point (D1, D0) \(\div\) binary floating point (D11, D10) and the quotient is stored in (D21, D20).


\section*{Program Example 2:}

When X2 = On, binary floating point (D1, D0) \(\div\) K1234 (automatically converted into binary floating point) and the result is stored in (D11, D10).
\begin{tabular}{|c|c|c|c|c|}
\hline D2 & DEDIV & D0 & K1234 & D10 \\
\hline
\end{tabular}

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
\hline 124 & D & EXP & P & S \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DEXP, DEXPP: 13 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV2} \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
S: Device for operation source
D: Device for operation result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\mathrm{e}=2.71828\) as the base and \(\mathbf{S}\) as exponent for EXP operation: EXP \(^{(\mathbf{D}+1, \mathbf{D}]}=\{\mathbf{S}+1, \mathbf{S}\rceil\)
4. Both positive and negative values are valid for \(\mathbf{S}\). When designating \(\mathbf{D}\) registers, the data should be 32-bit and the operation should be performed in floating point system. Therefore, \(\mathbf{S}\) should be converted into a floating point value.
5. The content in \(\mathbf{D}=e^{\mathrm{s}} ; \mathrm{e}=2.71828,{ }^{\mathrm{s}}=\) designated source data
6. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
7. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
8. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\mathrm{On}\).

\section*{Program Example:}
1. When \(\mathrm{MO}=\mathrm{On}\), convert (D1, D0) into binary floating point and store it in register (D11, D10).
2. When \(\mathrm{M} 1=\mathrm{On}\), use ( \(\mathrm{D} 11, \mathrm{D} 10\) ) as the exponent for EXP operation and store the binary floating point result in register (D21, D20).
3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 \(\times 10^{[D 31]}\) ) and store it in register (D31, D30).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\hline 125 & D & LN & P & S & D \\
& & Natural Logarithm of Binary Floating Point \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & K & H & Kn & & KnY & & nM & & & T & & C & D & E & F & \multicolumn{9}{|l|}{DLN，DLNP： 9 steps} \\
\hline S & & & & & & & & ＊ & ＊ & & & & & & & & & & & ＊ & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & & ＊ & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16－bit} & \multicolumn{9}{|r|}{32－bit} \\
\hline & & & EX & & SS & SA & & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 }
\end{aligned}
\] & E & EX & \multicolumn{2}{|l|}{SS} & A & S & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & S & EH & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l|}
\hline \text { SV } & \mathrm{EH} 3 \\
\hline & \mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands：}
S：Device for operation source
D：Device for operation result

\section*{Explanations：}

1．See the specifications of each model for their range of use．
2．Flags：M1020（zero flag）；M1021（borrow flag）；M1022（carry flag）
3．This instruction performs natural logarithm＂LN＂operation by \(\mathbf{S}: L N 〔 \mathbf{S}+1, \mathbf{S}\rceil=〔 \mathbf{D}+1, \mathbf{D} 〕\)
4．Only positive values are valid for \(\mathbf{S}\) ．When designating \(\mathbf{D}\) registers，the data should be 32 －bit and the operation should be performed in floating point system．Therefore， \(\mathbf{S}\) should be converted into a floating point value．
5．\(e^{D}=\mathbf{S}\) ．The content in \(\mathbf{D}=\ln \mathbf{S} ; \mathbf{S}=\) designated source data．
6．If the absolute value of the result \(>\) maximum floating point available，the carry flag M1022＝On．
7．If the absolute value of the result \(<\) minimum floating point available，the borrow flag M1021＝On．
8．If the result \(=0\) ，the zero flag \(\mathrm{M} 1020=\mathrm{On}\) ．

\section*{Program Example：}

1．When \(\mathrm{M0}=\mathrm{On}\) ，convert（D1，D0）into binary floating point and store it in register（D11，D10）．
2．When M1＝On，use register（D11，D10）as the real number for LN operation and store the binary floating point result in register（D21，D20）．
3．When M2＝On，convert the binary floating point（D21，D20）into decimal floating point（D30 \(\left.\times 10^{[D 31]}\right)\) and store it in register（D31，D30）．


\section*{Remarks：}

For floating point operations，see＂ 5.3 Handling of Numeric Values＂．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{4}{|c|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & & \multicolumn{20}{|c|}{Function} \\
\hline 126 & D & \multicolumn{3}{|l|}{LOG P} & \multicolumn{7}{|l|}{\(S_{1} S_{2}\) D} & \multicolumn{21}{|l|}{Logarithm of Binary Floating Point} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & & M & & S & K & H & \multicolumn{3}{|r|}{KnX} & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & \multicolumn{2}{|l|}{T} & C & D & E & F & \multicolumn{9}{|l|}{DLOG, DLOGP: 13 steps} \\
\hline & & & & & & & & * & * & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & & & & & & * & * & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & ES & EX & SS & SA & SX & SC & & EH & SV & \[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 }
\end{array}
\] & ES & EX & & SS & A & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & S & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Device for base
\(\mathbf{S}_{2}\) : Device for operation source
D: Device for operation result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. This instruction performs "log" operation of the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) and stores the result in \(\mathbf{D}\).
4. Only positives are valid for the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). When designating \(\mathbf{D}\) registers, the data should be 32-bit and the operation should be performed in floating point system. Therefore, \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) should be converted into floating point values.
5. \(\mathbf{S}_{1}{ }^{\mathrm{D}}=\mathbf{S}_{2}, \mathbf{D}=? \rightarrow \log _{\mathrm{s}_{1}}{ }^{\mathbf{S}_{2}}=\mathbf{D}\)

Example: Assume \(\mathbf{S}_{1}=5, \mathbf{S}_{\mathbf{2}}=125, \mathbf{D}=\log _{5}{ }^{125}=\) ?
\[
\mathbf{S}_{1}{ }^{\mathbf{D}}=\mathbf{S}_{2} \rightarrow 5^{\mathbf{D}}=125 \rightarrow \mathbf{D}=\log _{5}{ }^{125}=3
\]
6. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
7. If the absolute value of the result < minimum floating point available, the borrow flag M1021=On.
8. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\mathrm{On}\).

\section*{Program Example:}
1. When \(\mathrm{M} 0=\mathrm{On}\), convert ( \(\mathrm{D} 1, \mathrm{D} 0\) ) and (D3, D2) into binary floating points and store them in the 32-bit registers (D11, D10) and (D13, D12).
2. When M1 = On, perform log operation on the binary floting points in 32-bit registers (D11, D10) and (D13, D12) and store the result in the 32-bit register (D21, D20).
3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 \(\times 10^{[D 31]}\) ) and store it in register (D31, D30).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & Function \\
\hline 127 & D & ESQR & P & (S) D & Floating Point Square Root \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DESQR, DESQRP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH S & \begin{tabular}{l|l|}
\hline EH3 \\
SV2
\end{tabular} & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device
D: Operation result

\section*{Explanations:}
1. Range of \(\mathbf{S}: \geq 0\)
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag); M1067 (operation error)
4. This instruction performs a square root operation on the content in the register designated by \(\mathbf{S}\) and stores the result in the register designated by \(\mathbf{D}\). The square root operation is performed in floating point system.
5. If \(\mathbf{S}\) is an designated constant K or H , the instruction will convert the constant into a binary floating point value before the operation.
6. If the result of the operation \(=0\), the zero flag M1020 \(=\) On.
7. \(S\) can only be a positive value. Performing any square root operation on a negative value will result in an "operation error" and this instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code H'0E1B.

\section*{Program Example 1:}

When \(\mathrm{MO}=\mathrm{On}\), calculate the square root of the binary floating point (D1, D0) and store the result in register (D11, D10).


\section*{Program Example 2:}

When M2 = On, calculate the square root of K1,234 (automatically converted into binary floating point) and store the result in register (D11, D10).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|l|l|c|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & Function \\
\hline 128 & D & Pow & P & \(\boldsymbol{S}_{1}\) & \(\boldsymbol{S}_{2}\) & D \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & & H & KnX & & KnY & & & Kn & & & T & C & D & E & F & \multicolumn{9}{|l|}{DPOW, DPOWP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & E & & S & SA & SX & X & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & & & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Device for base.
\(\mathbf{S}_{2}\) : Device for exponent.
D: Device for operation result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. This instruction performs power multiplication of binary floating point \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) and stores the result in \(\mathbf{D}\).
\[
\mathbf{D}=\operatorname{POW}\left[\mathbf{S}_{1}+1, \mathbf{S}_{1}\right] \wedge\left[\mathbf{S}_{2}+1, \mathbf{S}_{2}\right]
\]
3. Only positives are valid for the content in \(\mathbf{S}_{1}\). Both positives and negatives are valid for the content in \(\mathbf{S}_{2}\). When designating \(\mathbf{D}\) registers, the data should be 32 -bit and the operation should be performed in floating point system. Therefore, \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{2}\) should be converted into floating point values.
Example: When \(\mathbf{S}_{1}{ }^{\mathbf{S 2}}=\mathbf{D}, \mathbf{D}=\) ?
\[
\text { Assume } \mathbf{S}_{1}=5, \mathbf{S}_{2}=3, \mathbf{D}=5^{3}=125
\]
4. If the absolute value of the result > maximum floating point available, the carry flag M1022 = On.
5. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 \(=\) On.
6. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\mathrm{On}\).

\section*{Program Example:}
1. When \(\mathrm{M} 0=\mathrm{On}\), convert (D1, D0) and (D3, D2) into binary floating points and store them in the 32-bit registers (D11, D10) and (D13, D12).
2. When M1 = On, perform POW operation on the binary floting points in 32-bit registers (D11, D10) and (D13, D12) and store the result in the 32-bit register (D21, D20).
3. When \(\mathrm{M} 2=\mathrm{On}\), convert the binary floating point (D21, D20) into decimal floating point (D30 \(\times 10^{[\mathrm{D} 31]}\) ) and store it in register (D31, D30).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|l|l|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{|c|}{ MPI } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{2}{|c|}{ Function } \\
\hline 129 & D & INT & P & S & D & Float to Integer
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline OP & X & Y & M & & S & & K & H & Kn & & KnY & & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{3}{*}{INT, INTP: 5 steps DINT, DINTP: 9 steps}} \\
\hline S & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & S & S & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & \multicolumn{2}{|l|}{S SC} & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES E & E & SS & SA & SX & SC & \[
\mathrm{EH}[5
\] & \multicolumn{2}{|l|}{\[
\begin{array}{c|c}
\hline \text { EH3 } \\
\text { sV } & \text { SV2 } \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

Operands:
S: Source device
D: Converted result

\section*{Explanations:}
1. S occupies 2 consecutive devices. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. The binary floating point value of the register designated by \(\mathbf{S}\) is converted to BIN integer and stored in the register designated by \(\mathbf{D}\). The decimal of BIN integer is left out.
4. This instruction is the inverse operation of API 49 FLT instruction.
5. If the converstion result \(=0\), the zero flag \(\mathrm{M} 1020=\) On If there is any decimal left out, the borrow flag M1021 = On. If the result exceeds the range listed below, the carry flag M1022 \(=\) On. 16-bit instruction: -32,768~32,767

32-bit instruction: -2,147,483,648~2,147,483,647

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), the binary floating point (D1, D0) will be converted into BIN integer and the result will be stored in (D10). The decimal of BIN integer will be left out.
2. When \(\mathrm{X} 1=\mathrm{On}\), the binary floating point (D21, D20) will be converted into BIN integer and the result will be stored in (D31, D30). The decimal of BIN integer will be left out.


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 130 & D & SIN & P & S & D \\
& Sine & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DSIN, DSINP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{} & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH S & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source value
D: SIN result

\section*{Explanations:}
1. \(0^{\circ} \leq \mathbf{S}<360^{\circ}\). See the specifications of each model for their range of use.
2. Flags: M1018 (angle or radian); M1020 (zero flag)
3. S can be an angle or radian, decided by M1018.
4. When M1018 = Off, the program will be in radian mode and the RAD value \(=\) angle \(\times \pi / 180\)
5. When M1018 = On, the program will be in angle mode and the range of angle should be " \(0^{\circ} \leq\) angle \(<360^{\circ}\) "
6. If the result \(=\mathrm{On}, \mathrm{M} 1020=\mathrm{On}\).
7. The SIN value obtained by \(\mathbf{S}\) is calculated and stored in the register designated by \(\mathbf{D}\). The figure below offers the relation between radian and the result.


\section*{Program Example 1:}

When M1018 = Off, the program is in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its SIN value. The binary floating point result will be stored in (D11, D10).


\section*{Program Example 2:}

When M1018 = Off, the program is in radian mode. Input terminals X0 and X1 select the angle. The angles are converted into RAD value for calculating the SIN value.


\section*{Program Example 3:}

When M1018 = On, the program is in angle mode. When X0 \(=\) On, use the angle of (D1, D0) to obtain SIN value and store the binary floating point result in (D11, D10). \(\left(0^{\circ} \leq\right.\) angle \(\left.<360^{\circ}\right)\)
 angle value SIN value (binary floating point)

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & & Function \\
\hline 131 & D & cos & P & (S) D & Cosine & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DCOS, DCOSP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & \multicolumn{2}{|l|}{sx sc} & \multicolumn{2}{|l|}{EH SV} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES Ex & \multicolumn{2}{|l|}{X SS} & SA & SX & SC E & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & & SA & S \(\times\) & SC & \[
\mathrm{EH} \leq
\] & \multicolumn{2}{|l|}{\[
\begin{array}{c|c}
\hline \mathrm{EH} 3 \\
\mathrm{sV} \\
\mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
S: Source value
D: COS result

\section*{Explanations:}
1. \(0^{\circ} \leq \mathbf{S}<360^{\circ}\). See the specifications of each model for their range of use.
2. Flags: M1018 (angle or radian); M1020 (zero flag)
3. S can be an angle or radian, decided by M1018.
4. When M1018 \(=\) Off, the program will be in radian mode and the RAD value \(=\) angle \(\times \pi / 180\)
5. When M1018 = On, the program will be in angle mode and the range of angle should be " \(0^{\circ} \leq\) angle \(<360^{\circ}\) "
6. If the result \(=\mathrm{On}, \mathrm{M} 1020=\mathrm{On}\).
7. The COS value obtained by \(\mathbf{S}\) is calculated and stored in the register designated by \(\mathbf{D}\). The figure below offers the relation between radian and the result.

8. Switch between radian and angle by M1018: When M1018 = Off, S will be a RAD value; when M1018 = On, S will be an angle \(\left(0^{\circ} \sim 360^{\circ}\right)\).

\section*{Program Example 1:}

When M1018 = Off, the program is in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its COS value. The binary floating point result will be stored in (D11, D10).


\section*{Program Example 2:}

When M1018 = On, the program is in angle mode. When X0 \(=\) On, use the angle of (D1, D0) to obtain COS value and store the binary floating point result in (D11, D10). \(\left(0^{\circ} \leq\right.\) angle \(\left.<360^{\circ}\right)\)

(S)


COS value
(D)
(binary floating point)

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 132 & D & TAN & P & S & D & Tangent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & K & H & Kn & nX & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & \multicolumn{2}{|l|}{T} & C & D & E & F & \multicolumn{9}{|l|}{DTAN, DTANP: 9 steps} \\
\hline S & & & & & & & * & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & & SS & SA & & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & E & EX & S & & A & S & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Source value
D: TAN result

\section*{Explanations:}
1. \(0^{\circ} \leq \mathbf{S}<360^{\circ}\). See the specifications of each model for their range of use.
2. Flags: M1018 (angle or radian); M1020 (zero flag)
3. S can be an angle or radian, decided by M1018.
4. When M1018 \(=\) Off, the program will be in radian mode and the RAD value \(=\) angle \(\times \pi / 180\)
5. When M1018 = On, the program will be in angle mode and the range of angle should be " \(0^{\circ} \leq\) angle \(<360^{\circ}\) "
6. If the result \(=\mathrm{On}, \mathrm{M} 1020=\mathrm{On}\).
7. The TAN value obtained by \(S\) is calculated and stored in the register designated by \(D\). The figure below offers the relation between radian and the result.


\section*{Program Example 1:}

When M1018 = Off, the program is in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its TAN value. The binary floating point result will be stored in (D11, D10).


\section*{Program Example 2:}

When M1018 = On, the program is in angle mode. When \(\mathrm{X0}=\mathrm{On}\), use the angle of (D1, D0) to obtain TAN value and store the binary floating point result in (D11, D10). \(\left(0^{\circ} \leq\right.\) angle \(\left.<360^{\circ}\right)\)


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 133 & D & ASIN & P & S & D & Arc Sine
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & KnI & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DASIN, DASINP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH S & \[
\begin{array}{l|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{~V} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source value (binary floating point)
D: ASIN result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flag: M1020 (zero flag)
3. ASIN value \(=\sin ^{-1}\). The figure below offers the relation between the entered \(\sin\) value and the result.

4. The decimal floating point of the SIN value designated by \(\mathbf{S}\) should be within \(-1.0 \sim+1.0\). If the value falls without the range, M1067 and M1068 will be On without performing any action.
5. If the result \(=0, \mathrm{M} 1020=\mathrm{On}\).

\section*{Program Example:}

When \(\mathrm{X0}=\) On, obtain the ASIN value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).


\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|l|l|l|l|l|ll|}
\hline \multicolumn{1}{|c|}{} & \multicolumn{2}{|c|}{ MPI } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } \\
\\
\cline { 1 - 5 } & 134 & D & ACOS & P & S & D \\
& & Arc Cosine & Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & & H & Kn & & KnY & & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{DACOS, DACOSP: 9 steps} \\
\hline S & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & SX & & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & S & & A & S & Sc & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

Operands:
S: Source value (binary floating point)
D: ACOS result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flag: M1020 (zero flag)
3. ACOS value \(=\cos ^{-1}\). The figure below offers the relation between the entered cos value and the result.

4. The decimal floating point of the \(\operatorname{COS}\) value designated by \(\mathbf{S}\) should be within \(-1.0 \sim+1.0\). If the value falls without the range, M1067 and M1068 will be On without performing any action.
5. If the result \(=0, \mathrm{M} 1020=\mathrm{On}\).

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{On}\), obtain the ACOS value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 135 & D & ATAN & P & S & D & Arc Tangent
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DATAN, DATANP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source value (binary floating point)
D: ATAN value

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flag: M1020 (zero flag)
3. ATAN value \(=\tan ^{-1}\). The figure below offers the relation between the entered tan value and the result.

4. If the result \(=0, \mathrm{M} 1020=\) On.

\section*{Program Example:}

When \(\mathrm{XO}=\mathrm{On}\), obtain the ATAN value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).


\section*{Remarks:}

For floating point operations, see "5.3 Handling of Numeric Values".
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & & Function \\
\hline 136 & D & SINH & P & (S) D & Hyperbolic Sine & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & & \multicolumn{15}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & & H & Kn & & KnY & Kn & & KnS & T & T & C & D & E & F & \multicolumn{9}{|l|}{DSINH, DSINHP: 9 steps} \\
\hline S & & & & & & & * & & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & E & & S & SA & SX & X & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

Operands:
S: Source value (binary floating point)
D: SINH value

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\operatorname{SINH}\) value \(=\left(e^{s}-e^{-s}\right) / 2\). The result is stored in \(\mathbf{D}\).

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), obtain the SINH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

2. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
3. If the absolute value of the result \(<\) minimum floating point available, the borrow flag M1021 = On.
4. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\mathrm{On}\).

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|l||c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 137 & D & COSH & P & S & D & Hyperbolic Cosine
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DCOSH, DCOSHP: 9 steps} \\
\hline S & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH S & \[
\begin{array}{l|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{~V} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Source value (binary floating point)
D: COSH value

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. \(\operatorname{COSH}\) value \(=\left(e^{s}+e^{-s}\right) / 2\). The result is stored in \(\mathbf{D}\).

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), obtain the COSH value of binary floating point \((\mathrm{D} 1, \mathrm{D} 0)\) and store the binary floating point result in (D11, D10).

5. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
6. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
7. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\) On.

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & & Function \\
\hline 138 & D & TANH & P & (S) D & Hyperbolic Tangent & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & Kn & & KnY & \multicolumn{2}{|l|}{KnM} & KnS & T & \multicolumn{2}{|r|}{C} & D & E & F & \multicolumn{9}{|l|}{DTANH, DTANHP: 9 steps} \\
\hline S & & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & & & & & & SE & & & & & & & & 16-1 & & & & & & & & & 32-b & & & & \\
\hline & & & EX & SS & & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

Operands:
S: Source value (binary floating point)
D: TANH result

\section*{Explanations:}
1. See the specifications of each model for their range of use.
2. Flags: M1020 (zero flag); M1021 (borrow flag); M1022 (carry flag)
3. TANH value \(=\left(e^{5}-e^{-s}\right) /\left(e^{s}+e^{-s}\right)\). The result is stored in \(\mathbf{D}\).

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), obtain the TANH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

2. If the absolute value of the result \(>\) maximum floating point available, the carry flag M1022 \(=\) On.
3. If the absolute value of the result < minimum floating point available, the borrow flag M1021 = On.
4. If the result \(=0\), the zero flag \(\mathrm{M} 1020=\mathrm{On}\).

\section*{Remarks:}

For floating point operations, see " 5.3 Handling of Numeric Values".
\begin{tabular}{|c||c|c|c|l|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 143 & DELAY & S & Delay Instruction & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn \(\times\) & & KnY & & nM & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{DELAY, DELAYP: 3 steps} \\
\hline S & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & SX & SC & EH SV & \(\checkmark\) & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & S EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{c|c|}
\hline \mathrm{EH} 3 \\
\mathrm{sV} & \mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}

S: delay time (unit: 100ms)

\section*{Explanations:}
1. Range of \(\mathbf{S}: \mathrm{K} 1 \sim \mathrm{~K} 1,000\). See the specifications of each model for their range of use.
2. After DELAY instruction is executed, the program after DELAY in every scan period will execute delay outputs according to the delay time designated by the user.
3. If M 1148 is ON , the delay unit will be 5 us. If M 1148 is ON when the instruction DELAY is executed, the delay unit will change from 100us to 5us. After the instruction DELAY is executed, M1148 will be set to Off. EH3 V1.62 (and above) and SV2 V1.00 (and above) are supported.

\section*{Program Example:}

If \(X 0\) is turned from Off to On, the external interruption will be generated. DELAY in the interrupt subroutine will be execute for 2 ms before the next step \((\mathrm{X} 1=\mathrm{On}\) and \(\mathrm{Y} 0=\mathrm{On}\) ) is executed.


If XO is turned from Off to On, the external interruption will be generated. Owing to the fact that M 1148 is ON, DELAY in the interrupt subroutine will be execute for 100 ms before the next step \((\mathrm{X} 1=\mathrm{On}\) and \(\mathrm{Y} 0=\mathrm{On}\) ) is executed.


\section*{Remarks:}
1. User can define the delay time based on their needs.
2. The delay time may increase due do the influences from communication, high-speed counters and high-speed pulse output instructions.
3. The delay time of designated external output (transistor or relay) will increase due to the delay on the transistor or relay itself. See 2.3 for more information.
\begin{tabular}{|c||c|c|cc|}
\hline API & Mnemonic & Operands & & Function \\
\hline 144 & GPWM & \(S_{\text {S1 }}\) & \(S_{2}\) & D \\
& General PWM Output & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{GPWM: 7 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & * & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l}
\text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Width of output pulse
\(\mathbf{S}_{2}\) : Pulse output cycle
D: Pulse output device

\section*{Explanations:}
1. \(\mathbf{S}_{2}\) occupies 3 consecutive devices.
2. \(\mathbf{S}_{1} \leq \mathbf{S}_{2}\). See the specifications of each model for their range of use.
3. Range of \(\mathbf{S}_{1}: t=0 \sim 32,767 \mathrm{~ms}\).
4. Range of \(\mathbf{S}_{2}: \mathbf{t}=1 \sim 32,767 \mathrm{~ms}\).
5. \(\mathbf{S}_{2}+1\) and \(\mathbf{S}_{2}+2\) are parameters for the system. Do not occupy them.
6. Pulse output devices \(\mathbf{D}: Y, M, S\).
7. When being executed, GPWM instruction designates \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) and that pulses output will be from device \(\mathbf{D}\).
8. When \(\mathbf{S}_{1} \leq 0\), there will be no pulse output. When \(\mathbf{S}_{1} \geq \mathbf{S}_{2}\), the pulse output device will keep being On.
9. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) can be modified when GPWM instruction is being executed.

\section*{Program Example:}

When \(\mathrm{X} 0=\mathrm{On}, \mathrm{D} 0=\mathrm{K} 1,000, \mathrm{D} 2=\mathrm{K} 2,000\), and Y 10 will output the pulse illustrated below. When \(\mathrm{X} 0=\mathrm{Off}, \mathrm{Y} 10\) output will be Off.


\section*{Explanations:}
1. This instruction counts by the scan cycle; therefore the maximum offset will be one PLC scan cycle. \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\) and ( \(\mathbf{S}_{\mathbf{2}}-\mathbf{S}_{\mathbf{1}}\) ) should > PLC scan cycle; otherwise, errors will occur during GPWM outputs.
2. Please note that placing this instruction in a subroutine or interruption will cause inaccurate GPWM outputs.
\begin{tabular}{|c|c|c|c|l|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 145 & FTC & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{S}_{3}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{5}{*}{FTC: 9 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS S & S & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Set value (SV)
\(\mathbf{S}_{2}\) : Present value (PV)
\(\mathbf{S}_{3}\) : Parameter (sampling time)
D: Output value (MV)

\section*{Explanations:}
1. Range of \(\mathbf{S}_{1}: 1 \sim 5000\) (shown as \(0.1^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}\) ). Unit: \(0.1^{\circ}\). If \(\left(\mathbf{S}_{3}+1\right)\) is set as KO , the range will be \(0.1^{\circ} \mathrm{C} \sim\) \(500^{\circ} \mathrm{C}\).
2. Range of \(\mathbf{S}_{2}: 1 \sim 5000\) (shown as \(0.1^{\circ} \mathrm{C} \sim 500^{\circ} \mathrm{C}\) ). Unit: \(0.1^{\circ}\). If \(\left(S_{3}+1\right)\) is set as bit0 \(=0\), the range will be \(0.1^{\circ} \mathrm{C}\) \(\sim 500^{\circ} \mathrm{C}\). Therefore, when the user obtain an A/D value from the temperature sensor, the value has to be converted into a value between \(1 \sim 5,000\) by four arithmetic operation instructions.
3. If \(\mathbf{S}_{\mathbf{3}}<\mathrm{K} 1\), the instruction will not be executed. If \(\mathbf{S}_{\mathbf{3}}>\mathrm{K} 200\), S 3 will adopt K 200 . \(\mathbf{S}_{3}\) will occupy 7 consecutive devices.
4. See the specifications of each model for their range of use.
5. Settings of parameter \(\mathbf{S}_{3}+1\) : bit0 \(=0->^{\circ} \mathrm{C}\); bit0 \(=1->^{\circ} \mathrm{F}\); bit1 \(=0->\) no filter function; bit1 \(=1->\) with filter function; bit2 ~ bit5 -> 4 kinds of heating environments; bit6 ~ bit15 -> reserved. See remarks for more information.
6. \(\mathbf{D}\) is the value between \(0 \sim\) sampling time \(\times 100\). When using this instruction, the user has to adopt other instructions according to the types of the heater. For example, FTC can be used with GPWM for output pulse control. "Sampling time \(\times 100\) " is the cycle of GPWM pulse output; MV is the width of GPWM pulse. See the example 1.
7. There is no limit on the times of using FTC instruction, but Do not repeatedly use a designated operand in case an error may occur.

\section*{Program Example:}
1. Set up the parameter before executing FTC instruction.
2. When \(\mathrm{XO}=\mathrm{On}\), the instruction will be executed and and result will be stored in D150. When \(\mathrm{X0}=\mathrm{Off}\), the instruction will not be executed and the previous data remain unchanged.
\begin{tabular}{|l|l|l|l|l|l|}
\hline FO & FTC & D0 & D1 & D100 & D150 \\
\hline
\end{tabular}

\section*{Remarks:}
1. Setting of \(\mathbf{S}_{3}\) :
\begin{tabular}{|c|c|c|c|}
\hline Device No. & Function & Range & Explanation \\
\hline S3 & Sampling time ( \(\mathrm{T}_{\mathrm{S}}\) ) (unit: 100ms) & \[
\begin{array}{|l}
1 \sim 200 \\
\text { (unit: } 100 \mathrm{~ms} \text { ) }
\end{array}
\] & If \(T_{S}\) is less than a scan time, PID instruction will be executed for a scan time. If \(T_{s}=0\), PID instruction will not be enabled. The minimum \(T_{S}\) must be greater than a scan time. \\
\hline \multirow{6}{*}{(S3) +1} & \multirow{6}{*}{\begin{tabular}{l}
b0: temperature unit \\
b1: filter function \\
b2 ~ b5: heating \\
environnment \\
b6 ~ b15: reserved
\end{tabular}} & b0 \(=0\) means \({ }^{\circ} \mathrm{C}\) b0 \(=1\) means \({ }^{\circ} \mathrm{F}\) & When the value exceeds the upper bound, use the upper bound. \\
\hline & & b1=0 means without fileter function b1=1 means with filter function & When without filter function, \(\mathrm{PV}=\) currently measured value. When with filter function, \(\mathrm{PV}=\) (currently measured value + previous PV)/2 \\
\hline & & \(\mathrm{b} 2=1\) & Slow heating environment \\
\hline & & b3=1 & General heating environment \\
\hline & & b4=1 & Fast heating environment \\
\hline & & b5=1 & High-speed heating environment \\
\hline \[
\begin{gathered}
\mathbf{S}_{3}+2 \\
1 \\
\mathbf{S}_{3}+6
\end{gathered}
\] & \multicolumn{3}{|l|}{Parameters for system use only. Do not use them.} \\
\hline
\end{tabular}
2. Control Diagram:

3. Notes and suggestion:

It is recommended that the sampling time be set to 2 times more than the sampling time of the temperature sensor for better temperature control.
bit2 ~ bit5 of \(\mathbf{S}_{3}+1\) are for the control speed. If the user does not set up the parameter, FTC will automatically activate "general heating environment". When the user finds that the control is too slow to reach SV, select "slow heating environment" to enhance the speed to reach SV. On the contrary, when the user finds that the control is
too fast or with too many fluctuations, select "fast heating environment" to slow down the control speed.
When bit2 ~ bit5 of \(\mathbf{S}_{\mathbf{3}}+1\) are all set as 1 or more than 1 environments are designated, FTC instruction will check from bit2 to bit 5 in order and enable the function that has been set as 1 . The parameter can be modified during the control.
4. Example 1: control diagram


Output D22 (MV) of FTC instruction is the input D22 of GPWM instruction, as the duty cycle of ajustable pulses. D30 is the fixed cycle time of pulses. See below for the timing diagram of Y0 output.


Assume parameter settings: \(\mathrm{D} 10=\mathrm{K} 1,500\) (target temperature), D12 = K60 (sampling time: 6 secs.), D13 = K8 (bit3=1), D30 = K6,000 (=D12*100)
The example control program is indicated as:


Experiment in an oven which can be heated up to \(250^{\circ} \mathrm{C}\). See below for the records of target and present temperatures. As shown in the diagram below, we can see that after 48 minutes, the temperature is able to reach the target temperature with \(\pm 1^{\circ} \mathrm{C}\) inaccuracy and exceed approx. \(10^{\circ} \mathrm{C}\) of the target temperature.


Example 2: Due to that the temperature once exceeds the target temperature, we modify the heating environment into "fast heating environment" (D13 = K16). The results are shown in the diagram below. From the diagram below, we see that though the temperature no longer exceeds the target temperature, it still needs to take more than 1 hour and 15 minutes to reach the target temperature with \(\pm 1^{\circ} \mathrm{C}\) inaccuracy. It seems that we have chosen the right environment, but the sampling time is too long, resulting in the extension of heating time.


Example 3: To speed up the speed to reach the target temperature, we correct the sampling time as 4 seconds (D12 = K40, D30 \(=\mathrm{K} 4,000\) ). The results are shown in the diagram below.
From the diagram below, we see that the overall control time has been shortened as 37 minutes. Therefore, we find out that modifying the sampling time can speed up the time for reaching the target temperature.


Example 4: To see if we can reach the target temperature faster, we modify the sampling time frim example 3 into 2 seconds \((D 12=K 20, D 30=K 2,000)\). The results are shown in the diagram below.

From the diagram below, we see that the sampling time that is too short will cause the control system to become too sensitive and lead to up and down fluctuations.

\begin{tabular}{|c||c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{2}{|c|}{ Function } \\
\hline 146 & CVM & & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D \\
& & Valve Control & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & & H & Kn & X & KnY & & M & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{CVM: 7 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{11}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & E & & SS & SA & S & X & SC & EH & SV & \[
\begin{array}{|l|l}
\text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & S & & A & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Target time of valve (absolute position)
\(\mathbf{S}_{\mathbf{2}}\) : Time from fully-closed to fully-open of valve (destination)
D: Output device

\section*{Explanations:}
1. \(\mathbf{S}_{1}\) occupies 3 consecutive registers when in use. \(\mathbf{S}_{1}+0\) are for the user to store the designated value; \(\mathbf{S}_{1}+1\) (the current position of the valve) and \(\mathbf{S}_{1}+2\) are for storing the parameters recorded in the instruction and please DO NOT use and alter these two registers.
2. D occupies 2 consecutive output devices when in use. \(\mathbf{D}+0\) is the "open" contact and \(\mathbf{D}+1\) is the "close" contact.
3. This instruction only supports EH2/SV/EH3/SV2 and does not support EH.
4. The unit of time: 0.1 second. When the scan time of the program exceeds 0.1 second, DO NOT use this instruction to adjust the position of the valve.
5. Frequency of the output device: 10 Hz .
6. When the time of \(\mathbf{S}_{1}+0>\) the fully-opened time set in \(\mathbf{S}_{\mathbf{2}}, \mathbf{D}+0\) will keep being On and \(\mathbf{D}+1\) being Off. When the time of \(\mathbf{S}_{1}+0<0, \mathbf{D}+0\) will keep being Off and \(\mathbf{D}+1\) being On.
7. When the instruction is enabled, the instruction will start to control the valve from " 0 " time position. Therefore, if the user cannot be sure whether the valve is at " 0 " before executing the instruction, please designate \(\mathbf{S}_{1}+0\) as less than 0 and execute the instruction for \(\mathbf{S}_{\mathbf{2}}\) (time) before sending in the correct target control time.

\section*{Program Example 1:}
1. The control valve

2. Definitions of the control valve:
a) When \(Y 0\) and \(Y 1=O f f:\) No valve action
b) When \(\mathrm{Y} 0=\mathrm{On}\) and \(\mathrm{Y} 1=\mathrm{Off}\) : Valve "open"
c) When \(\mathrm{Y} 0=\mathrm{Off}\) and \(\mathrm{Y} 1=\mathrm{On}\) : Valve "closed"
d) When Y 0 and \(\mathrm{Y} 1=\mathrm{On}\) : The action is prohibited.
3. Timing diagram and program of the control:

\begin{tabular}{|c|c|c|c|c|}
\hline MO & CVM & D0 & K50 & Y0 \\
\hline
\end{tabular}
4. Control phases:
1) Phase (1): When \(M 0=O n, D 0=K 40\) refers to the valve shall be open \((Y 0=O n, Y 1=O f f)\) till the position of 4 seconds.
2) Phase (2): Change the position of the valve and \(D 0=K 20\). Due to that the previous position was at 4 seconds, the valve shall be closed \((Y 0=O f f, Y 1=O n)\) for 2 seconds, moving the valve to the position of 2 seconds.
3) Phase (3): Change the position of the valve and \(D 0=K 30\). Due to that the previous position was at 2 seconds, the valve shall be open \((\mathrm{YO}=\mathrm{On}, \mathrm{Y} 1=\mathrm{Off})\) for 1 second, moving the valve to the position of 3 seconds.
4) Phase (4): Change the position of the valve and \(D 0=K 10\). Due to that the previous position was at 2 seconds, the valve shall be closed \((\mathrm{Y0}=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On})\) for 2 seconds, moving the valve to the position of 1 second.
5) Phase (5): Switch off \(X 0\) and no actions at the valve ( \(\mathrm{YO}=\mathrm{Off}, \mathrm{Y} 1=\mathrm{Off}\) ).

\section*{Program Example 2:}
1. Timing diagram and program of the control:

2. Control phases:
1) Phase (1): When \(M 0=O n\), due to that we are not sure about there the valve is, set \(D 0=K-1\) to deliberately close the valve \((\mathrm{Y} 0=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On})\) for 5 seconds and make sure the valve is at the position of 0 second before moving on to the next step.
2) Phase (2): When \(\mathrm{TO}=\mathrm{On}\), allow \(\mathrm{DO}=\mathrm{K} 40\) to start is action. Open the valve \((\mathrm{YO}=\mathrm{On}, \mathrm{Y} 1=\mathrm{Off})\) for 4 seconds, moving the valve to the position of 4 seconds.
3) Phase (3): Change the position of the valve and \(D 0=K 10\). Due to that the previous position was at 4 seconds, the valve shall be closed \((\mathrm{YO}=\mathrm{Off}, \mathrm{Y} 1=\mathrm{On})\) for 3 seconds, moving the valve to the position of 1 second.
4) Phase (4): Switch off \(M 0\) and the valve will no longer move ( \(\mathrm{YO}=\mathrm{Off}, \mathrm{Y} 1=\mathrm{Off}\) ).
\begin{tabular}{|c|c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 147 & D & SWAP & P & S & Byte Swap & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & KnX & & KnY & Kn & & Kn & & T & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{SWAP, SWAPP: 3 steps DSWAP, DSWAPP: 5 steps}} \\
\hline S & & & & & & & & & & & * & & & * & & * & * & * & * & * & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & S & & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & S & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}

S: Device for swapping 8 high/low byte.

\section*{Explanations:}
1. If \(\mathbf{D}\) is used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. As 16 -bit instruction: the contents in the 8 high bytes and 8 low bytes are swapped.
4. As 32-bit instruction: the 8 high bytes and 8 low bytes in the two registers swap with each other respectively.
5. This instruction adopts pulse execution instructions (SWAPP, DSWAPP).

\section*{Program Example 1:}

When \(\mathrm{XO}=\mathrm{On}\), the high 8 bytes and low 8 bytes in DO will swap with each other.


D0


\section*{Program Example 2:}

When \(\mathrm{X0}=\mathrm{On}\), the high 8 bytes and low 8 bytes in D11 will swap with each other and the high 8 bytes and low 8 bytes in D10 will swap with each other.

\begin{tabular}{|c||c|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 148 & D & MEMR & P & m & D & n & Read File Register
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & Kn & & KnY & \multicolumn{2}{|l|}{KnM} & KnS & \multicolumn{2}{|l|}{T} & C & \multirow[t]{2}{*}{D} & \multirow[t]{2}{*}{E} & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{MEMR, MEMRP: 7 steps DMEMR, DMEMRP: 13 steps}} \\
\hline m & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l} 
EH3 \\
SV2 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{m}\) : Address in the file register to be read
D: Device for storing the read data (starting from the designated \(D\) )
n : Number of data read at a time

\section*{Explanations:}
1. Range of \(\mathbf{m}: ~ K 0 ~ K 1,599\) (SA/SX/SC); K0 ~ K9,999 (EH/EH3); K0~49999 (EH3 V1.4/SV2 V1.2 (and above))
2. Range of D: D2000 ~ D4999 (SA/SXISC); D2000 ~ D9999 (SX V3.0 and above); D2000 ~ D9999 (EH); D2000~D11999 (EH3/SV2)
3. Range of \(\mathbf{n}\) : For 16-bit instruction K1 ~ K1,600 (SA/SXISC), K1 ~ K8,000 (EH/EH3/SV2); For 32-bit instruction K1 ~ K800 (SA/SX/SC), K1 ~ K4,000 (EH/EH3/SV2)
4. See the specifications of each model for their range of use.
5. Flag: M1101. See explanations below.
6. SA/SX/SC/EH/EH2/SV/EH3/SV2 uses this instruction to read the data in file registers and store them into data registers.
7. SA/SX/SC offers 1,600 16-bit file registers.
8. \(\mathbf{m}\) and \(\mathbf{n}\) of SA/SX/SC do not support \(E\) and \(F\) index register modification.
9. EH/EH2/SV/EH3/SV2 is equipped with 10,000 16-bit file registers (number 0~number 9999). EH3 V1.40 abd above/SV2 V1.20 and above are equipped with 50,000 file registers. The 40,000 file registers added are number 10,000~number 49,999. The 40,000 file registers are stored in the flash ROM. It is suggested that data should be written into the 40,000 file registers by means of WPLSoft or ISPSoft.
10. If \(\mathbf{m}, \mathbf{D}\) and \(\mathbf{n}\) fall without their range, operation error will occur. M1067, M1068 \(=\) On and D1067 will record the error code H'0E1A.

\section*{Program Example 1:}
1. The 16 -bit instruction MEMR reads 100 data at address 10 in the file register and store the read data in register D starting from D2000.
2. When \(\mathrm{XO}=\mathrm{On}\), the instruction will be executed. When \(\mathrm{XO}=\mathrm{Off}\), the instruction will not be executed and the previously read data will remain unchanged.
\begin{tabular}{|l|l|l|l|l|}
\hline X0 & MEMR & K10 & D2000 & K100 \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. The 32-bit instruction DMEMR reads 100 data at address 20 in the file register and store the read data in register D starting from D3000.
2. When \(X 0=O n\), the instruction will be executed. When \(X O=O f f\), the instruction will not be executed and the previously read data will remain unchanged.
\begin{tabular}{|c|c|c|c|c|} 
X0 & DMEMR & K20 & D3000 & K100 \\
\hline
\end{tabular}
\begin{tabular}{|l||l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 149 & D & MEMW & P & S & m & n & Write File Register
\end{tabular}


\section*{Operands:}
\(\mathbf{S}\) : Device for storing the written data (starting from the designated D)
\(\mathbf{m}\) : Address in the file register to be written
n : Number of data to be written at a time

\section*{Explanations:}
1. Range of S: D2000 ~ D4999 (SA/SX/SC); D2000 ~ D9999 (SX V3.0 and above); D2000 ~ D9999 (EH/EH2/SV); D2000~D11999 (EH3/SV2)
2. Range of \(\mathbf{m}: K 0 \sim K 1,599\) (SA/SX/SC); K0 ~K9,999 (EH/EH2/SV); K0 ~K49999 (EH3/SV2)
3. Range of \(\mathbf{n}\) : For 16-bit instruction K1 ~ K1,600 (SA/SX/SC), K1 ~ K8,000 (EH/EH3/SV2); For 32-bit instruction K1 ~ K800 (SA/SX/SC), K1 ~ K4,000 (EH/EH3/SV2)
4. See the specifications of each model for their range of use.
5. Flag: M1101. See explanations below.
6. SA/SX/SC/EH/EH2/SV/EH3/SV2 uses this instruction to read the data in data registers and write them into file registers.
7. SA/SX/SC offers 1,600 16-bit file registers.
8. \(\mathbf{m}\) and \(\mathbf{n}\) of SA/SXISC do not suppot \(E\) and \(F\) index register modification.
9. \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2\) is equipped with 10,000 16-bit file registers (number 0~number 9999). EH3 V1. 40 abd above/SV2 V1.20 and above are equipped with 50,000 file registers. The 40,000 file registers added are number 10,000~number 49,999. The 40,000 file registers are stored in the flash ROM. It is suggested that data should be written into the 40,000 file registers by means of WPLSoft or ISPSoft.
10. A DVP-EH3/SV2 series PLC whose version is 1.86 (or above) supports the use of MEMW to write data into the file registers. (DMEMW is not supported. If a memory card is installed, MEMW is not supported.) The number of times users can write data into the file registers should be less than 100000. The writing of data can not be executed continuously, and only one MEMW instruction can be enabled in a scan cycle.
11. \(\mathbf{m}\) should be a value in the table below. (The value is an unsigned value. It is suggested that users should use a hexadecimal value.) \(\mathbf{n}\) should represent 2048 words. If one of the two conditions is not met, data will not written into the PLC, and an operation error will occur. There are 1088 words \((48912 \sim 49999)\) in section 20 , but \(\mathbf{n}\) still must be 2048. The PLC will prevent the writing of data from exceeding the range.
\begin{tabular}{|c|c|c|c|}
\hline Section number & File register nunmber & Section number & File register nunmber \\
\hline 1 & K10000 \((\mathrm{H} 2710)\) & 2 & K12048 \((\mathrm{H} 2 \mathrm{~F} 10)\) \\
\hline 3 & K14096 \((\mathrm{H} 3710)\) & 4 & K16144 \((\mathrm{H} 3 \mathrm{~F} 10)\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Section number & File register nunmber & Section number & File register nunmber \\
\hline 5 & K18192 (H4710) & 6 & K20240 (H4F10) \\
\hline 7 & K22288 (H5710) & 8 & K24336 (H5F10) \\
\hline 9 & K26384 (H6710) & 10 & K28432 (H6F10) \\
\hline 11 & K30480 (H7710) & 12 & K32528 (H7F10) \\
\hline 13 & K34576 (H8710) & 14 & K36624 (H8F10) \\
\hline 15 & K38672 (H9710) & 16 & K40720 (H9F10) \\
\hline 17 & K42768 (HA710) & 18 & K44816 (HAF10) \\
\hline 19 & K46864 (HB710) & 20 & K48912 (HBF10) \\
\hline
\end{tabular}
12. It takes about 84 milliseconds for 2048 words to be written into the file registers 10000~49999. It is suggested that the writing of data should be executed when the PLC does not need to operate rapidly (including executing external interrupts).
13. If \(\mathbf{S}, \mathbf{m}\) and \(\mathbf{n}\) fall without their range, operation error will occur. M1067, M1068 \(=\) On and D1067 will record the error code H'0E1A.

\section*{Program Example:}
1. When \(\mathrm{X0}=\mathrm{On}\), the 32-bit instruction DMEMW writes 100 32-bit data starting from D2001 and D2000 into address \(0 \sim 199\) in the file register.
2. When \(\mathrm{XO}=\mathrm{On}\), the instruction will be executed. When \(\mathrm{XO}=\mathrm{Off}\), the instruction will not be executed and the previously data written in will remain unchanged.
\begin{tabular}{|c|c|c|c|c|}
\hline X0 & DMEMW & D2000 & K0 & K100 \\
\hline
\end{tabular}

\section*{File Register:}
1. EH/EH2/SV/EH3/SV2: When the PLC is powered, it will decide whether to automatically send the data in the file register to the designated data register by M1101 (whether to enable the function of file register), D1101 (start address in file register K0 ~ K9,999), D1102 (number of data to be read in file register K1 ~ k8,000), and D1103 (device for storing read data, starting from designated D, K2,000 ~ K9,999).
2. In EH/EH2/SV/EH3/SV2, the reading of data from file register to data register D will not be executed if D1101 < \(0, \mathrm{D} 1101\) > K9,999, D1103 < K2,000 or D1103 > K9,999.
3. SA/SXISC: When the PLC is powered, it will decide whether to automatically send the data in the file register to the designated data register by M1101 (whether to enable the function of file register), D1101 (start address in file register K0 ~ K1,599), D1102 (number of data to be read in file register K1~k1,600), and D1103 (device for storing read data, starting from designated D, K2,000 ~ K4,999).
4. In SA/SX/SC, the reading of data from file register to data register D will not be executed if D1101 < 0, D1101 > K1,599, D1103 < K2,000 or D1103 > K4,999.
5. When the reading of data from file register to data register D starts, PLC will stop the reading if the address of file register or data register exceed their range.
6. In PLC program, only API 148 MEMR and API 149 MEMW can be used to read or write the file register. See
2.8.3 for more information on file registers.
7. File registers do not have actual addresses in it. Reading and writing of file registers can only be done through API 148 MEMR, API 149 MEMW or the software WPLSoft or ISPSoft.
8. If the address in the file register to be read exceeds its range, the read value will be 0 .
9. Special relays of file register and other relevant special registers:
\begin{tabular}{|c|c|}
\hline Flag & Function \\
\hline M1101 & Whether to enable the function of file register; latched; default = off \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Special D & \multicolumn{1}{c|}{ Function } \\
\hline D1101 & \begin{tabular}{l} 
Start address in file register. SA/SX/SC: K0 ~ K1,599; \\
EH/EH2/SV/EH3/SV2: K0 ~ K9,999; latched; default = 0
\end{tabular} \\
\hline D1102 & \begin{tabular}{l} 
Number of data to be read in file register. SA/SX/SC: K1 ~ K1,600; \\
EH/EH2/SV/EH3/SV2: K1 ~ K8,000; latched; default = 0
\end{tabular} \\
\hline D1103 & \begin{tabular}{l} 
Device for storing read data, starting from designated D. SA/SX/SC: \\
K2,000 ~ K4,999 (SX V3.0 and above: K2,000 ~ K9,999); \\
EH/EH2/SV/EH3/SV2: K2,000 ~ K9,999; latched; default = 2,000
\end{tabular} \\
\hline
\end{tabular}

\section*{MEMO}
\begin{tabular}{|c|c|cccc|c|}
\hline API & Mnemonic & \multicolumn{3}{|c|}{ Operands } & & Function \\
\hline 150 & MODRW & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{S}_{3}\) & \(\mathbf{S}\) & \\
& & \(\mathbf{n}\) & Read/Write MODBUS Data \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & & E & F & \multicolumn{9}{|l|}{MODRW: 11 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline S & & & & & & & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & S & S & E & H & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Address of communication device
\(\mathbf{S}_{2}\) : Function code
\(\mathbf{S}_{3}\) : Device address of data to be read/written

S: Register for storing read/written data (source or destination)
n: Length of read/written data

\section*{Explanations:}
1. The content of \(\mathrm{S}_{2}\) shall only be: \(\mathrm{K} 2(\mathrm{H} 02), \mathrm{K} 3(\mathrm{H} 03), \mathrm{K} 4(\mathrm{H} 04), \mathrm{K} 5(\mathrm{H} 05), \mathrm{K} 6(\mathrm{H} 06), \mathrm{K} 15(\mathrm{H} 0 \mathrm{~F}), \mathrm{K} 16(\mathrm{H} 10)\), K23(H17).
2. ES/EX/SS V.4.9 (and above) support the continuous execution instruction (MODRW). Other versions do not support this instruction.
3. ES/EXISS series MPU does not support E, F index register modification.
4. The instruction MODRW supports COM1 (RS-232), COM2 (RS-485), and COM3 (a communication card). (COM1 only supports DVP-EH3/SV2 series PLCs. COM3 in DVP-EH3 series PLCs is only applicable to the communication cards DVP-F232 and DVP-F485.)
5. Flags: M1120 ~ M1131, M1140 ~ M1143. See remarks for more details.
6. \(\mathbf{S}_{1}\) : Address of communication device; \(\mathbf{S}_{2}\) : Function code; \(\mathbf{S}_{3}, \mathbf{S}, \mathbf{n}\) : Their functions vary with the function code used. (Please refer to the description below for more information.)
7. \(\mathbf{S}_{\mathbf{1}}\) : must be in the range of K 0 to K 254 . If the function code \(K 2 / K 3 / K 4 / K 23\) is used, the address specified can not be KO.
8. \(\mathbf{S}_{2}\) : Funcation code. Only these function codes are available currently; other function codes are still not executable. See program examples for more information.
\begin{tabular}{|l|l|l|}
\hline Code & \multicolumn{1}{|c|}{ Function } & \multicolumn{1}{c|}{ Applicable models } \\
\hline H02 & Reading several bit devices & \begin{tabular}{l} 
SA/SX V1.8, SC V1.6 and EH2/SV/EH3/SV2 V V1.2 and \\
later versions
\end{tabular} \\
\hline H03 & \begin{tabular}{l} 
Reading several word \\
devices
\end{tabular} & ES/SA/EH series MPU \\
\hline H04 & \begin{tabular}{l} 
Reading several word \\
devices (read-only devices)
\end{tabular} & \begin{tabular}{l} 
EH2 V2.2, SV V2.4, EH3/SV2 V1.0, SX V3.0, and later \\
versions
\end{tabular} \\
\hline H05 & \begin{tabular}{l} 
Writing a state in a single bit \\
device
\end{tabular} & EH2/SV/EH3/SV2 V1.4, SX V3.0, and later versions \\
\hline H06 & \begin{tabular}{l} 
Writing data in a single word \\
device
\end{tabular} & ES/SA/EH series MPU \\
\hline H0F & Writing states in bit devices & \begin{tabular}{l} 
SA/SX V1.8, SC V1.6 and EH2/SV/EH3/SV2 V1.2 and later \\
versions
\end{tabular} \\
\hline H10 & Writing data in word devices & ES/SA/EH series MPU \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Code & \multicolumn{1}{|c|}{ Function } & Applicable models \\
\hline H17 & \begin{tabular}{l} 
Reading word devices and \\
writing data in word devices
\end{tabular} & EH3 V1.4, SV2 V1.2, SX V3.0, and later versions \\
\hline
\end{tabular}
9. \(\mathbf{S}_{3}\) : Device address of data to be read/written. The device address inside the communication device. If the address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code, and an error flag will be On. If the function code H 17 is used, \(\mathbf{S}_{3}\) can only be a \(D\) device, \(S_{3}\) is the device from which data will be read, and \(S_{3}+1\) is the device into which data will be written.
- Error flags and error codes for COM1 and COM2:
\begin{tabular}{|c|c|c|c|}
\hline PLC COM & COM1 & COM2 & COM3 \\
\hline Error flag & M1315 & M1141 & M1319 \\
\hline Error code & D1250 & D1130 & D1253 \\
\hline
\end{tabular}
- Exampel: 8000 H is an illegal address in a DVP series PLC. If a communication is sent through COM2, M1141 will be On, and the value in D1130 will be 2. If a communication is sent through COM1, M1315 will be On, and the value in D1250 will be 3. If a communication is sent through COM3, M1319 will be On, and the value in D1253 will be 3 .
10. \(\mathbf{S}\) : Register for storing read/written data. The user sets up a register and stores the data to be written in the register in advance. The register can be register for storing the read data. If the function code K23 is used, \(\mathbf{S}\) is a \(D\) device index which indicates the device in which the communication data string received will be stored, and \(\mathbf{S}+1\) is a \(\mathbf{D}\) device index which indicates the device in which the data which will be written is stored. If a reading function code ( \(\mathrm{K} 2, \mathrm{~K} 3\), K 4 , or K 23 ) is sent through COM 2 , the communication data string received will be stored in the register indicated by \(\mathbf{S}\), and the conversion data will be stored in D1296~D1311. Please refer to program example 1 and program example 3 for more information. If a reading function code (K2, K3, K4, or K23) is sent through COM1 or COM3, the conversion data will be stored in the register indicated by \(\mathbf{S}\). Please refer to program example 2 and program example 4 for more information. Users can refer to program example 13 and program example 14 for more information about the function code K23. If COM2 is used, the communication data which will be sent is stored in D1256~D1295.
11. \(\mathbf{n}\) : Length of read/written data.

In Modbus function code H05 (force On/Off), n=0: Off, n=1: On.
In Modbus function code H02, H03, H04, H0F, H10, H17 (data length), the range \(=\mathrm{K} 1 \sim \mathrm{Km}\). See the table below for m upon different models and communication modes, in which the unit of HO 2 and HOF is a bit, and the unit of \(\mathrm{H} 03, \mathrm{H} 04, \mathrm{H} 10\), and H 17 is a word. If the function code H 17 is used, \(\mathbf{n}\) can only be a D device, \(\mathbf{n}\) represents the number of data which will be read, and \(\mathbf{n}+1\) represents the number of data which will be written.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Communication \\
mode
\end{tabular} & Model & H 02 & H 03 & H 04 & \(\mathrm{H} 0 F\) & H 10 & H 17 \\
\hline \begin{tabular}{c} 
COM1 \\
RTU Mode \\
(M1139 On)
\end{tabular} & EH3 & SV2 & K256 & K24 & K24 & K256 & K24
\end{tabular} K 24
\(\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Communication } \\ \text { mode }\end{array} & \text { Model } & \mathrm{H} 02 & \mathrm{H} 03 & \mathrm{H} 04 & \mathrm{H} 0 \mathrm{~F} & \mathrm{H} 10 & \mathrm{H} 17 \\ \hline \begin{array}{c}\text { COM1 } \\ \text { ASCII Mode } \\ \text { (M1139 Off) }\end{array} & \text { EH3 } & \text { SV2 } & \text { K256 } & \mathrm{K} 24 & \mathrm{~K} 24 & \mathrm{~K} 256 & \mathrm{~K} 24\end{array}\right]\) K24
12. The functions of \(\mathbf{S}_{3}, \mathbf{S}\), and \(\mathbf{n}\) vary with the function code used.
\begin{tabular}{|c|c|c|c|}
\hline Function code & \(\mathrm{S}_{3}\) & S & n \\
\hline H02 & Address from which data is read & Register where data read is stored & Number of data read \\
\hline H03 & Address from which data is read & Register where data read is stored & Number of data read \\
\hline H04 & Address from which data is read & Register where data read is stored & Number of data read \\
\hline H05 & Address into which data is written & None & State value written \\
\hline H06 & Address into which data is written & Data register where data written is stored & None \\
\hline H0F & Address into which data is written & Data register where data written is stored & Number of data written \\
\hline H10 & Address into which data is written & Data register where data written is stored & Number of data written \\
\hline H17 & \(\mathrm{S}_{3}\) : Address from which data is read \(\mathbf{S}_{3}+1\) :Address into which data is written & \begin{tabular}{l}
\(\mathbf{S}\) : Register where data read is stored \\
\(\mathbf{S}+1\) : Data register where data written is stored
\end{tabular} & n : Number of data read \(\mathbf{n}+1\) : Number of data written \\
\hline
\end{tabular}
13. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.
14. Rising-edge contact (LDP, ANDP, ORP) and falling-edge contact (LDF, ANDF, ORF) can not be used as drive contact of MODRW (Function code H02, H03, H04, H17) instruction, otherwise the data stored in the receiving registers will be incorrect.
15. MODRW instruction determines the COM port according to the communication request. The COM port determination is made following the order: \(\mathrm{COM} 1 \rightarrow \mathrm{COM} 3 \rightarrow\) COM2. Therefore, please insert every MODRW instruction right after the sending request instruction for avoiding errors on the target location for data access.
16. For detailed explanation of the associated flags and special registers, please refer to the remarks on API 80 RS instruction.

\section*{Program Example 1:}
1. Sending the function code \(\mathrm{K} 2(\mathrm{H} 02)\) through \(\mathrm{COM} 2(\mathrm{RS}-485)\) : Read many bit devices. The read communication code will be placed in the register designated by the \(4^{\text {th }}\) operand of the instruction. In the example below, K6 refers to the data length (bit). Assume \(\mathrm{Y} 2=\mathrm{Y} 4=\mathrm{Y} 5=\mathrm{Y} 11=\mathrm{Y} 14=\) On for \(\mathrm{Y} 0 \sim \mathrm{Y} 16\) status.

2. ASCII Mode: When PLC1 is connected to PLC2

When X0 = On, function code 02 of MODRW instrruction will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 0205000010 E8"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 02023412 B5"
Registers for PLC1 sent data (sending messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 Low & '0' & 30 H & \multirow[t]{2}{*}{\begin{tabular}{l}
ADR 1 \\
ADR 0
\end{tabular}} & \multirow[b]{2}{*}{Address of connected device: ADR (1,0)} \\
\hline D1256 High & '1' & 31 H & & \\
\hline D1257 Low & '0' & 30 H & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CMD } 1 \\
& \text { CMD } 0
\end{aligned}
\]} & \multirow[t]{2}{*}{Command code: CMD \((1,0)\)} \\
\hline D1257 High & '2' & 32 H & & \\
\hline D1258 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting Data Address}} \\
\hline D1258 High & '5' & 35 H & & \\
\hline D1259 Low & '0' & 30 H & & \\
\hline D1259 High & '0' & 30 H & & \\
\hline D1260 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Number of Data (counted by bits)}} \\
\hline D1260 High & '0' & 30 H & & \\
\hline D1261 Low & '1' & 31 H & & \\
\hline D1261 High & '0' & 30 H & & \\
\hline D1262 Low & 'E' & 45 H & LRC CHK 1 & Error checksum: LRC CHK (0,1) \\
\hline D1262 High & '8' & 38 H & LRC CHK 0 & Error checksum. LRC CHK (0,1) \\
\hline
\end{tabular}

Register (D0) for PLC1 received data (responding messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & & Explanation \\
\hline D0 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { ADR } 1 \\
& \text { ADR } 0
\end{aligned}
\]}} \\
\hline D0 High & '1' & 31 H & & \\
\hline D1 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
CMD 1 \\
CMD 0
\end{tabular}}} \\
\hline D1 High & '2' & 33 H & & \\
\hline D2 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Number of data (counted by bytes)}} \\
\hline D2 High & '2' & 32 H & & \\
\hline D3 Low & '3' & 33 H & \multirow[t]{4}{*}{Content in address 0500 ~ 0505} & \multirow[t]{4}{*}{\begin{tabular}{l}
PLC automatically convert ASCII words and store the result in D1296 \(=\mathrm{H} 1234\) \\
(b0 ~ b5 are valid)
\end{tabular}} \\
\hline D3 High & '4' & 34 H & & \\
\hline D4 Low & '1' & 31 H & & \\
\hline D4 High & '2' & 32 H & & \\
\hline D5 Low & 'B' & 52 H & \multicolumn{2}{|l|}{LRC CHK 1} \\
\hline D5 High & '5' & 35 H & \multicolumn{2}{|l|}{LRC CHK 0} \\
\hline
\end{tabular}
3. RTU Mode: When PLC1 is connected to PLC2

When X10 = On, function code 02 of MODRW instruction will start to be executed.

\section*{PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 020500001079 0A"}

PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 02023412 2F 75"
Registers for PLC sent data (sending messages):
\begin{tabular}{|l|r|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1256 low & 1 H & Address \\
\hline D1257 low & 2 H & Function \\
\hline D1258 low & 5 H & \multirow{2}{*}{ Starting data address } \\
\hline D1259 low & 0 H & \\
\hline D1260 low & 0 H & \multirow{2}{*}{ Number of data (counted by words) } \\
\hline D1261 low & 10 H & \\
\hline D1262 low & 79 H & \multicolumn{1}{l}{ CRC CHK Low } \\
\hline D1263 low & 0 H & CRC CHK High \\
\hline
\end{tabular}

Register (D0) for PLC received data (responding messages):
\begin{tabular}{|l|r|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \multicolumn{2}{|c|}{ Explanation } \\
\hline D0 low & 01 H & Address & \\
\hline D1 low & 02 H & Function & \begin{tabular}{l} 
PLC automatically stores the value in \\
D1296=H1234 (b0 \(\sim\) b5 are valid)
\end{tabular} \\
\hline D2 low & 02 H & Number of data (byte) & \\
\hline D3 low & 34 H & Content in address 0500H & \\
\hline D4 low & 12 H & & \\
\hline D5 low & 2 F H & CRC CHK Low & \\
\hline D6 low & 75 H & CRC CHK High & \\
\hline
\end{tabular}

\section*{Program Example 2: COM1(RS-232) / COM3(RS-485), Function Code H02}
1. Function code K2 (H02): read multiple bit devices. Up to 64 bits can be read.
2. PLC1 connects to PLC2: (M1320 = OFF, ASCII mode), ( \(\mathrm{M} 1320=\mathrm{ON}, \mathrm{RTU}\) mode \()\)
3. For both ASCII and RTU modes, PLC COM1/COM3 only stores the received data in registers starting from S, and will not store the data to be sent. The stored data can be transformed and moved by using DTM instruction for applications of other purposes.
4. Take the connection between PLC1 (PLC COM3) and PLC2(PLC COM1) for example, the tables below explains the status when PLC1 reads Y0~Y17 of PLC2
- If PLC1 applies COM1 for communication, the below program can be usable by changing:
1. D1109 \(\rightarrow\) D1036: communication protocol
2. \(\mathrm{M} 1136 \rightarrow \mathrm{M} 1138\) : retain communication setting
3. D1252 \(\rightarrow\) D1249: Set value for data receiving timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139:\) ASCII/RTU mode selection
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : sending request
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : receiving completed flag

- ASCII mode (COM3: M1320 = OFF, COM1: M1139 = OFF):

When X0 = ON, MODRW instruction executes the function specified by Function Code H02
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 0205000010 E8"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 02023412 B5"
PLC1 data receiving register D0
\begin{tabular}{|c|c|l|}
\hline Register & Data & \multicolumn{1}{|c|}{ Descriptions } \\
\hline D0 & 1234 H & \begin{tabular}{l} 
PLC converts the ASCII data in address 0500H~0515H and \\
stores the converted data automatically.
\end{tabular} \\
\hline
\end{tabular}

Analysis of the read status of PLC2 Y0~Y17: 1234H
\begin{tabular}{|c|c|c|c|c|c|c|l|}
\hline Device & Status & Device & Status & Device & Status & Device & Status \\
\hline Y0 & OFF & Y1 & OFF & Y2 & ON & Y3 & OFF \\
\hline Y4 & ON & Y5 & ON & Y6 & OFF & Y7 & OFF \\
\hline Y10 & OFF & Y11 & ON & Y12 & OFF & Y13 & OFF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & Status & Device & Status & Device & Status & Device & Status \\
\hline Y14 & ON & Y15 & OFF & Y16 & OFF & Y17 & OFF \\
\hline
\end{tabular}
- RTU mode (COM3: M1320 = ON, COM1: M1139 = ON):

When X0 = ON, MODRW instruction executes the function specified by Function Code H02 PLC1 A PLC2, PLC1 sends: "01 020500001079 0A"

PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 02023412 2F 75"
PLC data receiving register:
\begin{tabular}{|c|c|l|}
\hline Register & Data & \multicolumn{1}{c|}{ Descriptions } \\
\hline D0 & 1234 H & \begin{tabular}{l} 
PLC converts the data in address 0500H \(\sim 0515 \mathrm{H}\) and stores the \\
converted data automatically.
\end{tabular} \\
\hline
\end{tabular}

Analysis of the read status of PLC2 Y0~Y17: 1234H
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Device & Status & Device & Status & Device & Status & Device & Status \\
\hline Y0 & OFF & Y1 & OFF & Y2 & ON & Y3 & OFF \\
\hline Y4 & ON & Y5 & ON & Y6 & OFF & Y7 & OFF \\
\hline Y10 & OFF & Y11 & On & Y12 & OFF & Y13 & OFF \\
\hline Y14 & ON & Y15 & OFF & Y16 & OFF & Y17 & OFF \\
\hline
\end{tabular}
5. Relative flags and data registers when COM1 / COM2 / COM3 works as Master:
\begin{tabular}{|c|c|c|c|l|}
\hline & COM2 & COM1 & COM3 & \multicolumn{1}{|c|}{ Function } \\
\hline \multirow{4}{*}{\begin{tabular}{c} 
COM \\
setting
\end{tabular}} & M1120 & M1138 & M1136 & Retain communication setting \\
\cline { 2 - 6 } & M1143 & M1139 & M1320 & ASCII/RTU mode selection \\
\cline { 2 - 6 } & D1120 & D1036 & D1109 & Communication protocol \\
\cline { 2 - 6 } \begin{tabular}{c} 
Sending \\
request
\end{tabular} & D1121 & D1121 & D1255 & PLC communication address \\
\cline { 2 - 6 } & D1129 & D1249 & D1252 & Set value for data receiving timeout (ms) \\
\hline \multirow{5}{*}{\begin{tabular}{c} 
Receiving \\
completed
\end{tabular}} & M1127 & M1314 & M1318 & Data receiving completed \\
\hline \multirow{5}{*}{ Errors } & - & M1315 & M1319 & Data receiving error \\
\cline { 2 - 6 } & - & D1250 & D1253 & Communication error code \\
\cline { 2 - 6 } & M1129 & - & - & Receiving timeout \\
\cline { 2 - 6 } & M1140 & - & - & Data receiving error \\
\cline { 2 - 6 } & M1141 & - & - & \begin{tabular}{l} 
Parameter error. Exception Code is stored in \\
\\
\end{tabular}
\end{tabular}

\section*{Program Example 3:}
1. Sending the function code \(\mathrm{K} 3(\mathrm{HO3})\) through \(\mathrm{COM} 2(\mathrm{RS}-485)\) ( H 04 is used the same as H 03. ): For reading many data in register

When PLC is connected to VFD-S AC motor drive: M1143 = Off, in ASCII mode When PLC is connected to VFD-S AC motor drive: M1143 = On, in RTU mode
2. When in ASCII mode, the received data will be stored in the designated registers starting from DO in ASCII format and PLC will automatically convert the data into hex value and store them in special registers D1296 ~ D1311. When the conversion into hex value starts, M1131 will be On and turn Off when the conversion is completed.
3. If necessary, the user can move the hex values stored in D1296 ~ D1131 to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EX/SS do not function on the data in D1296 ~ D1311.
4. When in RTU mode, the received data will be stored in the designated registers starting from D0 in hex format.
5. When In ASCII mode or RTU mode, PLC will store the data to be sent in D1256 ~ D1295. If necessary, the user can move the data to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EXISS do not function on the data in D1256 ~ D1295.
6. The data sent back from AC motor drive are stored in the registers designated by the user. After the transmission is completed, PLC will auto-check if the received data are incorrect. M1140 will be On if there is an error.
7. If the device address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000H is illegal to VFD-S, M1141 will be On and D1130 = 2. See user manual of VFD-S for error codes.
8. After M1140 = On or M1141 = On, PLC will send another correct datum to AC motor drive. If the data sent back from AC motor drive is correct, M1140 and M1141 will be reset.

9. ASCII Mode: When PLC is connected to VFD-S AC motor drive.

PLC \(\Rightarrow\) VFD-S, PLC sends: "01 0321000006 D5"
VFD-S \(\Rightarrow\) PLC, PLC receives: "01 \(030 C 010017660000000001360000\) 3B"
Registers for sent data (sending messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 Low & '0' & 30 H & ADR 1 & \\
\hline D1256 High & '1' & 31 H & ADR 0 & Address of AC motor drive: ADR \((1,0)\) \\
\hline D1257 Low & '0' & 30 H & CMD 1 & Command code CMD (1,0) \\
\hline D1257 High & '3' & 33 H & CMD 0 & Command code. CMD (1,0) \\
\hline D1258 Low & '2' & 32 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting Data Address}} \\
\hline D1258 High & '1' & 31 H & & \\
\hline D1259 Low & '0' & 30 H & & \\
\hline D1259 High & '0' & 30 H & & \\
\hline D1260 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Number of Data (counted by words)}} \\
\hline D1260 High & '0' & 30 H & & \\
\hline D1261 Low & '0' & 30 H & & \\
\hline D1261 High & '6' & 36 H & & \\
\hline D1262 Low & 'D' & 44 H & \multirow[t]{2}{*}{\begin{tabular}{l}
LRC CHK 1 \\
LRC CHK 0
\end{tabular}} & \multirow[b]{2}{*}{Error checksum: LRC CHK \((0,1)\)} \\
\hline D1262 High & '5' & 35 H & & \\
\hline
\end{tabular}

Registers for received data D0 (responding messages)
\begin{tabular}{|l|c|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & \multicolumn{2}{|c|}{ DATA } & \\
\hline D0 Low & '0' & 30 H & ADR 1 \\
\hline D0 High & '1' & 31 H & ADR 0 \\
\hline D1 Low & '0' & 30 H & CMD 1 \\
\hline D1 High & '3' & 33 H & CMD 0 \\
\hline
\end{tabular}

\section*{9 Application Instructions API 150-199}
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & & Explanation \\
\hline D2 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Number of Data (counted by byte)}} \\
\hline D2 High & 'C' & 43 H & & \\
\hline D3 Low & '0' & 30 H & \multirow[b]{4}{*}{Content of address
\[
2100 \mathrm{H}
\]} & \multirow{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1296 \(=\mathrm{H} 0100\)} \\
\hline D3 High & '1' & 31 H & & \\
\hline D4 Low & '0' & 30 H & & \\
\hline D4 High & '0' & 30 H & & \\
\hline D5 Low & '1' & 31 H & \multirow[b]{4}{*}{Content of address
\[
2101 \mathrm{H}
\]} & \multirow{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1297 \(=\mathrm{H} 1766\)} \\
\hline D5 High & '7' & 37 H & & \\
\hline D6 Low & '6' & 36 H & & \\
\hline D6 High & '6' & 36 H & & \\
\hline D7 Low & '0' & 30 H & \multirow[t]{4}{*}{Content of address
\[
2102 \mathrm{H}
\]} & \multirow{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1298 \(=\mathrm{H} 0000\)} \\
\hline D7 High & '0' & 30 H & & \\
\hline D8 Low & '0' & 30 H & & \\
\hline D8 High & '0' & 30 H & & \\
\hline D9 Low & '0' & 30 H & \multirow[t]{4}{*}{Content of address 2103H} & \multirow{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1299 \(=\mathrm{H} 0000\)} \\
\hline D9 High & '0' & 30 H & & \\
\hline D10 Low & '0' & 30 H & & \\
\hline D10 High & '0' & 30 H & & \\
\hline D11 Low & '0' & 30 H & \multirow[t]{4}{*}{Content of address
\[
2104 \mathrm{H}
\]} & \multirow{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1300 \(=\mathrm{H} 0136\)} \\
\hline D11 High & '1' & 31 H & & \\
\hline D12 Low & '3' & 33 H & & \\
\hline D12 High & '6' & 36 H & & \\
\hline D13 Low & '0' & 30 H & \multirow[t]{4}{*}{Content of address 2105H} & \multirow{4}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1301 \(=\mathrm{H} 0000\)} \\
\hline D13 High & '0' & 30 H & & \\
\hline D14 Low & '0' & 30 H & & \\
\hline D14 High & '0' & 30 H & & \\
\hline D15 Low & '3' & 33 H & \multicolumn{2}{|l|}{LRC CHK 1} \\
\hline D15 High & 'B' & 42 H & \multicolumn{2}{|l|}{LRC CHK 0} \\
\hline
\end{tabular}
10. RTU Mode: When PLC is connected to VFD-S AC motor drive

PLC \(\Rightarrow\) VFD-S, PLC sends: "01 0321000006 CF F4"
VFD-S \(\Rightarrow\) PLC, PLC receives: "01 03 0C 00000503 0BB8 0BB8 0000 012D 8E C5"
Registers for sent data (sending messages)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1256 Low & 01 H & Address \\
\hline D1257 Low & 03 H & Function \\
\hline D1258 Low & 21 H & \multirow{2}{*}{ Starting Data Address } \\
\hline D1259 Low & 00 H & \\
\hline D1260 Low & 00 H & \multirow{2}{*}{ Number of Data (counted by words) } \\
\hline D1261 Low & 06 H & \\
\hline D1262 Low & CF H & CRC CHK Low \\
\hline D1263 Low & F4 H & CRC CHK High \\
\hline
\end{tabular}

Registers for received data D0 (responding messages)
\begin{tabular}{|c|c|c|c|}
\hline Register & DATA & & Explanation \\
\hline D0 Low & 01 H & \multicolumn{2}{|l|}{Address} \\
\hline D1 Low & 03 H & \multicolumn{2}{|l|}{Function} \\
\hline D2 Low & OC H & \multicolumn{2}{|l|}{Number of Data (byte)} \\
\hline D3 Low & 00 H & \multirow[t]{2}{*}{Content of address 2100H} & \multirow[t]{2}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1296 \(=\mathrm{H} 0000\)} \\
\hline D4 Low & 00 H & & \\
\hline D5 Low & 05 H & \multirow[t]{2}{*}{Content of address 2101H} & \multirow[t]{2}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1297 = H0503} \\
\hline D6 Low & 03 H & & \\
\hline D7 Low & OB H & \multirow[t]{2}{*}{Content of address 2102H} & \multirow[t]{2}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1298 \(=\) H0BB8} \\
\hline D8 Low & B8 H & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Register & DATA & & Explanation \\
\hline D9 Low & OB H & \multirow[t]{2}{*}{Content of address 2103H} & \multirow[t]{2}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1299 = H0BB8} \\
\hline D10 Low & B8 H & & \\
\hline D11 Low & 00 H & \multirow[t]{2}{*}{Content of address 2104H} & \multirow[t]{2}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1300 \(=\mathrm{H} 0000\)} \\
\hline D12 Low & 00 H & & \\
\hline D13 Low & 01 H & \multirow[t]{2}{*}{Content of address 2105H} & \multirow[t]{2}{*}{PLC automatically convert ASCII codes to numerals and store the numeral in D1301 \(=\) H012D} \\
\hline D14 Low & 2D H & & \\
\hline D15 Low & 8E H & \multicolumn{2}{|l|}{CRC CHK Low} \\
\hline D16 Low & C5 H & \multicolumn{2}{|l|}{CRC CHK High} \\
\hline
\end{tabular}

Program example 4: COM1(RS-232) / COM3(RS-485), Function Code H03 (The function code H04 is the same as the function code H03.)
1. Function code \(\mathrm{K} 3(\mathrm{H} 03)\) : read multiple word devices, up to 16 words can be read. For COM2 ASCII mode, only 8 words can be read.
2. PLC COM1 / COM3 stores the received data in registers starting from \(\mathbf{S}\), and the stored data can be transformed and moved by using DTM instruction for applications of other purposes.
3. Take the connection between PLC and VFD-B for example, the tables below explains the status when PLC reads VFD-B status. (M1320 = OFF, ASCII Mode ), (M1320 = ON, RTU Mode)
- If PLC applies COM1 for communication, the below program can be usable by changing:
1. D1109 \(\rightarrow\) D1036: communication protocol
2. M1136 \(\rightarrow\) M1138: retain communication setting
3. D1252 \(\rightarrow\) D1249: Set value for data receiving timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139:\) ASCII/RTU mode selection
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : sending request
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : receiving completed flag


\section*{9 Application Instructions API 150-199}
- ASCII mode (COM3: M1320 = OFF, COM1: M1139 = OFF):

When X0 = ON, MODRW instruction executes the function specified by Function Code H03
PLC \(\Rightarrow\) VFD-B, PLC sends: "01 0321000006 D5"
VFD-B \(\Rightarrow\) PLC, PLC receives: "01 03 0C 010017660000000001360000 3B"
Registers for received data (responding messages)
\begin{tabular}{|l|c|l|}
\hline Register & Data & \multicolumn{1}{|c|}{ Descriptions } \\
\hline D0 & 0100 H & \begin{tabular}{l} 
PLC converts ASCII codes in 2100 H and stores the converted \\
data automatically.
\end{tabular} \\
\hline D1 & 1766 H & \begin{tabular}{l} 
PLC converts ASCII codes in 2101 H and stores the converted \\
data automatically.
\end{tabular} \\
\hline D2 & 0000 H & \begin{tabular}{l} 
PLC converts ASCII codes in 2102 H and stores the converted \\
data automatically.
\end{tabular} \\
\hline D3 & 0000 H & \begin{tabular}{l} 
PLC converts ASCII codes in 2103 H and stores the converted \\
data automatically.
\end{tabular} \\
\hline D4 & 0136 H & \begin{tabular}{l} 
PLC converts ASCII codes in 2104 H and stores the converted \\
data automatically.
\end{tabular} \\
\hline D5 & 0000 H & \begin{tabular}{l} 
PLC converts ASCII codes in 2105 H and stores the converted \\
data automatically.
\end{tabular} \\
\hline
\end{tabular}
- RTU mode (COM3: M1320 = ON COM1: M1139 = ON):

When X0 = ON, MODRW instruction executes the function specified by Function Code H03 PLC \(\Rightarrow\) VFD-B, PLC sends: " 010321000006 CF F4"

VFD-B \(\Rightarrow\) PLC, PLC receives: "01 03 0C 00000503 0BB8 0BB8 0000 012D 8E C5"
Registers for received data (responding messages)
\begin{tabular}{|l|c|l|}
\hline Register & Data & \multicolumn{1}{|c|}{ Descriptions } \\
\hline D0 & 0000 H & \begin{tabular}{l} 
PLC converts data in 2100 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline D1 & 0503 H & \begin{tabular}{l} 
PLC converts data in 2101 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline D2 & 0 BB8 H & \begin{tabular}{l} 
PLC converts data in 2102 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline D3 & 0 BB8 H & \begin{tabular}{l} 
PLC converts data in 2103 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline D4 & 0136 H & \begin{tabular}{l} 
PLC converts data in 2104 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline D5 & 012 D H & \begin{tabular}{l} 
PLC converts data in 2105 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline
\end{tabular}

\section*{Program Example 5:}
1. Sending the function code \(\mathrm{K} 5(\mathrm{H} 05)\) through COM 2 (RS-485): Write status of single bit device. In the example below, Set K1 to bit On, K0 to bit Off.

2. ASCII Mode: When PLC1 is connected to PLC2

When \(M 0=O n\), function code 05 (bit On) of MODRW instruction will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 050500 FF00 F6"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 050500 FF00 F6"
Registers for PLC1 sent data (sending messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 low & '0' & 30 H & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { ADR } 1 \\
& \text { ADR } 0
\end{aligned}
\]} & \multirow[t]{2}{*}{Address of connected device: ADR \((1,0)\)} \\
\hline D1256 high & '1' & 31 H & & \\
\hline D1257 low & '0' & 30 H & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { CMD } 1 \\
& \text { CMD } 0 \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{Command code: CMD \((1,0)\)} \\
\hline D1257 high & '5' & 35 H & & \\
\hline D1258 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting data address}} \\
\hline D1258 high & '5' & 35 H & & \\
\hline D1259 low & '0' & 30 H & & \\
\hline D1259 high & '0' & 30 H & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & & Explanation \\
\hline D1260 low & 'F' & 46 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Request bit On/Off}} \\
\hline D1260 high & 'F' & 46 H & & \\
\hline D1261 low & '0' & 30 H & & \\
\hline D1261 high & '0' & 30 H & & \\
\hline D1262 low & 'F' & 46 H & LRC CHK 1 & \multirow[t]{2}{*}{Error checksum: LRC CHK (0,1)} \\
\hline D1262 high & '6' & 36 H & LRC CHK 0 & \\
\hline
\end{tabular}

Registers (D0) for PLC1 received data (responding messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & & Explanation \\
\hline D1070 low & '0' & 30 H & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { ADR } 1 \\
& \text { ADR } 0 \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{Address of connected device: ADR (1,0)} \\
\hline D1070 high & '1' & 31 H & & \\
\hline D1071 low & '0' & 30 H & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { CMD } 1 \\
& \text { CMD } 0
\end{aligned}
\]} & \multirow[b]{2}{*}{Command code: CMD \((1,0)\)} \\
\hline D1071 high & '5' & 35 H & & \\
\hline D1072 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting data address}} \\
\hline D1072 high & '5' & 35 H & & \\
\hline D1073 low & '0' & 30 H & & \\
\hline D1073 high & '0' & 30 H & & \\
\hline D1074 low & 'F' & 46 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Request bit On/Off}} \\
\hline D1074 high & 'F' & 46 H & & \\
\hline D1075 low & '0' & 30 H & & \\
\hline D1075 high & '0' & 30 H & & \\
\hline D1076 low & 'F' & 46 H & LRC CHK 1 & \\
\hline D1076 high & '6' & 36 H & LRC CHK 0 & Error checksum: LRC CHK \((0,1)\) \\
\hline
\end{tabular}

When MO = Off, function code 05 (bit Off) will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 050500 FF00 F6"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 050500 FF00 F6"
Registers for PLC1 sent data (sending messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 low & '0' & 30 H & ADR 1 & Address of connected device: ADR (1,0) \\
\hline D1256 high & '1' & 31 H & ADR 0 & Address of connected device. ADR \((1,0)\) \\
\hline D1257 low & '0' & 30 H & CMD 1 & Command code: CMD (1,0) \\
\hline D1257 high & '5' & 35 H & CMD 0 & Command code. CMD (1,0) \\
\hline D1258 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting data address}} \\
\hline D1258 high & '5' & 35 H & & \\
\hline D1259 low & '0' & 30 H & & \\
\hline D1259 high & '0' & 30 H & & \\
\hline D1260 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Request bit On/Off}} \\
\hline D1260 high & '0' & 30 H & & \\
\hline D1261 low & '0' & 30 H & & \\
\hline D1261 high & '0' & 30 H & & \\
\hline D1262 low & 'F' & 46 H & LRC CHK 1 & \multirow[t]{2}{*}{Error checksum: LRC CHK \((0,1)\)} \\
\hline D1262 high & '5' & 35 H & LRC CHK 0 & \\
\hline
\end{tabular}

Registers (D0) for PLC1 received data (responding messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1070 low & '0' & 30 H & ADR 1 & \\
\hline D1070 high & '1' & 31 H & ADR 0 & Address of connected device: ADR \((1,0)\) \\
\hline D1071 low & '0' & 30 H & CMD 1 & Command code CMD (1,0) \\
\hline D1071 high & '5' & 35 H & CMD 0 & Command code. CMD (1,0) \\
\hline D1072 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Starting data address}} \\
\hline D1072 high & '5' & 35 H & & \\
\hline D1073 low & '0' & 30 H & & \\
\hline D1073 high & '0' & 30 H & & \\
\hline D1074 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Request bit On/Off}} \\
\hline D1074 high & '0' & 30 H & & \\
\hline D1075 low & '0' & 30 H & & \\
\hline D1075 high & '0' & 30 H & & \\
\hline D1076 low & 'F' & 46 H & LRC CHK 1 & \multirow[t]{2}{*}{Error checksum: LRC CHK (0,1)} \\
\hline D1076 high & '5' & 35 H & LRC CHK 0 & \\
\hline
\end{tabular}
3. RTU Mode: When PLC1 is connected to PLC2

When M0 = On, function code 05 (bit On) of MODRW instruction will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 050500 FF00 8C F6"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 050500 FF00 8C F6"
Registers for PLC sent data (sending messages):
\begin{tabular}{|l|l|ll|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & & Explanation \\
\hline D1256 low & 01 H & Address & \\
\hline D1257 low & 05 H & Function & \\
\hline D1258 low & 05 H & \multirow{2}{*}{ Starting data address } \\
\hline D1259 low & 00 H & \\
\hline D1260 low & FF H & Set bit On/Off \\
Request bit ON/OFF \\
\hline D1261 low & 00 H & Req \\
\hline D1262 low & 8 H H & CRC CHK Low \\
\hline D1263 low & F6 H & CRC CHK High \\
\hline
\end{tabular}

Registers (D0) for PLC received data (responding messages):
\begin{tabular}{|l|c|ll|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & & Explanation \\
\hline D1070 low & 01 H & Address & \\
\hline D1071 low & 05 H & Function & \\
\hline D1072 low & 05 H & \multirow{2}{*}{ Starting data address } \\
\hline D1073 low & 00 H & \\
\hline D1074 low & FF H & Set bit On/Off \\
Request bit ON/OFF \\
\hline D1075 low & 00 H & Requ \\
\hline D1076 low & 8 H & CRC CHK Low \\
\hline D1077 low & F6 H & CRC CHK High \\
\hline
\end{tabular}

When M10 = Off, function code 05 (bit Off) of MODRW instruction will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 0505000000 CD 06"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 0505000000 CD 06"
Registers for PLC sent data (sending messages):
\begin{tabular}{|l|l|ll|}
\hline Register & DATA & & Explanation \\
\hline D1256 low & 01 H & Address & \\
\hline D1257 low & 05 H & Function & \\
\hline D1258 low & 05 H & Starting data address & \\
\hline D1259 low & 00 H & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|ll|}
\hline Register & DATA & & Explanation \\
\hline D1260 low & 00 H & Set bit On/Off \\
D1261 low & 00 H & Request bit ON/OFF \\
\hline D1262 low & CD H & CRC CHK Low & \\
\hline D1263 low & 06 H & CRC CHK High & \\
\hline
\end{tabular}

Registers (D0) for PLC received data (responding messages):
\begin{tabular}{|l|c|ll|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & & Explanation \\
\hline D1070 low & 01 H & Address \\
\hline D1071 low & 05 H & Function \\
\hline D1072 low & 05 H & \multirow{2}{*}{ Starting data address } \\
\hline D1073 low & 00 H & \\
\hline D1074 low & 00 H & \begin{tabular}{l} 
Set bit On/Off \\
Request bit ON/OFF
\end{tabular} \\
\hline D1075 low & 00 H & Re \\
\hline D1076 low & CD H & CRC CHK Low \\
\hline D1077 low & 06 H & CRC CHK High \\
\hline
\end{tabular}

Program example 6: COM1(RS-232) / COM3(RS-485), Function Code H05
1. Function Code K5 (H05): Force ON/OFF bit device.
2. PLC1 connects PLC2: (M1320 = OFF, ASCII Mode \()\), (M1320 = ON, RTU Mode)
3. \(\mathbf{n}=1\) indicates Force ON (set FFOOH) and \(\mathbf{n}=0\) indicates Force OFF (set 0000H)
4. PLC COM1/COM3 will not process the received data.
5. Take the connection between PLC1 (PLC COM3) and PLC2(PLC COM1) for example, the tables below explains the status when PLC1 reads Y0~Y17 of PLC2
- If PLC1 applies COM1 for communication, the below program can be usable by changing:
1. D1109 \(\rightarrow\) D1036: communication protocol
2. \(\mathrm{M} 1136 \rightarrow \mathrm{M} 1138\) : retain communication setting
3. D1252 \(\rightarrow\) D1249: Set value for data receiving timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139:\) ASCII/RTU mode selection
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : sending request
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : receiving completed flag

- ASCII mode (COM3: M1320 = OFF, COM1: M1139 = OFF):

When X0 = ON, MODRW instruction executes the function specified by Function Code H05
PLC1 \(\Rightarrow\) PLC2, PLC sends: "01 050500 FF00 6F"
PLC2 \(\Rightarrow\) PLC1, PLC receives: "01 050500 FF00 6F"
(No data processing on received data)
- RTU mode (COM3: M1320 = ON, COM1: M1139 = ON):

When X0 = ON, MODRW instruction executes the function specified by Function Code H05
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 050500 FF00 8C F6"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 050500 FF00 8C F6"
(No data processing on received data)

\section*{Program Example 7:}
1. Sending the function code \(\mathrm{K} 6(\mathrm{H} 06)\) through \(\mathrm{COM} 2(\mathrm{RS}-485)\) : For writing a word data to a register When PLC is connected to VFD-S AC motor drive: M1143 = Off, in ASCII mode When PLC is connected to VFD-S AC motor drive: M1143 = On, in RTU mode
2. When in ASCII mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1076.
3. When in RTU mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1077.
4. When In ASCII mode or RTU mode, PLC will store the data to be sent in D1256 ~ D1295. If necessary, the user can move the data to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EX/SS do not function on the data in D1256 ~ D1295.
5. After receiving the data sent back from AC motor drive is completed, PLC will auto-check if the received data are incorrect. M1140 will be On if there is an error.
6. If the device address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000 H is illegal to VFD-S, M1141 will be On and D1130 \(=2\). See user manual of VFD-S for error codes.
7. After M1140 = On or M1141 = On, PLC will send another correct datum to AC motor drive. If the data sent back from AC motor drive is correct, M1140 and M1141 will be reset.
 ASCII mode: the received data will be stored in special registers D1070 ~ D1076 in ASCII format. RTU mode: the received data will be stored in special registers D1070 ~ D1077 in hex format.


Sending/receiving of data is completed. The flag is reset.
8. ASCII Mode: When PLC is connected to VFD-S AC motor drive.

PLC \(\Rightarrow\) VFD-S, PLC sends: "01 0601001770 71"
VFD-S \(\Rightarrow\) PLC, PLC receives: "01 0601001770 71"
Registers for sent data (sending messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 Low & '0' & 30 H & ADR 1 & Address of AC motor drive: \(\operatorname{ADR}(1,0)\) \\
\hline D1256 High & '1' & 31 H & ADR 0 & Address of AC motor drive. ADR \((1,0)\) \\
\hline D1257 Low & '0' & 30 H & CMD 1 & \\
\hline D1257 High & '6' & 36 H & CMD 0 & Command code. CMD (1,0) \\
\hline D1258 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Data Address}} \\
\hline D1258 High & '1' & 31 H & & \\
\hline D1259 Low & '0' & 30 H & & \\
\hline D1259 High & '0' & 30 H & & \\
\hline D1260 Low & '1' & 31 H & \multirow{4}{*}{Data content} & \multirow{4}{*}{The content of register D50 \((\mathrm{H} 1770=\mathrm{K} 6,000)\)} \\
\hline D1260 High & '7' & 37 H & & \\
\hline D1261 Low & '7' & 37 H & & \\
\hline D1261 High & '0' & 30 H & & \\
\hline D1262 Low & '7' & 37 H & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\hline \text { LRC CHK } 1 \\
\text { LRC CHK } 0 \\
\hline
\end{array}
\]} & \multirow[b]{2}{*}{\(\operatorname{LRC} \operatorname{CHK}(0,1)\) is error check} \\
\hline D1262 High & '1' & 31 H & & \\
\hline
\end{tabular}

Registers for received data (responding messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & & Explanation \\
\hline D1070 Low & '0' & 30 H & ADR 1 & \\
\hline D1070 High & '1' & 31 H & ADR 0 & \\
\hline D1071 Low & '0' & 30 H & CMD 1 & \\
\hline D1071 High & '6' & 36 H & CMD 0 & \\
\hline D1072 Low & '0' & 30 H & & \\
\hline D1072 High & '1' & 31 H & Data Address & \\
\hline D1073 Low & '0' & 30 H & Data Address & \\
\hline D1073 High & '0' & 30 H & & \\
\hline D1074 Low & '1' & 31 H & & \\
\hline D1074 High & '7' & 37 H & Data content & \\
\hline D1075 Low & '7' & 37 H & Data content & \\
\hline D1075 High & '0' & 30 H & & \\
\hline D1076 Low & '7' & 37 H & LRC CHK 1 & \\
\hline D1076 High & '1' & 31 H & LRC CHK 0 & \\
\hline
\end{tabular}
9. RTU Mode: When PLC is connected to VFD-S AC motor drive

PLC \(\Rightarrow\) VFD-S, PLC sends: "01 062000001202 07"
VFD-S \(\Rightarrow\) PLC, PLC receives: "01 06200000120207 "
Registers for sent data (sending message)
\begin{tabular}{|c|c|l|l|}
\hline Register & DATA & \multicolumn{2}{l|}{ Explanation } \\
\hline D1256 Low & 01 H & \multicolumn{1}{l|}{ Address } & \\
\hline D1257 Low & 06 H & Function & \\
\hline D1258 Low & 20 H & \multicolumn{2}{|c|}{ Data Address } \\
\hline D1259 Low & 00 H & & \\
\hline D1260 Low & 00 H & Data content & \multirow{2}{*}{ The content of register D50 (H12) } \\
\hline D1261 Low & 12 H & & \\
\hline D1262 Low & 02 H & CRC CHK Low & \\
\hline D1263 Low & 07 H & CRC CHK High & \\
\hline
\end{tabular}

Registers for received data (responding message)
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1070 Low & 01 H & Address \\
\hline D1071 Low & 06 H & Function \\
\hline D1072 Low & 20 H & \multirow{2}{*}{ Data Address } \\
\hline D1073 Low & 00 H & \\
\hline D1074 Low & 00 H & \multirow{2}{*}{ Data content } \\
\hline D1075 Low & 12 H & \\
\hline D1076 Low & 02 H & CRC CHK Low \\
\hline D1077 Low & 07 H & CRC CHK High \\
\hline
\end{tabular}

\section*{Program example 8: COM1 (RS-232) / COM3 (RS-485), Function Code H06}
1. Function code K6 (H06): Write in single Word device.
2. Set the value to be written into VFD-B in the register specified by operand \(\mathbf{S}\).
3. PLC COM1/COM3 will not process the received data.
4. Take the connection between PLC (PLC COM3) and VFD-B for example, the tables below explains the status when PLC COM3 writes in single Word device in VFD-B (M1320 = OFF, ASCII Mode ), (M1320 = ON, RTU Mode)
- If PLC applies COM1 for communication, the below program can be usable by changing:
1. D1109 \(\rightarrow\) D1036: communication protocol
2. \(\mathrm{M} 1136 \rightarrow \mathrm{M} 1138\) : retain communication setting
3. D1252 \(\rightarrow\) D1249: Set value for data receiving timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139:\) ASCII/RTU mode selection
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : sending request
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : receiving completed flag

- ASCII mode (COM3: M1320 = OFF, COM1: M1139 = OFF):

When X0 = ON, MODRW instruction executes the function specified by Function Code H06
PLC \(\Rightarrow\) VFD-B, PLC sends: "01 0620001770 52"
VFD-B \(\Rightarrow\) PLC, PLC receives: "01 0620001770 52"
(No data processing on received data)
- RTU mode (COM3: M1320 = ON, COM1: M1139 = ON)

When X0 = ON, MODRW instruction executes the function specified by Function Code H06
PLC \(\Rightarrow\) VFD-B, PLC sends: "01 0620001770 8C 1E"
VFD-B \(\rightarrow\) PLC, PLC receives: "01 0620001770 8C 1E"
(No data processing on received data)

\section*{Program Example 9:}
1. Sending the function code K15 (HOF) through COM2 (RS-485): Write many bit devices. The preset bit status has to be placed in the register designated by the \(4^{\text {th }}\) operand of the instruction in b0 \(\sim\) b15 order. 1 word is able to contain 16 bit status data.


ASCII mode: The received data are stored in special registers starting from DO in ASCII format.
PLC will automatically convert the data into hex and store them in D1296 ~ D1311.
RTU mode: The received data are stored in special registers starting from D0 desiganted by the user in hex format.


Sending/receiving of data is completed.
The flag is reset.
2. ASCII Mode: When PLC1 is connected to PLC2

When \(\mathrm{XO}=\mathrm{On}\), function code \(0 F\) of MODRW instruction will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC sends: " 1 0F 0500000601 3F A5"
PLC2 \(\Rightarrow\) PLC1, PLC receives: " 1 OF 05000006 E5"
Registers for PLC1 sent data (sending messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 low & '0' & 30 H & ADR 1 & Address of connected device: ADR (1,0) \\
\hline D1256 high & '1' & 31 H & ADR 0 & Address of connected device. ADR \((1,0)\) \\
\hline D1257 low & '0' & 30 H & CMD 1 & Command code: CMD (1,0) \\
\hline D1257 high & 'F' & 46 H & CMD 0 & Command code. CMD (1,0) \\
\hline D1258 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Data address}} \\
\hline D1258 high & '5' & 35 H & & \\
\hline D1259 low & '0' & 30 H & & \\
\hline D1259 high & '0' & 30 H & & \\
\hline D1260 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Number of data (counted by bits)}} \\
\hline D1260 high & '0' & 30 H & & \\
\hline D1261 low & '0' & 30 H & & \\
\hline D1261 high & '6' & 36 H & & \\
\hline D1262 low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Byte Count}} \\
\hline D1262 high & '1' & 31 H & & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|r|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & \multicolumn{2}{|c|}{ DATA } & \multicolumn{2}{c|}{ Explanation } \\
\hline D1263 low & '3' & 33 H & \multirow{2}{*}{ Data content 1 } & \multirow{2}{*}{ Content in D0 register (H3F) } \\
\hline D1263 high & 'F' & 46 H & & \\
\cline { 1 - 3 } D1264 low & ' A ' & 41 H & LRC CHK 1 & \multirow{2}{*}{ Error checksum: LRC CHK (0,1) } \\
\hline D1264 high & '5' & 35 H & LRC CHK 0 & \\
\hline
\end{tabular}

Registers for PLC1 received data (responding messages):
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1070 low & '0' & 30 H & ADR 1 & \\
\hline D1070 high & '1' & 31 H & ADR 0 & \\
\hline D1071 low & '0' & 31 H & CMD 1 & \\
\hline D1071 high & 'F' & 46 H & CMD 0 & \\
\hline D1072 low & '0' & 30 H & \multirow{4}{*}{Data address} & \\
\hline D1072 high & '5' & 35 H & & \\
\hline D1073 low & '0' & 30 H & & \\
\hline D1073 high & '0' & 30 H & & \\
\hline D1074 low & '0' & 30 H & \multirow{4}{*}{Number of registers} & \\
\hline D1074 high & '0' & 30 H & & \\
\hline D1075 low & '0' & 30 H & & \\
\hline D1075 high & '6' & 36 H & & \\
\hline D1076 low & 'E' & 45 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
LRC CHK 1 \\
LRC CHK 0
\end{tabular}}} \\
\hline D1076 high & '5' & 35 H & & \\
\hline
\end{tabular}
3. RTU Mode: When PLC1 is connected to PLC2

When \(\mathrm{X} 10=\) On, function code 15 of MODRW instruction will start to be executed.
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 0F 0500000601 3F"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 0F 05000006 D5 05"
Registers for PLC sent data (sending messages):
\begin{tabular}{|c|c|c|c|}
\hline Register & DATA & & Explanation \\
\hline D1256 low & 01 H & Address & \\
\hline D1257 low & OF H & Function & \\
\hline D1258 low & 05 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Data address}} \\
\hline D1259 low & 00 H & & \\
\hline D1260 low & 00 H & \multirow[t]{2}{*}{Data content} & \multirow[t]{2}{*}{Content in D0 register (H3F)} \\
\hline D1261 low & 06 H & & \\
\hline D1262 low & 01 H & \multicolumn{2}{|l|}{CRC CHK Low} \\
\hline D1263 low & 3F H & \multicolumn{2}{|l|}{CRC CHK High} \\
\hline
\end{tabular}

Registers for PLC received data (responding messages):
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Register } & DATA & \\
\hline D1070 low & 01 H & Address \\
\hline D1071 low & 0 F H & Function \\
\hline D1072 low & 05 H & \multirow{2}{*}{ Data address } \\
\hline D1073 low & 00 H & \\
\hline D1074 low & 00 H & \multirow{2}{*}{ Data content } \\
\hline D1075 low & 06 H & \\
\hline D1076 low & D5H & CRC CHK Low \\
\hline D1077 low & 05 H & CRC CHK High \\
\hline
\end{tabular}

Program example 10: COM1 (RS-232) / COM3 (RS-485), Function Code H0F
5. Function code K15 (HOF): write in multiple bit devices. Up to 64 bits can be written
6. PLC1 connects to PLC2: (M1143 = OFF, ASCII mode), (M1143 = ON, RTU mode)
7. PLC COM1/COM3 will not process the received data.
8. Take the connection between PLC1 (PLC COM3) and PLC2 (PLC COM1) for example, the tables below explain the status when PLC1 force ON/OFF Y0~Y17 of PLC2.
Set value: K4Y0=1234H
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Device & Status & Device & Status & Device & Status & Device & Status \\
\hline Y0 & OFF & Y1 & OFF & Y2 & ON & Y3 & OFF \\
\hline Y4 & ON & Y5 & ON & Y6 & OFF & Y7 & OFF \\
\hline Y10 & OFF & Y11 & ON & Y12 & OFF & Y13 & OFF \\
\hline Y14 & ON & Y15 & OFF & Y16 & OFF & Y17 & OFF \\
\hline
\end{tabular}
- If PLC applies COM1 for communication, the below program can be usable by changing:
1. D1109 \(\rightarrow\) D1036: communication protocol
2. \(\mathrm{M} 1136 \rightarrow \mathrm{M} 1138\) : retain communication setting
3. D1252 \(\rightarrow\) D1249: Set value for data receiving timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139:\) ASCII/RTU mode selection
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : sending request
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : receiving completed flag

- ASCII mode (COM3: M1320 = OFF, COM1: M1139 = OFF):

When X0 = ON, MODRW executes the function specified by Function Code HOF
PLC1 \(\Rightarrow\) PLC2, PLC sends: " 01 0F 0500001002341293 "
PLC2 \(\Rightarrow\) PLC1, PLC receives: " 01 0F 05000010 DB "
(No data processing on received data)
- RTU mode (COM3: M1320 = ON, COM1: M1139 = ON):

When X0 = ON, MODRW executes the function specified by Function Code HOF
PLC1 \(\Rightarrow\) PLC2, PLC1 sends: "01 OF 0500001002341221 ED"
PLC2 \(\Rightarrow\) PLC1, PLC1 receives: "01 0F 0500001054 CB",
(No data processing on received data)

\section*{Program Example 11:}
1. Sending the function code K 16 ( H 10 ) through COM 2 (RS-485): For writing many word data into a register. When PLC is connected to VFD-S AC motor drive: M1143 = Off, in ASCII mode When PLC is connected to VFD-S AC motor drive: M1143 = On, in RTU mode
2. When in ASCII mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1076.
3. When in RTU mode, the user stores the data to be written in the designated register D50 in hex format. The data sent back from AC motor drive are stored in D1070 ~ D1077.
4. When In ASCII mode or RTU mode, PLC will store the data to be sent in D1256 ~ D1295. If necessary, the user can move the data to other general registers by using MOV, DMOV or BMOV instruction. Other instructions of ES/EXISS do not function on the data in D1256 ~ D1295.
5. After receiving the data sent back from AC motor drive is completed, PLC will auto-check if the received data are incorrect. M1140 will be On if there is an error.
6. If the device address is illegal to a designated communication device, the communication device will respond with an error message and PLC will store the error code in D1130 and M1141 = On. For example, if 8000 H is illegal to VFD-S, M1141 will be On and D1130 = 2. See user manual of VFD-S for error codes.
7. After \(\mathrm{M} 1140=\mathrm{On}\) or \(\mathrm{M} 1141=\mathrm{On}, \mathrm{PLC}\) will send another correct datum to AC motor drive. If the data sent back from AC motor drive is correct, M1140 and M1141 will be reset.

\begin{tabular}{|l|l|l} 
RST & M1127 & Sending/receiving of data is completed. The flag is reset.
\end{tabular}
8. ASCII Mode: When PLC is connected to VFD-S AC motor drive.

PLC \(\Rightarrow\) VFD-S, PLC sends: "01 10200000020400121770 30"
VFD-S \(\Rightarrow\) PLC, PLC receives: "01 1020000002 CD"
Registers for sent data (sending messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & \multicolumn{2}{|r|}{Explanation} \\
\hline D1256 Low & '0' & 30 H & ADR 1 & Address of AC motor drive: ADR (1,0) \\
\hline D1256 High & '1' & 31 H & ADR 0 & Address of AC motor drive. ADR (1,0) \\
\hline D1257 Low & '1' & 31 H & CMD 1 & Com \\
\hline D1257 High & '0' & 30 H & CMD 0 & Command co \\
\hline D1258 Low & '2' & 32 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Data Address}} \\
\hline D1258 High & '0' & 30 H & & \\
\hline D1259 Low & '0' & 30 H & & \\
\hline D1259 High & '0' & 30 H & & \\
\hline D1260 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow{4}{*}{Number of Registers}} \\
\hline D1260 High & '0' & 30 H & & \\
\hline D1261 Low & '0' & 30 H & & \\
\hline D1261 High & '2' & 32 H & & \\
\hline D1262 Low & '0' & 30 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Byte Count}} \\
\hline D1262 High & '4' & 34 H & & \\
\hline D1263 Low & '0' & 30 H & \multirow{4}{*}{Data contents 1} & \multirow{4}{*}{The content of register D50 (H12)} \\
\hline D1263 High & '0' & 30 H & & \\
\hline D1264 Low & '1' & 31 H & & \\
\hline D1264 High & '2' & 32 H & & \\
\hline D1265 Low & '1' & 31 H & \multirow{4}{*}{Data contents 2} & \multirow{4}{*}{The content of register D51 \((\mathrm{H} 1770=\mathrm{K} 6,000)\)} \\
\hline D1265 High & '7' & 37 H & & \\
\hline D1266 Low & '7' & 37 H & & \\
\hline D1266 High & '0' & 30 H & & \\
\hline D1267 Low & '3' & 33 H & \multirow[t]{2}{*}{LRC CHK 1 LRC CHK 0} & \multirow[t]{2}{*}{Error checksum: LRC CHK (0,1)} \\
\hline D1267 High & '0' & 30 H & & \\
\hline
\end{tabular}

Registers for received data (responding messages)
\begin{tabular}{|c|c|c|c|c|}
\hline Register & \multicolumn{2}{|c|}{DATA} & & Explanation \\
\hline D1070 Low & '0' & 30 H & ADR 1 & \\
\hline D1070 High & '1' & 31 H & ADR 0 & \\
\hline D1071 Low & '1' & 31 H & CMD 1 & \\
\hline D1071 High & '0' & 30 H & CMD 0 & \\
\hline D1072 Low & '2' & 32 H & & \\
\hline D1072 High & '0' & 30 H & Data Addres & \\
\hline D1073 Low & '0' & 30 H & Data Addres & \\
\hline D1073 High & '0' & 30 H & & \\
\hline D1074 Low & '0' & 30 H & & \\
\hline D1074 High & '0' & 30 H & & \\
\hline D1075 Low & '0' & 30 H & Number of Registers & \\
\hline D1075 High & '2' & 32 H & & \\
\hline D1076 Low & 'C' & 43 H & LRC CHK 1 & \\
\hline D1076 High & 'D' & 44 H & LRC CHK 0 & \\
\hline
\end{tabular}
9. RTU Mode: When PLC is connected to VFD-S AC motor drives

PLC \(\Rightarrow\) VFD-S, PLC sends: "01 10200000020400121770 C4 7F"
VFD-S \(\Rightarrow\) PLC, PLC receives: "01 1020000002 4A 08"
Registers for sent data (sending messages)
\begin{tabular}{|c|c|c|c|}
\hline Register & DATA & & Explanation \\
\hline D1256 Low & 01 H & \multicolumn{2}{|l|}{Address} \\
\hline D1257 Low & 10 H & \multicolumn{2}{|l|}{Function} \\
\hline D1258 Low & 20 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Data Address}} \\
\hline D1259 Low & 00 H & & \\
\hline D1260 Low & 00 H & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Number of Registers}} \\
\hline D1261 Low & 02 H & & \\
\hline D1262 Low & 04 H & \multicolumn{2}{|l|}{Byte Count} \\
\hline D1263 Low & 00 H & \multirow[t]{2}{*}{Data content 1} & \multirow[t]{2}{*}{The content of register D50 (H12)} \\
\hline D1264 Low & 12 H & & \\
\hline D1265 Low & 17 H & \multirow[t]{2}{*}{Data content 2} & \multirow[t]{2}{*}{The content of register D51 \((\mathrm{H} 1770=\mathrm{K} 6,000)\)} \\
\hline D1266 Low & 70 H & & \\
\hline D1267 Low & C 4 H & \multicolumn{2}{|l|}{CRC CHK Low} \\
\hline D1268 Low & 7F H & \multicolumn{2}{|l|}{CRC CHK High} \\
\hline
\end{tabular}

Registers for received data (responding messages)
\begin{tabular}{|c|c|l|}
\hline Register & DATA & \\
\hline D1070 Low & 01 H & Address \\
\hline D1071 Low & 10 H & Function \\
\hline D1072 Low & 20 H & \multirow{2}{*}{ Data Address } \\
\hline D1073 Low & 00 H & \\
\hline D1074 Low & 00 H & \multirow{2}{*}{ Number of Registers } \\
\hline D1075 Low & 02 H & \\
\hline D1076 Low & 4 H & CRC CHK Low \\
\hline D1077 Low & 08 H & CRC CHK High \\
\hline
\end{tabular}

\section*{Program example 12: COM1 (RS-232) / COM3 (RS-485), Function Code H10}
1. Function code K16 (H10): Write in multiple Word devices. Up to 16 Words can be written. For PLC COM2 ASCII mode, only 8 words can be written.
2. PLC COM1/COM3 will not process the received data
3. Take the connection between PLC COM3 and VFD-B for example, the tables below explain the status when PLC COM3 writes multiple Words in VFD-B. (M1320 = OFF, ASCII mode) (M1320 = ON, RTU mode)
- If PLC applies COM1 for communication, the below program can be usable by changing:
1. D1109 \(\rightarrow\) D1036: communication protocol
2. \(\mathrm{M} 1136 \rightarrow \mathrm{M} 1138\) : retain communication setting
3. D1252 \(\rightarrow\) D1249: Set value for data receiving timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139:\) ASCII/RTU mode selection
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : sending request
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : receiving completed flag

- ASCII mode (COM3: M1320 = OFF, COM1: M1139 = OFF):

When X0 = ON, MODRW executes the function specified by Function Code H10
PLC \(\Rightarrow\) VFD-B, PLC sends: "01 10200000020417700012 30"
VFD \(\Rightarrow\) PLC, PLC receives: "01 1020000002 CD"
(No processing on received data)
- RTU Mode (COM3: M1320=On, COM1: M1139=On):

When X0 = ON, MODRW executes the function specified by Function Code H10
PLC \(\Rightarrow\) VFD-B,PLC sends: "01 10200000020417700012 EE 0C"
VFD-B \(\Rightarrow\) PLC, PLC receives :" 011020000002 4A08"
(No processing on received data)

\section*{Program Example 13:}
1. Sending the function code K23 (H17) through COM2 (RS-485): Read/Write many word devices

2. ASCII Mode: (M1143=OFF)

When \(\mathrm{XO}=\mathrm{ON}, \mathrm{MODRW}\) executes the function specified by the function code H 17 .
PLC-A \(\Rightarrow\) PLC-B, PLC-A sends: "01 1711000002100000020417700012 06"
PLC-B \(\Rightarrow\) PLC-A, PLC-A receives: "01 170401001766 66"
Registers in PLC-A for received data (responding messages)
\begin{tabular}{|c|c|c|c|}
\hline Register & \multicolumn{2}{|r|}{Data} & Description \\
\hline D3000 Low byte & '0' & 30 H & ADR 1 \\
\hline D3000 High byte & '1' & 31 H & ADR 0 \\
\hline D3001 Low byte & '1' & 31 H & CMD 1 \\
\hline D3001 High byte & '7' & 37 H & CMD 0 \\
\hline D3002 Low byte & '0' & 30 H & Number of data (bytes) \\
\hline D3002 High byte & '4' & 34 H & Number of data (bytes) \\
\hline D3003 Low byte & '0' & 30 H & \\
\hline D3003 High byte & '1' & 31 H & Contents of the address 1100H \\
\hline D3004 Low byte & '0' & 30 H & Contents of the address 1100H \\
\hline D3004 High byte & '0' & 30 H & \\
\hline D3005 Low byte & '1' & 31 H & \\
\hline D3005 High byte & '7' & 37 H & Contents of the address 1101H \\
\hline D3006 Low byte & '6' & 36H & Contents of the address 1101H \\
\hline D3006 High byte & '6' & 36 H & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|ll|}
\hline Register & \multicolumn{2}{|c|}{ Data } & & Description \\
\hline D3007 Low byte & ' 6 ' & 36 H & LRC CHK 1 & \\
\hline D3007 High byte & '6' & 36 H & LRC CHK 0 & \\
\hline
\end{tabular}
3. RTU Mode (M1143=ON)

When \(\mathrm{X} 0=\mathrm{ON}\), MODRW executes the function specified by the function ode H 17 .
PLC-A \(\Rightarrow\) PLC-B,PLC-A sends: "01 1711000002100000020417700012 A702"
PLC-B \(\Rightarrow\) PLC-A, PLC-A receives: "01 170401001766 7701"
Registers in PLC-A for received data (responding messages)
Registers (D0) for PLC received data (responding messages):
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Register } & Data & \\
\hline D3000 Low byte & 01 H & Address \\
\hline D3001 Low byte & 17 H & Function \\
\hline D3002 Low byte & 04 H & Number of data (bytes) \\
\hline D3003 Low byte & 01 H & \multirow{2}{*}{ Contents of the address 1100H } \\
\hline D3004 Low byte & 00 H & \\
\hline D3005 Low byte & 17 H & \multirow{2}{*}{ Contents of the address 1101H } \\
\hline D3006 Low byte & 66 H & \\
\hline D3007 Low byte & 77 H & CRC CHK Low \\
\hline D3008 Low byte & 01 H & CRC CHK High \\
\hline
\end{tabular}

\section*{Program example 14: COM1 (RS-232)/ COM3 (RS-485), Function Code H17}
1. Function code K 23 (H17): Data is read from multiple word devices and data is written into multiple word devices. Data can be read from 16 word devices at most, and data can be written into 16 word devices at most.
2. In the ASCII or RTU mode, the data received through COM1/COM3 on the PLC is stored in the registers starting from the register indicated by the index value in \(\mathbf{S}+1\). Users can use the instruction DTM to transform and move the data.
3. The connection between PLC-A (PLC COM3) and PLC-B:
- Data is written into multiple word devices in PLC-B from PLC-A. (M1320=OFF, ASCII Mode) (M1320=ON, RTU Mode)
- If COM1 on PLC-A is connected, the program can be modified as shown below.
1. D1109 \(\rightarrow\) D1036: Communication protocol
2. \(\mathrm{M} 1136 \rightarrow \mathrm{M} 1138\) : The communication setting is retained.
3. D1252 \(\rightarrow\) D1249: Communication timeout
4. \(\mathrm{M} 1320 \rightarrow \mathrm{M} 1139\) : Choice between the ASCII mode and the RTU mode
5. \(\mathrm{M} 1316 \rightarrow \mathrm{M} 1312\) : The sending of the data though the communication instruction is requested.
6. \(\mathrm{M} 1318 \rightarrow \mathrm{M} 1314\) : The receiving of the data through the communication instruction is complete.

- ASCII Mode (COM3: M1320=OFF; COM1: M1139=OFF):

When X0=ON, MODRW executes the function specified by the function ode H 17 .
PLC-A \(\Rightarrow\) PLC-B, PLC-A sends: "01 1711000002100000020417700012 06"
PLC-B \(\Rightarrow\) PLC-A, PLC-A receives: "01 170401001766 66"
Registers in PLC-A for received data (responding messages)
\begin{tabular}{|c|c|l|}
\hline Register & Data & \multicolumn{1}{|c|}{ Description } \\
\hline D3000 & 0100 H & \begin{tabular}{l} 
PLC-A converts ASCII codes in 1100H and stores the \\
converted data automatically.
\end{tabular} \\
\hline D3001 & 1766 H & \begin{tabular}{l} 
PLC-A converts ASCII codes in 1101H and stores the \\
converted data automatically.
\end{tabular} \\
\hline
\end{tabular}
- RTU Mode (COM3: M1320=ON; COM1: M1139=ON):

When \(\mathrm{XO}=\mathrm{ON}\), MODRW executes the function specified by the function code H 17 .
PLC-A \(\Rightarrow\) PLC-B,PLC-A sends: "01 1721000002200000020417700012 A702"
PLC-B \(\Rightarrow\) PLC-A, PLC-A receives: "01 170401001766 7701"
Registers in PLC-A for received data (responding messages)
\begin{tabular}{|l|c|l|}
\hline Register & Data & \multicolumn{1}{c|}{ Description } \\
\hline D3000 & 0100 H & \begin{tabular}{l} 
PLC-A converts data in 1100 H and stores the converted data \\
automatically.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline Register & Data & \multicolumn{1}{c|}{ Description } \\
\hline D3001 & 1766 H & \begin{tabular}{l} 
PLC-A converts data in 1101H and stores the converted data \\
automatically.
\end{tabular} \\
\hline
\end{tabular}

\section*{Remarks:}
1. The activation condition placed before MODRD, RDST and MODRW instructions cannot use rising-edge or falling-edge contacts; otherwise the data stored in the registers for received data will encounter errors.
2. PLC COM1 ~ COM3: Please refer to API 80 RS for more information about the associated flags (Auxiliary relays) and special registers (Special D) for the communication instruction MODRW.
3. PLC COM2 RS-485: Associated flags (Auxiliary relays) and special registers (Special D) for the communication instruction MODRW
\begin{tabular}{|c|c|}
\hline Flags & Function \\
\hline M1120 & For retaining communication setups. After the setup is made, changes in D1120 will be invalid. \\
\hline M1121 & When Off, RS-485 is sending data. \\
\hline M1122 & Sending request \\
\hline M1123 & Receiving is completed \\
\hline M1124 & Waiting for receiving data \\
\hline M1125 & Disable receiving status \\
\hline M1126 & Selecting STX/ETX system \\
\hline M1127 & Sending/receiving data through MODRD / RDST / MODRW instructions is completed. \\
\hline M1128 & Sending data.../receiving data... \\
\hline M1129 & Receiving data time-out \\
\hline M1130 & User/system defined STXIETX \\
\hline M1131 & On when MODRD / MODWR / MODRW is converting data to hex \\
\hline M1140 & MODRD / MODWR / MODRW data receiving error \\
\hline M1141 & MODRD / MODWR / MODRW parameter error \\
\hline M1142 & VFD-A handy instruction data receiving error \\
\hline M1143 & ASCII/RTU mode selection (used with MODRD/MODWR/MODRW) (Off = ASCII mode; On = RTU mode) \\
\hline D1070 ~ D1085 & When the built-in RS-485 communication instruction is executed and sends out data, the receiving end will respond with a message and the message will be stored in D1070 ~ D1085. The user can check the registers for the messages. \\
\hline D1120 & RS-485 communication protocol \\
\hline D1121 & PLC communication address (saving PLC communication address; latched) \\
\hline D1122 & Remaining words of the sent data \\
\hline D1123 & Remaining words of the received data \\
\hline D1124 & Start text definition (STX) \\
\hline D1125 & Definition of end text 1 (ETX1) \\
\hline D1126 & Definition of end text 2 (ETX2) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline D1129 & Abnormal communication time-out. Unit: ms \\
\hline D1130 & Records of error codes sent back from MODBUS \\
\hline D1256 ~ D1295 & \begin{tabular}{l} 
When the built-in RS-485 communication instruction MODRW is executed, the sent out \\
data will be stored in D1256 ~ D1295. The user can check whether the instruction is \\
correct by the contents in the registers.
\end{tabular} \\
\hline D1296 ~ D1311 & \begin{tabular}{l} 
PLC will automatically convert the ASCII data stored in the register designated by the user \\
into hex format.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|l|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 151 & PWD & S D & Detection of Input Pulse Width \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & & KnM & KnS & T & & C & D & E & & F & \multicolumn{11}{|l|}{PWD: 5 steps} \\
\hline S & * & & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & S & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & \multicolumn{2}{|l|}{SS} & & X & SC & EH & SV & \[
\begin{array}{|l|}
\mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

\section*{S: Source device \\ D: Destination device for storing the detected result}

\section*{Explanations: (For EH2ISVISV2 and EH3 V1.40 (and below))}
1. Range of \(\mathbf{S}: \mathrm{X} 10 \sim \mathrm{X} 17\)
2. D must be in the range of D0 to D999., it occupies two consecutive devices.
3. PWD instruction is for detecting the interval between the input signals; the valid frequency range is \(1 \sim 1 \mathrm{kHz}\). If M1169 = Off, the instruction will continuously detect the intervals between the rising edges of the input signals and the falling edges of the input signals (time unit: 100us). If M1169 = On, the instruction will continuously detect the intervals between rising edges of the input signals (time unit: 1us). It cannot designate the same X10 ~ X17 as DCNT and ZRN instructions.
4. D occupies two consecutive devices. The longest detection time is \(21,474.83647\) seconds, about 357.9139 minutes or 5.9652 hours.
5. There is no limitation on the times of using this instruction. However, only one instruction can be executed at a time.

\section*{Explanations: (For EH3 V1.60 (and above))}
1. \(S\) must be \(\mathrm{X} 10, \mathrm{X} 11, \mathrm{X} 14, \mathrm{X} 15\). Neither of the inputs can be used more than once.
2. The detection result, the number of input pulses, and the number by which an amount is divided are stored in \(\mathbf{D}\). D must be in the range of D0 to D999., it occupies five consecutive devices at most.
3. PWD instruction is for detecting the intervals between the input signals of the frequency of input signals; the valid frequency range is \(1 \sim 1 \mathrm{kHz}\). If M1169 = Off, the instruction will continuously detect the intervals between the rising edges of the input signals and the falling edges of the input signals (time unit: 100us). If M1169 = On, the instruction will continuously detect the intervals between rising edges of the input signals (time unit: 0.001 us). It cannot designate the same input as DCNT and ZRN instructions.
4. If PWD is executed for the first time, the detection mode of PWD will be set according to the state of M1169. After the instruction is executed, the detection mode can not be changed.
5. If M1169 is ON, M1154 will be the flag for the dectection of the width of the duty-off/duty-on pulse. If M1154 is Off, the width of the duty-off pulse will be detected. If M1154 is On, the width of the duty-on pulse will be detected. If the instruction is used more than once in a program, the same M1154 will be used. The state of M1154 can be changed after the instruciton is executed.
6. If M1169 is On, M1263 will be a averaging mechanism flag. If M1263 is On, the frequencies of input signals will
be averaged according to the number set, and the number of input pulses will be stored. If the instruction is used more than once in a program, the same M1263 will be used. The state of M1263 can be changed after the instruciton is executed.
7. The functions of \(\mathbf{D}\) and \(\mathbf{D}+1\) depend on the detection mode used. If the width of the duty-off/duty-on pulse is detected, the width of the duty-off/duty-on pulse will be stored in \(\mathbf{D}\) and \(\mathbf{D}+1\), and the longest detection time will be \(21,474.83647\) seconds, about 357.9139 minutes or 5.9652 hours. If the frequency of input pulses is detected, it will be stored in \(\mathbf{D}\) and \(\mathbf{D}+1\). If the frequency of input pules is detected, and the averaging mechanism is enabled, \(\mathbf{D}+2, \mathbf{D}+3, \mathbf{D}+4\) wil be used. The number of input pulses is stored in \(\mathbf{D}+2\) and \(\mathbf{D}+3\). The number by which an amount is divided is stored in \(D+4\), and must be in the range of K1 to K20. If the number by which an amount is divided exceeds the upper limit, or the lower limit, the upper limit or the lower limit will be the setting value.
8. The instruction can be used three times at most in a program.

\section*{Program Example: (For EH2/SVISV2, and EH3 V1.40 (and below))}

When \(\mathrm{X0}=\mathrm{On}\), record the time span of \(\mathrm{X10}=\) On and store it in D1 and D0.
\begin{tabular}{|l|l|l|l|}
\hline X0 & PWD & X10 & D0 \\
\hline
\end{tabular}

Program Example: (For EH2/SVISV2, and EH3 V1.40 (and below))
If X 0 is On, ten frequencies of pulses sent to X 10 will be averaged, and the result will be stored in D0 and D1. Besides, the number of pulses sent to X 10 will be stored in D2 and D3.

\begin{tabular}{|c||c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 152 & RTMU & D & n \\
\hline
\end{tabular}


\section*{Operands:}

D: Device for storing the measuring time (unit: 1us)
n: Measurement time base. Parameter range: K10 ~ K500 (time unit: 1us)

\section*{Explanations:}
1. Range of \(\mathbf{D}: \mathrm{KO} \sim \mathrm{K} 9\)
2. Range of \(\mathbf{n}: \mathrm{K} 10 \sim \mathrm{~K} 500\)
3. The designated special D registers (D1156 ~ D1165) can measure up to 10 interruption subroutines. For example, when \(\mathbf{D}=\mathrm{K} 5\), the designated D register will be D 1161 .
4. When RTMU is executed, if the \(\mathbf{D}\) and \(\mathbf{n}\) entered by the user are legal, interruption of the timer will be enabled and the counting starts and the special D designated by \(\mathbf{D}\) is cleared as 0 . When RTMD is executed, interruption of the timer is disabled and the calculated time will be assigned to special \(D\) designated by RTMD.
5. With API 153 RTMD, RTMU can measure the execution time of "l" interruption service subroutine, which can be reference for dealing with the high-speed response when the user is at the initial stage of developing the program.
\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\cline { 2 - 4 } 153 & RTMD & D & End of the Measurement of the Execution Time of I Interruption \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{11}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & Kn & & KnM & Kn & S & & C & D & & E & F & \multicolumn{11}{|l|}{RTMD: 3 steps} \\
\hline D & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & & & & \\
\hline \multicolumn{31}{|r|}{} \\
\hline & & & ES & \multicolumn{2}{|l|}{EX SS} & SA & SX & SC & \multicolumn{2}{|l|}{EH S} & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

\section*{Operands:}

D: Device to store the measuring time (unit: 1 us).

\section*{Explanations:}
1. Range of \(\mathbf{D}: \mathrm{K0} \sim \mathrm{~K} 9\). The No. of \(\mathbf{D}\) has to be the same as that designated by \(\mathbf{D}\) in API 152 RTMU; otherwise the result of the measurement may be unexpectable.

\section*{Program Example:}

When X0 goes from Off to On, the program will enter 1001 interruption subroutine. RTMU will activate an 8-bit timer (unit: 10us) and RTMD (when \(D=K 0\) ) will shut down the timer and store the time in the timer in special D registers (D1156 ~ D1165, designated by K0 ~ K9).


\section*{Remarks:}
1. We suggest you remove this instruction after you finish developing your PLC program.
2. Due to the lower priority of the interruption enabled by RTMU, when RTMU is enabled, other high-speed pulse input counting or high-speed pulse output may result in failure to trigger the timer.
3. If you activate RTMU but do not activate RTMD before the end of the interruption, the interruption will not be shut down.
4. RTMU instruction activates 1 timer interruption in PLC. Therefore, if many RTMU or RTMD are executed at the same time, confusion in the timer may occur. Please be aware of the situation.
\begin{tabular}{|l||c|c|c|c|c|cc|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 154 & & RAND & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Random Number
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & KnY & KnM & & KnS & T & C & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{4}{*}{RAND, RANDP: 7 steps DRAND: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline D & & & & & & & & & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH S & \[
\begin{gathered}
\left.\mathrm{SV} \left\lvert\, \begin{array}{l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}\right.\right]
\end{gathered}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & & SA & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Lower bound of the random number
\(\mathbf{S}_{2}\) : Upper bound of the random number
D: The random number produced

\section*{Explanations:}
1. \(\quad \mathbf{S}_{1} \leqq \mathbf{S}_{2} ; \mathrm{KO} \leqq \mathrm{S}_{1}, \mathrm{~S}_{2} \leqq \mathrm{~K} 32,767\)
2. See the specifications of each model for their range of use.
3. Entering \(S_{1}>S_{2}\) will result in operation error. The instruction will not be executed at this time, M1067, M1068 = On and D1067 records the error code 0E1A (hex).
4. The 32-bit instruction only supports EH3/SV2 V1.0, SX V3.0, and above.

\section*{Program Example:}

When \(\mathrm{X} 10=\mathrm{On}\), RAND will produce the random number between the lower bound D0 and upper bound D10 and store the result in D20.
\begin{tabular}{|l|l|l|l|l|} 
X10 \\
\hline RAND & D0 & D10 & D20 \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & Function \\
\hline 155 & D & ABSR & & S & D1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{17}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & & H & Kn & & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & \multicolumn{2}{|l|}{T} & C & \multicolumn{2}{|l|}{D} & E & F & \multicolumn{9}{|l|}{} \\
\hline S & * & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & & DABSR: 13 steps & \\
\hline \(\mathrm{D}_{1}\) & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & & & & & & & & & & * & & * & & & * & & * & & * & * & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{11}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & S & X & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & E & & S & A & SX & S & & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}\) : Input signal from Servo (occupies 3 consecutive devices) \(\quad \mathbf{D}_{1}\) : Control signal for controlling Servo (occupies 3 consecutive devices at most) \(\quad \mathbf{D}_{2}\) : Absolute position data (32-bit) read from Servo (occupies 4 consecutive devices at most)

\section*{Explanations: (For SA/SXISC, EH/SV, EH3 V1.40 (and below), and SV2 V1.20 (and below))}
1. Operand \(S\) and \(D_{1}\) of SA series MPU do not support \(E, F\) index register modification.
2. See the specifications of each model for their range of use.
3. This instruction can only be used once in the program.
4. Flag: see remarks for more details.
5. This instruction reads the absolute position (ABS) of MITSUBISHI MR-J2 servo drive (with absolute position check function).
6. \(\mathbf{S}\) will occupy 3 consecutive devices, \(\mathbf{S}, \mathbf{S}+1\), and \(\mathbf{S}+2\). \(\mathbf{S}\) and \(\mathbf{S}+1\) are connected to the absolute position (bit 0 , bit 1 ) on the servo for data transmitting. \(\mathbf{S}+2\) is connected to Servo for transmitting data ready flag. See the wiring example below for more details.
7. \(\quad \mathbf{D}_{1}\) will occupy 3 consecutive devices, \(\mathbf{D}_{1}, \mathbf{D}_{1}+1, \mathbf{D}_{1}+2\). \(\mathbf{D}_{1}\) is connected to SERVO On (SON) of Servo. \(\mathbf{D}_{1}+1\) is connected to \(A B S\) transmisstion mode of Servo and \(D_{1}+2\) is connected to \(A B S\) request signal. See the wiring example below for more details.

8. \(\quad D_{2}\) will occupy 2 consecutive devices \(D_{2}\) and \(D_{2}+1 . D_{2}\) is the lower 16 bits and \(D_{2}+1\) is the higher 16 bits. The absolute position data should be written into the present value registers (D1337, D1336) of CH0 pulse (Y0, Y1)
or the present value registers (D1339, D1338) of CH 1 pulse (Y2, Y3) in EH series MPU; therefore, we suggest you designate the two corresponding registers. If you designate other devices as the registers, you still have to transmit the data to D1337 and D1336 of CH0 or D1339 and D1338 of CH1. In addition, the absolute position data should be written into the present value registers (D1348, D1349) of CH0 pulse (Y10) or the present value registers (D1350, D1351) of CH1 pulse (Y11) in SC series MPU; therefore, we suggest you designate the two corresponding registers. If you designate other devices as the registers, you still have to transmit the data to D1348 and D1349 of CH0 or D1350 and D1351 of CH1.
9. When DABSR instruction starts to read, after finishing reading the absolute position of SERVO, flag M1029 will be On. The user has to reset the flag.
10. When driving the DABSR command, please specify normally open contact. If the drive contact of DABSR command turns Off when DABSR command read starts, the execution of absolute current value read will be interrupted and result in incorrect data. Please be careful and notice that.

\section*{Explanations: (For SA/SXISC, EH/SV, EH3 V1.40 (and below), and SV2 V1.20 (and below))}
1. This instruction reads the absolute position (ABS) of MITSUBISHI MR-J2 servo drive (with absolute position check function), and the absolute position (ABS) of Delta ASDA-A2 servo drive (whose firmware version is 1.045 sub12 (and above).
2. The state of M1177 determines the servo drive which is used. If M1177 is Off, MITSUBISHI MR-J2 servo drive is used. Please refer to the points above for more information about setting MITSUBISHI MR-J2 servo drive. If M 1177 is On, Delta ASDA-A2 servo drive is used. Please refer to the points below for more information about settiing Delta ASDA-A2 servo drive.
3. The input signal from a servo is stored in \(\mathbf{S}\). \(\mathbf{S}\) occupies 3 consecutive devices. \(\mathbf{S}, \mathbf{S}+1\), and \(\mathbf{S}+2\) are connected to ABSR, ABSD, ABSW on a servo. Please refer to the example below for more information about wiring.
4. \(\quad D_{1}\) will occupy 2 consecutive devices, \(D_{1}\), and \(D_{1}+1\). \(D_{1}\) is connected to ABSE on a servo. \(D_{1}+1\) is connected to \(A B S Q\) on a servo. Please refer to the example below for more information about wiring.

5. \(\quad D_{2}\) will occupy 4 consecutive devices \(D_{2}, D_{2}+1 . D_{2}+2\), and \(D_{2}+3\). The absolute acoordinate system status (P0-50) is stored in \(\mathbf{D}_{2}\), the encoder absolute position (multiturn) (P0-51) is stored in \(\mathbf{D}_{2}+1\). The lower 16 bits of
the encoder absolute position (pulse number within singleturn or PUU) (P0-52) is stored in \(D_{2}+2\). The higher 16 bits of the encoder absolute position (pulse number within singleturn or PUU) (P0-52) is stored in \(D_{2}+3\).
6. After the the reading of the absolute positio of a servo through the instruciton DABSR is complete, M1580 will be On. If an error occurs during the execution of the instruciton, M1581 will be On.
7. When driving the DABSR instruction, please specify normally open contact. If the drive contact of DABSR command turns Off when DABSR command read starts, the execution of absolute current value read will be interrupted and result in incorrect data. Please be careful and notice that.
8. If the input signals are from the high-speed input points \(X 0 \sim X 7\), it takes 2 seconds for the instruction to be executed. if the input signals are form the input points following \(\times 20\), it takes 3 seconds for the instruciton to be executed. The time it takes for the instruction to be executed is affected by the scan time.

Program Example: (For SAISXISC, EHISV, EH3 V1.40 (and below), SV2 V1.20 (and below))
1. When \(\mathrm{X7}=\mathrm{On}\), the 32-bit absolute position data read from Servo will be stored in the present value registers (D1337, D1336) of CH0 pulse in EH MPU. At the same time, the timer T10 is enabled and starts to count for 5 seconds. If the reading of the absolute position is not completed after 5 seconds, M10 will be On, indicating that the reading of absolute position encounters abnormality.
2. When enabling the connection to the system, please synchronize the power input of DVP-PLC EH/EH2/SV/EH3/SV2 and SERVO AMP or activate the power of SERVO AMP earlier than DVP-PLC.


\section*{Program Example: (For SA/SXISC, EHISV, EH3 V1.40 (and below), SV2 V1.20 (and below))}
1. When \(\mathrm{X7}=\mathrm{On}\), the absolute position data read from Delta ASDA-A2 servo will be stored in the registers D0~D3. The state of M1580 and the state of M1581 indicates whether the reading of the absolute position is successful.


\section*{Remarks: (Used with Mitsubishi MR-J2 Servo drive)}
1. If the instruction is interrupted when PLC is still reading the absolute position of SERVO, an ALARM message (ALE5) will occur in SERVO.
2. Timing chart of DABSR instruction reading absolute position:
a) When DABSR instruction starts to execute, it will drive SERBVO On (SON) and ABS transmittion mode for output.
b) By "transmission is ready" and "ABS request" signals, you can confirm the transmission and reciept of both sides as well as processing the transmission of the 32-bit present position data plus the 6-bit check data.
c) The data are transmitted by ABS (bit0, bit1).

3. This instruction is applicable to the Servo motor equipped with absolute positioning function, e.g. Mitsubishi MR-J2-A Servo drive.
4. Select one of the following methods for the initial reading of present absolute position.
a) Complete zero point return by using reset signal function to execute API 156 ZRN instruction.
b) After using JOG or manual operation to adjust the zero point position, input a reset signal in SERVO AMP. See the figure of external switch below for whether to use DVP-PLC for output. For the wiring of DVP-PLC and Mitsubishi MR-H2- \(\square\) A, see remarks of API 159 DRVA instruction.

Ex: Mitsubishi MR-J2- \(\square A\)

5. Flags explanation:

M1010: (For EH/EH2/SV/EH3/SV2 series MPU) When M1010 is On, CH0 (Y0, Y1) and CH1 (Y2, Y3) will output pulses while END instruction is being executed. When the output starts, M1010 will automatically turn Off.
M1029: (For EH/EH2/SV/EH3/SV2 series MPU) When the first group CH0 (Y0, Y1) pulse output or the execution of other relevant instructions are completed, M1029 will turn On.

M1030: (For EH/EH2/SV/EH3/SV2 series MPU) When the second group CH 1 (Y2, Y3) pulse output is
completed, M1030 will turn on.
M1102: (For SC series MPU) When the first group CHO (Y10) pulse output is completed, M1102 will turn On.
M1103: (For SC series MPU) When the second group CH 1 (Y11) pulse output is completed, M1103 will turn On.

M1177: If M1177 is Off, MITSUBISHI MR-J2 servo drive is used with EH3/SV2. If M1177 is On, Delta ASDA-A2 servo drive is used with EH3/SV2.
M1258: (For EH/EH2/SV/EH3/SV2 series MPU) When M1258 is On, CH0 (Y0, Y1) will output reverse pulses.
M1259: (For EH/EH2/SV/EH3/SV2 series MPU) When M1259 is On, CH1 (Y2, Y3) will output reverse pulses.
M1305: (For EH/EH2/SV/EH3/SV2 series MPU) PLSV, DPLSV, DRVI, DDRVI, DRVA, DDRVA instructions for \(\mathrm{CH} 0(\mathrm{Y} 1, \mathrm{Y} 2)\) reverse running.
M1306: (For EH/EH2/SV/EH3/SV2 series MPU) PLSV, DPLSV, DRVI, DDRVI, DRVA, DDRVA instructions for \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\) reverse running.
M1334: (For EH series MPU) When M1334 = On, CH0 (Y0, Y1) pulse output will pause.
(For EH/EH2/SV/EH3/SV2 series MPU) When M1334 = On, CH0 (Y0, Y1) pulse output will stop.
(For SC series MPU) When M1334 = On, the DDRVI and DDRVA execution criteria will stop and CH0 (Y10) pulse output will stop immediately without deceleration.

M1335: (For EH series MPU) When M1335 = On, CH1 (Y2, Y3) pulse output will pause.
(For EH/EH2/SV/EH3/SV2 series MPU) When M1335 = On, CH1 (Y2, Y3) pulse output will stop.
(For SC series MPU) When M1335 = On, DDRVI and DDRVA execution criteria will stop and CH1 (Y11) pulse output will stop immediately without deceleration.
M1520: (For EH/EH2/SV/EH3/SV2 series MPU) When M1520 = On, CH2 (Y4, Y5) pulse output will stop.
M1521: (For EH/EH2/SV/EH3/SV2 series MPU) When M1521 = On, CH3 (Y6, Y7) pulse output will stop.
M1336: (For EH/EH2/SV/EH3/SV2 series MPU) CH 0 (Y0, Y1) pulse output indication flag
M1337: (For EH/EH2/SV/EH3/SV2 series MPU) CH 1 (Y2, Y3) pulse output indication flag
M1346: (For EH/EH2/SV/EH3/SV2 series MPU) ZRN instruction for "enabling CLEAR output signal" flag
M1580: If Delta ASDA-A2 servo drive is used, M1580 will be On after the execution of the instruction DABSR is complete.

M1581: If Delta ASDA-A2 servo drive is used, M1581 is On when DABSR is not executed successfully.
6. Special registers:

D1337, D1336: 1. (For EH/EH2/SV/EH3/SV2 series MPU) Registers for the first group (Y0, Y1) output pulse present value of position control instructions (API 156 ZRN, API 157 PLSV, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1337 is for high word; D1336 is for low word.
2. (For EH/EH2/SV/EH3/SV2 series MPU) Registers for storing the current number of output pulses of the first group (Y0, Y1) output of pulse output instructions (API 57 PLSY, API 59 PLSR). D1337 is for high word; D1336 is for low word.

D1338, D1339: 1. (For EH/EH2/SV/EH3/SV2 series MPU) Registers for the second group (Y2, Y3) output pulse present value of position control instructions (API 156 ZRN, API 157 PLSV, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the

D1340 (D1352):

D1341, D1342:

D1343 (D1353):

D1348, D1349:

D1350, D1351:
corresponding rotation direction. D1339 is for high word; D1338 is for low word.
2. (For EH/EH2/SV/EH3/SV2 series MPU) Registers for storing the current number of output pulses of the second group (Y2, Y3) output of pulse output instructions (API 57 PLSY, API 59 PLSR). D1339 is for high word; D1338 is for low word.

For setting up the frequencies of the first acceleration segment and the last deceleration segment when the position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA) are executing \(\mathrm{CHO}(\mathrm{CH} 1)\) outputs.
Range of setting:
For EH/EH2/SV/EH3/SV2 series MPU, the speed has to be higher than 10 Hz . Frequency lower than 10 Hz or higher than maximum output frequency will be output by 10 Hz . The default setting in EH/EH2/SV series MPU is 200 Hz . For SC series MPU, the speed has to be \(100 \sim 100 \mathrm{kHz}\). Frequency lower than 100 Hz will be output by 100 Hz and frequency higher than 100 kHz will be output by 100 kHz . The default setting in SC series MPU is 100 Hz . Note: During the control of the stepping motor, please consider the resonance and the limitation on the start frequency when you set up the speed. (For EH/EH2/SV/EH3/SV2 series MPU) For setting up the maximum speed when the position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA) are being executed. D1342 is for high word; D1341 is for low word. Range of setting: 200kHz fixed.

For setting up the time of the first acceleration segment and the last deceleration segment when the position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA) are executing \(\mathrm{CHO}(\mathrm{CH} 1)\) outputs.
Range of setting:
For EH/EH2/SV/EH3/SV2 series MPU, the acceleration/deceleration time has to be 1 ~ \(10,000 \mathrm{~ms}\). The time longer than \(10,000 \mathrm{~ms}\) will be output by the default 100 ms . For SC series MPU, the time has to be \(50 \sim 20,000 \mathrm{~ms}\). The time shorter than 50 ms will be regarded as 50 ms .

Note: During the control of the stepping motor, please consider the resonance and the limitation on the start frequency when you set up the speed.
(For SC series MPU) Registers for the first group (YO, Y1) output pulse present value of position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1349 is for high word; D1348 is for low word.
(For SC series MPU) Registers for the second group (Y11) output pulse present value of position control instructions (API 156 ZRN, API 158 DRVI, API 159 DRVA). The present value increases or decreases according to the corresponding rotation direction. D1351 is for high word; D1350 is for low word.


\section*{Operands:}
\(\mathbf{S}_{1}\) : Zero return speed \(\quad \mathbf{S}_{2}\) : Creep speed \(\quad \mathbf{S}_{3}\) : Near p oint signal (DOG) \(\quad\) D: Pulse output device (please use transistor output module)

\section*{Explanations:}
1. When \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. \(S_{1}\) and \(S_{2}\) of SC series MPU only support device \(K, H\) and \(D . S_{3}\) of SC series MPU only supports device \(\times 10\) and X11.
3. Flag: see remarks of API 155 ABSR and API 158 DDRVI for more details.
4. \(S_{1}\) is the starting speed of zero return operation. For EH2/SV/EH3/SV2 series MPU, the 16 -bit instruction can designate the range of the speed, which is \(10 \sim 32,767 \mathrm{~Hz}\) and the range designated by the 32-bit instruction is \(10 \sim 200,000 \mathrm{~Hz}\). If the designated speed is slower than 10 Hz , the zero return will operate at 10 Hz and when the designated speed is faster than 200 kHz , the zero return will operate at 200 kHz . For SC series MPU, the 32 -bit instruction can designate the range of speed, which is \(100 \sim 100,000 \mathrm{~Hz}\). If the designated speed is slower than 100 Hz , the zero return will operate at 100 Hz , and when the designated speed is faster than 100 kHz , the zero return will operate at 100 kHz .
5. \(\mathbf{S}_{\mathbf{2}}\) is the designated low speed after the near point signal (DOG) is On. EH2/SV/EH3/SV2 series MPU can designate the range of \(\mathbf{S}_{2}\), which is \(10 \sim 32,767 \mathrm{~Hz}\) and SC series MPU can designate the range \(100 \sim\) \(100,000 \mathrm{~Hz}\).
6. \(S_{3}\) is the designated near point signal (DOG) input (input from A contact). In EH2/SV/EH3/SV2 series MPU, if devices other than the external output device (X10 ~ X17), e.g. X, Y, M, S are designated, they will be affected by the scan period, resulting in dispersion of the zero point. In addition, please note that the MPU cannot designate the same input points X10 ~ X17 as those designated by DCNT and PWD instructions. SC series MPU can only designate X10 and X11 and cannot designate the same input points as those designated by DCNT instruction.
7. EH series MPU has two groups of A/B phase pulse output, \(\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1\) ) and \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\); EH2/SV/EH3/SV2 series MPU has four groups of A/B phase pulse output, \(\mathrm{CH} 0(\mathrm{Y} 0, \mathrm{Y} 1), \mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3), \mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) and CH 3 (Y6, Y7). See remarks for the setup methods.
8. Zero return output device in different models:
\begin{tabular}{|l|c|c|c|}
\hline Model & SC MPU & EH MPU & EH2/SV/EH3/SV2 MPU \\
\hline Zero return output & Y10, Y11 & Y0, Y2 & Y0, Y2, Y4, Y6 \\
\hline
\end{tabular}
9. \(\mathrm{EH} 3 / \mathrm{SV} 2\) : The instruction DZRN can be used to detect the limit switch, nake the pulsed output stop at the positive position, search for the \(Z\) phase, and output a certain number of displacement. Therefore, when the instrcution is writtem, the input number of the DOG point should be consisten with the description in the table below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Output point number (D)} & YO & Y2 & Y4 & Y6 \\
\hline \multicolumn{2}{|l|}{Corresponding output point number} & Y1 & Y3 & Y5 & Y7 \\
\hline \multicolumn{2}{|r|}{DOG point number ( \(\mathbf{S}_{3}\) )} & X2 & X6 & X12 & X16 \\
\hline \multicolumn{2}{|r|}{Disabling the left limit} & M1570=On & M1571=On & M1572=On & M1573=On \\
\hline \multicolumn{2}{|r|}{Left limit input point} & X3 & X7 & X13 & X17 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
The left limit switch is triggerred by a rising-edge signal or a falling-edge signal. (OFF: Rising-edge signal; ON: Falling-edge signal) \\
(EH3 V1.40/SV2 V1.20 and above)
\end{tabular}} & M1584 & M1585 & M1586 & M1587 \\
\hline \multicolumn{2}{|l|}{Stopping at the right side of DOG} & M1574=On & M1575=On & M1576=On & M1577=On \\
\hline \multirow[b]{2}{*}{Searching for the \(Z\) phase (M1578=Off)} & Z phase number & X1 & X5 & X11 & X15 \\
\hline & The number of times the \(Z\) phase is searched for is stored in D1312. & \multicolumn{4}{|l|}{Positive value: Searching for the \(Z\) phase in the positive direction Negative value: Searching for the \(Z\) phase in the negative direction} \\
\hline Number of displacement (M1578=On) & The number of displacement is stored in D1312. & \multicolumn{4}{|l|}{\begin{tabular}{l}
Positive value: The pulse output is in the positive direction \\
Negative value: The pulse output is in the negative direction
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Clearing the output (M1346=On)} & Y10 & Y11 & Y12 & Y13 \\
\hline
\end{tabular}
10. When executing API 158 DRVI (releative positioning) or API 159 DRVA (absolute positioning), PLC will automatically store the increasing or decreasing forward/reverse pulses in the present value registers. For EH2/SV/EH3/SV2 series MPU, Y0: D1337, D1336; Y2: D1339, D1338, Y4: D1376, D1375; Y6: D1378, D1377. For SC series MPU, Y10: D1348, D1349; Y11: D1350, D1351. In this way, you can keep track of the position of the machine at any time. However, due to that the data will be lost when the power of the PLC is switched off, you have to enter the zero point position of the machine when executing zero return for the first time.

\section*{Program Example:}

When M10= On, Y0 output pulses start to operate zero return at the frequency of 20kHz. When the zero return meets DOG X2 \(=\mathrm{On}, \mathrm{Y} 0\) output pulses will start to operate by creep speed 1 kHz until X 2 is Off.
\begin{tabular}{|c|c|c|c|c|c|}
\hline M10 \\
\hline ZRN & K20000 & K1000 & X2 & Y0 \\
\hline
\end{tabular}

\section*{Remarks:}
1. Timing chart of the reset signal output for EH2/SV/EH3/SV2 series MPU. (SC series MPU does not support this function.)
a) When the reset signal flag M1346 = On, after zero return is completed, the PLC can send the reset signal to the servo drive and the signal will last for approximately 20 ms . After 20 ms , the reset signal will return to Off again.
b) Output devices for reset signals of EH2/SV/EH3/SV2 series MPU:

CH0 (Y0, Y1) reset output device (Y10)
\(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\) reset output device (Y11)
\(\mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) reset output device (Y12)
CH3 (Y6, Y7) reset output device (Y13)


Note: The designated devices, \(\mathrm{X}, \mathrm{Y}, \mathrm{M}\), and S, other than the external input devices X10 ~ X17 will be affected by the scan period, 2 times of the scan period at worst.
2. The zero return operation:
a) When ZRN instruction is executed, the frequency of the first acceleration segment of \(\mathrm{CH} 0(\mathrm{CH} 1)\) in EH2/SV/EH3/SV2 series MPU is set by D1340 (D1352). In SC series MPU, CH0 (CH1) will set creep speed as the start frequency. The acceleration time of EH2/SV/EH3/SV2/SC series MPU is set by D1343 (D1353). S1 will start to move when the acceleration reaches the zero return speed.
b) When the DOG signal goes from Off to On, the zero return speed will decelerate to \(\mathbf{S}_{2}\) in the acceleration/deceleration time.
c) When the DOG signal goes from On to Off, the pulse output will immediately stop, 0 will be written in the present value registers (D1337, D1336) of CH0 pulses, (D1339, D1338) of CH1 pulses, (D1376, D1375) of CH2 pulses, and (D1378, D1377) of CH 3 pulses in an EH2/SV/EH3/SV2 series MPU, and 0 will also be written in (D1349, D1348) of Y10 (CH0) pulses or (D1351, D1350) of Y11 (CH1) pulses in an SC series MPU.
d) When the DOG signal goes from On to Off and the reset signal flag M1346=On, Y4 ( CH 0 ) or Y5 ( CH 1\()\) in EH series MPU will output a reset signal; Y10 \((\mathrm{CH} 0)\), \(\mathrm{Y} 11(\mathrm{CH} 1), \mathrm{Y} 12(\mathrm{CH} 2)\) and \(\mathrm{Y} 13(\mathrm{CH} 3)\) in an EH2/SV/EH3/SV2 series MPU will output a reset signal.
e) For EH2/SV/EH3/SV2 series MPU, when the pulse output is completed and M1029, M1030, M1036 and M1037 are enabled, indication flag M1336 sent by CH 0 pulses, M1337 by \(\mathrm{CH} 1, \mathrm{M} 1522\) by CH 2 and M 1523 by CH3 will be Off. For SC series MPU, when the pulse output is completed, M1102 and M1103 will be
enabled.
f) When the instruciton is enabled in an EH2/SV series MPU, the EH2/SV series MPU searches for the DOG signal in the negative direction.
g) When the instruciton is enabled in an EH3/SV2 series MPU, and the negative limit function is selected, the PLC searches for the DOG signal in the negative direction. If the PLC meets the negtavie limit during the process, it will search for the DOG signal in the positive direction. When the instruciton is enabled in an EH3/SV2 series MPU, but the negative limit function is not enabled, the PLC automatically refers to the present position of the axis, and searches for the DOG signal in the direction of 0 . For example, if the poresent position of CH (D1336, D1137) is greater than or equal to \(0, \mathrm{CH} 0\) will search for the DOG signal in the negative direction. If the poresent position of \(\mathrm{CH} 0(\mathrm{D} 1336, \mathrm{D} 1137)\) is less than \(0, \mathrm{CH} 0\) will search for the DOG singal in the positive direction.

h) ZRN (DZRN) instruction is applicable to servo motor with absolute positioning function, e.g. Mitsubishi MR-J2-A servo drive. Even when the power is switched off, the current position can still be recorded. In addition, the current position of servo drive can be read by API 155 DABSR of EH2/SV/EH3/SV2/SC series MPU; therefore only one zero return operation is required and no zero return has to be done after the power is switched off.
i) When the drive contact of ZRN instruction is \(\mathrm{On}, \mathrm{CHO}(\mathrm{CH} 1)\) will read the acceleration/deceleration time set in D1343 (D1353) and accelerate to the zero return speed, waiting for the DOG and decelerate to creep speed. When the DOG is Off, the pulse output will stop immediately
j) For SC series MPU, many ZRN instructions can be compiled in the program but only one instruction can be executed when the PLC program is being executed. For example, provided there is already an instruction enabling Y10 output, other instructions enabling also Y10 output will not be executed. The principle of the instruction execution is "first come, first executed".
k) For SC series MPU, when you designate Y10 as the output device, you can choose either X10 or X11 for DOG input in the "acceleration to deceleration" segment. In other words, when designating Y11 as the output device, you can also choose either X10 or X11 for DOG input.
I) For SC series MPU, due to that this instruction does not compare between the number of output pulses, the DOG input (from Off to On) will therefore become the trigger of acceleration converting to deceleration. The "On" time of DOG has to be longer than 10us; otherwise the signal may be regarded as useless interference.
m) For SC series MPU, when the execution of the instrucion enters the deceleration segment and the output frequency reaches creep speed (end frequency), the output will stop when DOG goes from On to Off.
n) For SC series MPU, the current accumulated number of pulses of Y10 is stored in D1348 and D1349 and that of Y11 is stored in D1350 and D1351. Then the program operates from STOP to RUN or from RUN to STOP, the contents will not be cleared to 0 .
o) For SC series MPU, M1102 = On indicates the end of Y10 pulse output; M1103 = On indicates the end of Y11 pulse output.
p) For SC series MPU, after the instruction is executed, all parameters cannot be modified unless the execution of the instruction stops.
q) For SC series MPU, when the execution of the stops, all outputs will stop immediately no matter what type of the output it is.
\begin{tabular}{|l||c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & Function \\
\hline 157 & D & PLSV & & S & \(D_{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{4}{*}{PLSV: 7 steps DPLSV: 13 steps}} \\
\hline S & & & & & & * & * & * & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline \(\mathrm{D}_{1}\) & & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & * & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH SV & \[
\begin{array}{|l|l|}
\hline \mathrm{EH3} \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{ES Ex} & X SS & SA S & \multicolumn{2}{|l|}{Sx Sc} & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SX & SC & \[
\mathrm{EH} \mid \mathrm{S}
\] & \multicolumn{2}{|l|}{\[
\begin{array}{l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}

> S: Pulse output frequency \(\quad \mathbf{D}_{1}:\) Pulse output device (please use transistor output module) \(\quad D_{2}\) : Output device for the signal of rotation direction

\section*{Explanations:}
1. See remarks for the setting range of \(S, D_{1}\) and \(D_{2}\).
2. Flag: see remarks of API 155 ABSR and API 158 DDRVI for more details.
3. \(\mathbf{S}\) is the designated pulse output frequency. The 16 -bit instruction can designate its range \(0 \sim+32,767 \mathrm{~Hz}, 0 \sim\) \(-32,768 \mathrm{~Hz}\). The ranges designated by \(32-\) bit instruction are \(0 \sim+200,000 \mathrm{~Hz}\) and \(0 \sim-200,000 \mathrm{~Hz}\). " \(+/-\) " signs indicate forward/backward directions. During the pulse output, the frequency can be changed, but not the frequencies of different directions.
4. \(\mathbf{D}_{\mathbf{1}}\) is the pulse output device. EH series MPU can designate \(Y 0\) and \(Y 2\) and \(E H 2 / S V / E H 3 / S V 2\) series MPU can designate Y0, Y2, Y4 and Y6.
5. The operation of \(\mathbf{D}_{2}\) corresponds to the "+" or "-" of \(\mathbf{S}\). When \(\mathbf{S}\) is "+", \(\mathbf{D}_{2}\) will be On; when \(\mathbf{S}\) is "-", \(\mathbf{D}_{2}\) will be Off.
6. PLSV instruction does not have settings for acceleration and deceleration. Please use API 67 RAMP for the acceleration and deceleration of pulse output frequency.
7. During the pulse output executed by PLSV instruction, the drive contact turning Off will result in the immediate stop of the output without going through a deceleration.
8. When the absolute value of the input frequency during the execution of DPLSV is bigger than 200 kHz , the output will operate at 200 kHz .
9. For EH/EH2/SV/EH3/SV2 series MPU, D1222, D1223, D1383 and D1384 are the time differences sent between the direction setup signal and pulse output points of \(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3 .
10. For EH/EH2/SV/EH3/SV2 series MPU, M1305, M1306, M1532 and M1533 are the flags of the direction signals of \(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3 . When S is " + ", the output will operate towards a forward direction and the flag will go Off. When \(S\) is "-", the output will operate towards a backward direction and the flag will go On.

\section*{Program Example:}

When \(\mathrm{M} 10=\mathrm{On}, \mathrm{Y} 0\) will output pulses at \(20 \mathrm{kHz} . \mathrm{Y} 5=\mathrm{On}\) indicates forward pulses.
\begin{tabular}{|c|c|c|c|c|} 
M10 & \multicolumn{1}{|c|}{} & PLSV & K20000 & Yo \\
\hline & & Y5 \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Number of output pulses (relative designation) \(\quad \mathbf{S}_{2}\) : Pulse output frequency \(\quad \mathbf{D}_{1}\) : Pulse output device (please use transistor output module) \(\quad \mathbf{D}_{2}\) : Output device for the signal of rotation direction

\section*{Explanations:}
1. See remarks for the setting range of \(\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{D}_{1}\) and \(\mathbf{D}_{2}\).
2. \(S_{1}\) and \(S_{2}\) of SC series MPU only support device \(K, H\) and \(D\).
3. Flag: see remarks for more details.
4. \(S_{1}\) is the number of output pulses (relative designation). For EH/EH2/SV/EH3/SV2 series MPU, the 16-bit instruction can designate the range \(-32,768 \sim+32,767\). The range designated by 32 -bit instruction is \(-2,147,483,648 \sim+2,147,483,647\). For SC series MPU, the 32-bit instruction can designate the range \(-2,147,483,648 \sim+2,147,483,647\). "+/-" signs indicate forward/backward directions.
5. \(S_{2}\) is the designated pulse output frequency. For \(E H / E H 2 / S V / E H 3 / S V 2\) series MPU, the 16-bit instruction can designate its range \(10 \sim 32,767 \mathrm{~Hz}\). The range designated by 32 -bit instruction is \(10 \sim 200,000 \mathrm{~Hz}\). For SC series MPU, the 32-bit instruction can designate the range \(100 \sim 100,000 \mathrm{~Hz}\).
6. EH series MPU has two groups of A/B phase pulse output, \(\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1\) ) and \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\). EH2/SV/EH3/SV2 series MPU has four groups of A/B phase pulse output, \(\mathrm{CH}(\mathrm{Y} 0, \mathrm{Y} 1), \mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3), \mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) and CH 3 (Y6, Y7). See remarks for the setup methods.
7. Pulse output device \(\mathbf{D}_{1}\) in different models
\begin{tabular}{|l|c|c|c|}
\hline Model & SC MPU & EH MPU & EH2/SV/EH3/SV2 MPU \\
\hline Pulse output end & Y10, Y11 & Y0, Y2 & Y0, Y2, Y4, Y6 \\
\hline
\end{tabular}
8. The operation of \(\mathbf{D}_{2}\) corresponds to the " + " or "-" of \(\mathbf{S}_{1}\). When \(\mathbf{S}_{1}\) is " + ", \(\mathbf{D}_{2}\) will be On; when \(\mathbf{S}_{1}\) is "-", \(\boldsymbol{D}_{2}\) will be Off. \(\mathbf{D}_{\mathbf{2}}\) will not be Off immediately after the pulse output is over; it will be Off only when the drive contact of the instruction turns Off.
9. For \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / E H 3 / \mathrm{SV} 2\) series MPU, \(\mathbf{S}_{1}\) is
- The 32-bit data stored in the present value registers D1337 (high word) and D1336 (low word) of CH0 (Y0, Y1).
- The 32-bit data stored in the present value registers D1339 (high word) and D1338 (low word) of CH1 (Y2, Y3).
- The 32-bit data stored in the present value registers D1376 (high word) and D1375 (low word) of CH2 (Y4,

Y5).
- The 32-bit data stored in the present value registers D1378 (high word) and D1377 (low word) of CH3 (Y5, Y6).
- When in backward direction, the content in the present value register will decrease.
10. For SC series MPU, \(\mathbf{S}_{1}\) is the 32-bit data stored in the present value registers D1348 (low word) and D1349 (high word) of CH0 (Y10) or the 32-bit data stored in the present value registers D1350 (low word) and D1351 (high word) of \(\mathrm{CH} 1(\mathrm{Y} 11)\). When in backward direction, the content in the present value register will decrease. When the program goes from STOP to RUN or from RUN to STOP, the content in the present value register will remain unchanged.
11. When DRVI instruction is executing pulse output, you cannot change the content of all operands. The changes will be valid next time when DRVI instruction is enabled.
12. For EH/EH2/SV/EH3/SV2 series MPU, when the drive contact of DRVI instruction is Off, even the indication flag M1336 sent by CH 0 pulses, M 1337 sent by CH 1 pulses, M 1522 sent by CH 2 pulses and M 1523 sent by CH3 pulses are "On", DRVI instruction will not be driven again.
13. When the absolute value of the input frequency of DDRVI insturction in EH/EH2/SV/EH3/SV2 series MPU is larger than 200 kHz , the output will be operated at 200 kHz . When the absolute value of the input frequency is smaller than 10 Hz , the output will be operated at 10 Hz .
14. D1343 (D1353) is for setting up the time of the first acceleartion segment and last deceleration segment of CH0 (CH1). The acceleration and deceleration time of EH/EH2/SV/EH3/SV2 series MPU is \(1 \sim 10,000 \mathrm{~ms}\). The output will be operated for the default 100 ms if the time is longer than \(10,000 \mathrm{~ms}\). The time range for SC series MPU is \(50 \sim 20,000 \mathrm{~ms}\). The output will be operated for \(20,000 \mathrm{~ms}\) or 50 ms if the time set is longer than \(20,000 \mathrm{~ms}\) or shorter than 50 ms .
15. D1340 (D1352) is for setting up the start/end frequency of \(Y 10\) (Y11). If \(S_{2}\) is less than or equals start/end frequency, the pulse output frequency will be executed by the start/end frequency.
16. For \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2\) series MPU, M1305 (M1306) is the direction signal of \(\mathrm{CH} 0(\mathrm{CH} 1)\). When \(\mathbf{S}_{1}\) is a positive number, the output will be operated in a forward direction and M1305 (M1306) will be Off. When \(\mathbf{S}_{1}\) is a negative number, the output will be operated in a backward direction and M1305 (M1306) will be On.

\section*{Program Example:}

When M10= On, Y0 will output 20,000 pulses (relative designation) at 2 kHz . \(\mathrm{Y} 5=\mathrm{On}\) indicates the pulses are executed in forward direction.
\begin{tabular}{|c|c|c|c|c|c|} 
M10 & DRVI & K20000 & K2000 & Y0 & Y5 \\
\hline
\end{tabular}

\section*{Remarks:}
1. Explanations on EH/EH2/SV/EH3/SV2 series MPU:
a) Relative position control: Designating the traveling distance starting from the current position by " \(+/-\) " signs; also known as a relative driving method.

b) Settings of relative positioning and the acceleration/deceleration speed:

2. Explanations on SC series MPU:
a) Relative position control: Designating the traveling distance starting from the current position by " + / -" signs; also known as a relative driving method.

b) Settings of relative positioning and the acceleration/deceleration speed: D1343 (D1353) is for settings of the time of the first acceleration segment and last deceleration segment of Y10 (Y11). D1340 (D1352) is for settings of start/end frequency of Y10 (Y11).

c) Many DRVI instructions can be compiled synchronously in the program, but only one instruction can be activated whenever the PLC executes the program. For example, if Y10 output has already been activated by an instruction, other instructions that are also used to activate Y10 output will not be excecuted. Therefore, the principle of the instruction activation sequence is "first activated, first executed".
d) When Y 10 is activated by DDRVI instruction, the output function of Y 10 will be disabled until DDRVI is OFF. The same rule applies to Y11.
e) Once the instruction is activated, all other parameters cannot be modified until the instruction is disabled.
f) When the instruction is disabled but the output has not yet completed:

M1334 \(=\) On indicates that Y10 will stop output immediately.
M1334 = Off indicates that Y10 will decelerate according to the deceleration time till it reaches end frequency and stop the pulse output.
M1335 corresponds to Y11 output and applies the same rule.
3. Flags for SC series MPU:

M1102: \(\quad\) M1102 \(=\) On after Y10 pulse output is completed.
M1103: \(\quad\) M1103 \(=\) On after Y11 pulse outout is completed.
M1334: Y10 pulse output stops immediately without deceleration when the pulse output instruction is disabled.

M1335: Y11 pulse output stops immediately without deceleration when the pulse output instruction is disabled.

M1347: For SC (V1.6 and later versions). Auto reset after Y0 output is completed.
M1348: For SC (V1.6 and later versions). Auto reset after Y1 output is completed.
M1524: For SC (V1.6 and later versions). Auto reset after Y10 output is completed.
M1525: For SC (V1.6 and later versions). Auto reset after Y11 output is completed.
4. Special registers for SC series MPU:

D1348: Low word of the current number of Y10 output pulses.

D1349: High word of the current number of Y10 output pulses.
D1350: Low word of the current number of Y11 output pulses.
D1351: High word of the current number of Y11 output pulses..
D1340: Settings of the first start frequency and the last end frequency of Y10 output pulses.
D1352: Settings of the first start frequency and the last end frequency of Y11 output pulses.
D1343: Settings of the acceleration/deceleration time of Y10 output pulses.
D1353: Settings of the acceleration/deceleration time of Y11 output pulses.
5. Flags for EH/EH2/SV/EH3/SV2 series MPU:

M1010: For EH/EH2/SV/EH3/SV2, when M1010 = On, \(\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3 will output pulses when END instruction is being executed. M1010 will be Off automatically when the output starts.
M1029: For EH/EH2/SV/EH3/SV2, M1029 = On after CH0 pulse output is completed.
M1030: For EH/EH2/SV/EH3/SV2, M1030 = On after CH1 pulse output is completed.
M1036: For EH2/SV/EH3/SV2, M1036 = On after CH2 pulse output is completed.
M1037: For EH2/SV/EH3/SV2, M1037 = On after CH3 pulse output is completed.
M1119 For EH2/SV/EH3/SV2, the instruction DDRVI/DDRVA is enabled when M1119 is On.
M1257 For EH2/SV/EH3/SV2, the acceleration/deceleration slope of the high-speed pulse output is an S curve.
M1305: For EH/EH2/SV/EH3/SV2, direction signal of CH .
M1306: For EH/EH2/SV/EH3/SV2, direction signal of CH 1 .
M1334: For \(\mathrm{EH}, \mathrm{CHO}\) pulse output pauses.
For EH2/SV/EH3/SV2, CH0 pulse output stops.
M1308 For EH/EH2/SV/EH3/SV2,
Off->On: The first high-speed pulse output CH0 (Y0, Y1) pauses immediately.
On->Off: Continuing to output the pulses which have not been output
M1309 For EH/EH2/SV/EH3/SV2,
Off->On: The first high-speed pulse output CH1 (Y2, Y3) pauses immediately.
On->Off: Continuing to output the pulses which have not been output
M1310 For EH/EH2/SV/EH3/SV2,
Off->On: The first high-speed pulse output CH2 (Y4, Y5) pauses immediately.
On->Off: Continuing to output the pulses which have not been output
M1311 For EH/EH2/SV/EH3/SV2,
Off->On: The first high-speed pulse output CH3 (Y6, Y7) pauses immediately.
On->Off: Continuing to output the pulses which have not been output
M1335: For EH, CH1 pulse output pauses.
For EH2/SV/EH3/SV2, CH1 pulse output stops.
M1336: For EH/EH2/SV/EH3/SV2, "CH0 sends out pulses" indication.
M1337: For EH/EH2/SV/EH3/SV2, "CH1 sends out pulses" indication.
M1347: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH0 pulse output.

M1348: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH1 pulse output.
M1520: For EH2/SV/EH3/SV2, CH2 pulse output stops.
M1521: For EH2/SV/EH3/SV2, CH3 pulse output stops.
M1522: For EH2/SV/EH3/SV2, "CH2 sends out pulses" indication.
M1523: For EH2/SV/EH3/SV2, "CH3 sends out pulses" indication.
M1524: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH 2 pulse output.
M1525: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH3 pulse output.
M1534: For EH2/SV/EH3/SV2, designated deceleration time of CH (should be used with D1348).
M1535: For EH2/SV/EH3/SV2, designated deceleration time of CH 1 (should be used with D1349).
M1536: For EH2/SV/EH3/SV2, designated deceleration time of CH 2 (should be used with D1350).
M1537: For EH2/SV/EH3/SV2, designated deceleration time of CH 3 (should be used with D1351).
M1532: For EH2/SV/EH3/SV2, direction signal of CH2.
M1533: For EH2/SV/EH3/SV2, direction signal of CH3.
6. Special registers for EH/EH2/SV/EH3/SV2 series MPU:

D1127: For EH2/SV/EH3/SV2, the number of pulses in the acceleration section in the position instruction (low word)

D1128: For EH2/SV/EH3/SV2, the number of pulses in the acceleration section in the position instruction (high word)
D1133: For EH2/SV/EH3/SV2, the number of pulses in the deceleration section in the position instruction (low word)

D1134: For EH2/SV/EH3/SV2, the number of pulses in the deceleration section in the position instruction (high word)
D1220: For EH/EH2/SV/EH3/SV2, phase setting of CH0 (Y0, Y1): D1220 determines the phase by the last two bits; other bits are invalid.
1. \(\mathrm{KO}: \mathrm{YO}\) output
2. K 1 : Y0, Y1 AB-phase output; \(A\) ahead of \(B\).
3. K2: Y0, Y1 AB-phase output; \(B\) ahead of \(A\).
4. K3: Y1 output

D1221: For EH/EH2/SV/EH3/SV2, phase setting of CH1 (Y2, Y3): D1221 determines the phase by the last two bits; other bits are invalid.
1. KO: Y2 output
2. \(\mathrm{K} 1: \mathrm{Y} 2, \mathrm{Y} 3 \mathrm{AB}\)-phase output; \(A\) ahead of \(B\).
3. K2: Y2, Y3 AB-phase output; \(B\) ahead of \(A\).
4. K3: Y3 output

D1222: For EH/EH2/SV/EH3/SV2, the time difference between the direction signal and pulse output sent by CHO .
D1223: For EH/EH2/SV/EH3/SV2, the time difference between the direction signal and pulse output sent by CH 1 .
D1229: For EH2/SV/EH3/SV2, phase setting of CH2 (Y4, Y5): D1229 determines the phase by the
last two bits; other bits are invalid.
1. KO: Y4 output
2. \(\mathrm{K} 1: \mathrm{Y} 4, \mathrm{Y} 5 \mathrm{AB}\)-phase output; \(A\) ahead of \(B\).
3. K2: Y4, Y5 AB-phase output; \(B\) ahead of \(A\).
4. K3: Y5 output

D1230: For EH2/SV/EH3/SV2, phase setting of CH3 (Y6, Y7): D1230 determines the phase by the last two bits; other bits are invalid.
1. KO: Y6 output
2. K1: Y6, Y7 AB-phase output; \(A\) ahead of \(B\).
3. K2: Y6, Y7 AB-phase output; B ahead of A.
4. K3: Y7 output

D1336: For EH/EH2/SV/EH3/SV2, low word of the current number of output pulses from CH 0 .
D1337: For EH/EH2/SV/EH3/SV2, high word of the current number of output pulses from CH 0 .
D1338: For EH/EH2/SV/EH3/SV2, low word of the current number of output pulses from CH 1 .
D1339: For EH/EH2/SV/EH3/SV2, high word of the current number of output pulses from CH 1 .
D1340: For EH/EH2/SV/EH3/SV2, settings of the first start frequency and the last end frequency of CHO.

D1343: For EH/EH2/SV/EH3/SV2, settings of acceleration/deceleration time for CH0 pulse output.
D1348: For EH2/SV/EH3/SV2, deceleration time for CH 0 pulse output when M1534 \(=\mathrm{On}\).
D1349: For EH2/SV, deceleration time for CH1 pulse output when M1535 = On.
D1350: For EH2/SV, deceleration time for CH2 pulse output when M1536 = On.
D1351: For EH2/SV, deceleration time for CH3 pulse output when M1537 = On.
D1352: For EH/EH2/SV/EH3/SV2, settings of the first start frequency and the last end frequency of CH1.

D1353: For EH/EH2/SV/EH3/SV2, settings of acceleration/deceleration time for CH 1 pulse output.
D1375: For EH2/SV/EH3/SV2, low word of the current number of output pulses from CH 2 .
D1376: For EH2/SV/EH3/SV2, high word of the current number of output pulses from CH 2 .
D1377: For EH2/SV/EH3/SV2, low word of the current number of output pulses from CH 3 .
D1378: For EH2/SV/EH3/SV2, high word of the current number of output pulses from CH 3 .
D1379: For EH2/SV/EH3/SV2, settings of the first start frequency and the last end frequency of CH 2 .
D1380: For EH2/SV/EH3/SV2, settings of the first start frequency and the last end frequency of CH3.
D1381: For EH2/SV/EH3/SV2, settings of acceleration/deceleration time for CH 2 pulse output.
D1382: For EH2/SV/EH3/SV2, settings of acceleration/deceleration time for CH 3 pulse output.
D1383: For EH2/SV/EH3/SV2, the time difference between the direction signal and pulse output sent by CH 2 .

D1384: For EH2/SV/EH3/SV2, the time difference between the direction signal and pulse output sent by CH 3 .
\begin{tabular}{|l||l|l|lll|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{3}{|c|}{ Operands } & & Function \\
\hline 159 & D & DRVA & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(D_{1}\) & \(D_{2}\) & Drive to Absolute \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{DRVA: 9 steps DDRVA: 17 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & * & & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline \(\mathrm{D}_{1}\) & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & * & * & * & * & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS S & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Number of output pulses (absolute designation) \(\quad \mathbf{S}_{2}\) : Pulse output frequency \(\quad \mathbf{D}_{\mathbf{1}}\) : Pulse output device (please use transistor output module) \(\quad \mathbf{D}_{2}\) : Output device for the signal of rotation direction

\section*{Explanations:}
1. See remarks for the setting range of \(\mathbf{S}_{1}, \mathbf{S}_{2}, \mathbf{D}_{1}\) and \(\mathbf{D}_{2}\).
2. \(S_{1}\) and \(S_{2}\) of SC series MPU only support device \(K, H\) and \(D\).
3. Flag: see remarks of API 158 DRVI for more details.
4. \(S_{1}\) is the number of output pulses (absolute designation). For EH/EH2/SV/EH3/SV2 series MPU, the 16-bit instruction can designate the range \(-32,768 \sim+32,767\). The range designated by 32 -bit instruction is \(-2,147,483,648 \sim+2,147,483,647\). For SC series MPU, the 32 -bit instruction can designate the range \(-2,147,483,648 \sim+2,147,483,647\). "+/-" signs indicate forward/backward directions.
5. \(\mathbf{S}_{\mathbf{2}}\) is the designated pulse output frequency. For \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2\) series MPU, the 16 -bit instruction can designate its range \(10 \sim 32,767 \mathrm{~Hz}\). The range designated by 32 -bit instruction is \(10 \sim 200,000 \mathrm{~Hz}\). For SC series MPU, the 32-bit instruction can designate the range \(100 \sim 100,000 \mathrm{~Hz}\).
6. EH series MPU has two groups of A/B phase pulse output, \(\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1)\) and \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\). EH2/SV series MPU has four groups of A/B phase pulse output, \(\mathrm{CH} 0(\mathrm{YO}, \mathrm{Y} 1), \mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3), \mathrm{CH} 2(\mathrm{Y} 4, \mathrm{Y} 5)\) and \(\mathrm{CH} 3(\mathrm{Y} 6, \mathrm{Y} 7)\). See remarks for the setup methods.
7. Pulse output device \(\mathbf{D}_{1}\) in different models
\begin{tabular}{|l|c|c|}
\hline Model & SC MPU & EH/EH2/SV/EH3/SV2 MPU \\
\hline Pulse output end & Y10, Y11 & Y0, Y2 \\
\hline
\end{tabular}
8. When \(\mathbf{S}_{1}\) is larger than the current relative position, \(\mathbf{D}_{\mathbf{2}}\) will be Off; when \(\mathbf{S}_{\mathbf{1}}\) is smaller than the current relative position, \(\mathbf{D}_{\mathbf{2}}\) will be On. \(\mathbf{D}_{\mathbf{2}}\) will not be Off immediately after the pulse output is over; it will be Off only when the drive contact of the instruction turns Off.
9. For \(\mathrm{EH} / \mathrm{EH} 2 / \mathrm{SV} / \mathrm{EH} 3 / \mathrm{SV} 2\) series \(\mathrm{MPU}, \mathbf{S}_{1}\) is
- The 32-bit data stored in the present value registers D1337 (high word) and D1336 (low word) of CH0 (Y0, Y1).
- The 32-bit data stored in the present value registers D1339 (high word) and D1338 (low word) of CH1 (Y2, Y3).
- The 32-bit data stored in the present value registers D1376 (high word) and D1375 (low word) of CH2 (Y4,

\section*{Y5).}
- The 32-bit data stored in the present value registers D1378 (high word) and D1377 (low word) of CH3 (Y5, Y6).
When in backward direction, the content in the present value register will decrease.
10. For SC series MPU, \(\mathbf{S}_{\mathbf{1}}\) is the 32 -bit data stored in the present value registers D1348 (low word) and D1349 (high word) of CH 0 (Y10) or the 32-bit data stored in the present value registers D1350 (low word) and D1351 (high word) of CH 1 (Y11). When in backward direction, the content in the present value register will decrease. When the program goes from STOP to RUN or from RUN to STOP, the content in the present value register will remain unchanged.
11. For EH/EH2/SV/EH3/SV2 series MPU, when DRVA instruction is executing pulse output, you cannot change the content of all operands. The changes will be valid next time when DRVA instruction is enabled.
12. For EH/EH2/SV/EH3/SV2 series MPU, when the drive contact of DRVA instruction is Off, the pulse output will decelerate to stop and M1029 and M1030 will be enabled. For SC series MPU, the pulse output will decelerate to stop and M1102 and M1103 will be enabled.
13. For EH/EH2/SV/EH3/SV2 series MPU, when the drive contact of DRVA instruction is Off, even the indication flag M1336 sent by CH 0 pulses or M1337 sent by CH 1 pulses are "On", DRVA instruction will not be driven again.
14. When the absolute value of the input frequency of DRVA and DDRVA insturctions in EH/EH2/SV/EH3/SV2 series MPU is larger than 200 kHz , the output will be operated at 200 kHz . When the absolute value of the input frequency is smaller than 10 Hz , the output will be operated at 10 Hz .
15. D1343 (D1353) is for setting up the time of the first acceleartion segment and last deceleration segment of \(\mathrm{CH} 0(\mathrm{CH} 1)\). The acceleration and deceleration time of \(\mathrm{EH} / \mathrm{EH} 2 / S V / E H 3 / S V 2\) series MPU is \(1 \sim 10,000 \mathrm{~ms}\). The output will be operated for the default 100 ms if the time is longer than \(10,000 \mathrm{~ms}\). The time range for SC series MPU is \(50 \sim 20,000 \mathrm{~ms}\). The output will be operated for \(20,000 \mathrm{~ms}\) or 50 ms if the time set is longer than \(20,000 \mathrm{~ms}\) or shorter than 50 ms .
16. For EH/EH2/SV/EH3/SV2 series MPU, M1305 (M1306) is the direction signal of \(\mathrm{CH} 0(\mathrm{CH} 1)\). When \(\mathbf{S}_{1}\) is a positive number, the output will be operated in a forward direction and M1305 (M1306) will be Off. When \(\mathbf{S}_{1}\) is a negative number, the output will be operated in a backward direction and M1305 (M1306) will be On.
17. D1340 (D1352) is for setting up the start/end frequency of \(Y 10\) (Y11). If \(\mathbf{S}_{\mathbf{2}}\) is less than or equals start/end frequency, the pulse output frequency will be executed by the start/end frequency.

\section*{Program Example:}

When M10= On, Y0 will output 20,000 pulses (absolute designation) at 2 kHz . \(\mathrm{Y} 5=\mathrm{On}\) indicates the pulses are executed in forward direction.
\begin{tabular}{|c|c|c|c|c|c|} 
M10 & DRVA & K20000 & K2000 & YO & Y5 \\
\hline
\end{tabular}

\section*{Remarks:}
1. Explanations on EH/EH2/SV/EH3/SV2 series MPU:
a) Absolute position control: Designating the traveling distance starting from the zero point (0); also known as a absolute driving method.

b) Settings of absolute positioning and the acceleration/deceleration speed:

2. Explanations on SC series MPU:
a) Absolute position control: Designating the traveling distance starting from the zero point (0); also known as a absolute driving method.

b) Settings of absolute positioning and the acceleration/deceleration speed: D1343 (D1353) is for settings of the time of the first acceleration segment and last deceleration segment of Y10 (Y11). D1340 (D1352) is for settings of start/end frequency of Y10 (Y11).

c) Many DRVA instructions can be compiled synchronously in the program, but only one instruction can be activated whenever the PLC executes the program. For example, if Y10 output has already been activated by an instruction, other instructions that are also used to activate Y10 output will not be excecuted.

Therefore, the principle of the instruction activation sequence is "first activated, first executed".
d) When Y 10 is activated by DDRVA instruction, the output function of Y 10 will be disabled until DDRVAis OFF. The same rule applies to Y11.
e) Once the instruction is activated, all other parameters cannot be modified until the instruction is disabled.
f) When the instruction is disabled but the output has not yet completed:

M1334 \(=\) On indicates that Y10 will stop output immediately.
M1334 = Off indicates that Y10 will decelerate according to the deceleration time till it reaches end frequency and stop the pulse output.
M1335 corresponds to Y11 output and applies the same rule.
3. See remarks of DDRVI instruction for more details on the flags.
4. Wiring of DVP-EH series and Delta ASDA servo drive:


\section*{Note:}
(a) The parameter setting of Delta ASDA servo drive:

P1-01: position mode
P1-00: pulse input type as Pulse+DIR.
(b) The forward/reverse limit switch should be connected to SERVO AMP.
(c) The "clear pulse" signal will clear the current number of pulses left inside the servo.
5. Wiring of DVP-SC series and Delta ASDA servo drive:


DVP12SC11T+DVP16SP11T

\section*{Note:}
(a) The parameter setting of Delta ASDA servo drive:

P1-01: position mode
P1-00: pulse input type as Pulse+DIR.
(b) The forward/reverse limit switch should be connected to SERVO AMP.
6. Wiring of DVP-EH series PLC and a Mitsubishi MR-J2- \(\square\) A Servo drive:


\section*{Note:}
(a) When detecting an absolute position by using DABSR instruction, the parameter setting of a Mitsubishi MR-J2- \(\square\) A servo drive that connects to Delta EH series PLC:

PO: position mode.
P 1 : using absolute value.
P21: pulse input type as Pulse+DIR.

(b) The forward/reverse limit switch should be connected to SERVO AMP.
(c) When using OP (Z-phase signal) in servo and given that the Z-phase signal is a high-frequency one when the motor is running at high speed, the valid detection can only be possible when the signal is within the range detectable by PLC. When using OP ( \(Z\) phase signal) of the servo, if \(Z\) phase signal is a high frequency signal during high-speed motor operation, the high frequency signal shall be within the available range that can be detected by PLC.
7. Cautions when designing a position control program:
a) There is no limitation on the times of using the position control instructions, API 156 ZRN, API 157 PLSV, API 158 DRVI, and API 159 DRVA. However, the user still have to note that:
i. Do not drive the position control instructions which use the same output \(\mathrm{CHO}(\mathrm{Y} 0, \mathrm{Y} 1)\) or \(\mathrm{CH} 1(\mathrm{Y} 2, \mathrm{Y} 3)\) simultaneously. Otherwise, they will be treated as repeated outputs and cannot function normally.
ii. It is recommended that you use the step ladder instruction (STL) to design the position control program (see the example below).
b) How to use the position control instructions (API 156 ABSR, API 157 PLSV, API 158 DRVI, and API 159 DRVA) and pulse output instructions (API 57 PLSY, API 58 PWM and API 59 PLSR) at the same time. The position control instruction and pulse output instruction share the 32 bits of the present value register (D1337 high word; D1336 low word) of CH0 (Y0, Y1) or the present value register of CH (Y2, Y3), which will make the operation complicated. Therefore, it is recommanded that you replace the pulse output instruction with position control instruction.
c) Explanations on the \((\mathrm{Y} 0, \mathrm{Y} 1)\) pulses from CH 0 and \((\mathrm{Y} 2, \mathrm{Y} 3)\) pulses from CH 1 .

Voltage range: DC5V ~ DC24V
Current range: \(10 \mathrm{~mA} \sim 100 \mathrm{~mA}\)
Output pulse frequency: Y0, Y2 at \(200 \mathrm{kHz} ; \mathrm{Y} 1, \mathrm{Y} 3\) at 10 kHz .
8. Settings of pulse output signals in the operation of position control for \(E H / E H 2 / S V / E H 3 / S V 2\) series MPU:
a) Pulse + DIR (recommended)

b) CW/CCW (limited frequency at 10 kHz )

c) A/B-phase output (limited frequency at 10 kHz )

9. Follow the above output settings of PLC for the pulse input parameters of SERVO AMP or stepping motor.
10. For EH/EH2/SV/EH3/SV2 series MPU, when YO output adopts many high-speed pulse output instructions (PLSY, PWM, PLSR) and position control instructions (ZRN, PLSV, DRVI, DRVA) in a program and these instructions are executed synchronously in the same scan period, PLC will execute the instruction with the fewest step numbers.

Programming example for forward/reverse operation:
For the wiring, see the wiring drawing of DVP-EH series and Mitsubishi MR-J2- \(\square\) A servo drive

One operation mode performs positioning by absolute position:

11. Programming example of using step ladder instruction (STL):

\(※ 1\). If the accel./decel. time (D1343) of CH 1 can be default setting, ( 100 ms ) this program step can be ignored.

\(※ 2\). The max. traveling distance of a JOG operation equals to the max. number of output pulses \((-2,147,483,648 \sim+2,147,483,647)\) of API 158 DDRVI instruction. Please re-execute JOG of the traveling distance exceeds the range.


12. Flags and special registers for SC series MPU:

M1347: For SC (V1.6 and later versions). Auto reset after Y0 output is completed.
M1348: For SC (V1.6 and later versions). Auto reset after Y1 output is completed.
M1524: For SC (V1.6 and later versions). Auto reset after Y10 output is completed.
M1525: For SC (V1.6 and later versions). Auto reset after Y11 output is completed.
13. Flags and special registers for \(E H / E H 2 / S V / E H 3 / S V 2\) series MPU:

M1347: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH0 pulse output.
M1348: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH1 pulse output.
M1524: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH2 pulse output.
M1525: For EH2/SV/EH3/SV2 (V1.4 and later versions). Reset flag for CH3 pulse output.
\begin{tabular}{|l|c|c|c|ccc|cc|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{3}{|c|}{ Operands } & & Function \\
\cline { 1 - 6 } 160 & TCMP & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{S}_{3}\) & S & D & Time Compare \\
\hline
\end{tabular}


\section*{Operands:}
\(S_{1}\) : "Hour" for comparison \(\quad S_{2}\)
RTC \(\quad\) D: Comparison result

\section*{Explanations:}
1. Range of \(\mathbf{S}_{1}: \mathrm{KO} \sim \mathrm{K} 23\); range of \(\mathbf{S}_{\mathbf{2}}\) and \(\mathbf{S}_{3}: \mathrm{KO} \sim \mathrm{K} 59\)
2. \(\mathbf{S}\) will occupy 3 consecutive devices; \(\mathbf{D}\) will occupy 3 consecutive points.
3. See the specifications of each model for their range of use.
4. \(\mathbf{S}_{1}, \mathbf{S}_{2}\) and \(\mathbf{S}_{3}\) are compared with the present values of "hour", "minute" and "second" starting from \(\mathbf{S}\). The comparison result is stored in \(\mathbf{D}\).
5. \(\mathbf{S}\) is the "hour" of the current time (K0 ~K23) in RTC; \(\mathbf{S}+1\) is the "minute" (K0 \(\sim K 59\) ) and \(\mathbf{S}+2\) is the "second" (K0 ~ K59).
6. \(\mathbf{S}\) is read by TRD instruction and the comparison is started by TCMP instruction. If \(\mathbf{S}\) exceeds the range, the program will regard this as an operation error and the instruction will not be executed, M1067 and M1068 = On and D1067 will record the error code 0E1A (hex).

\section*{Program Example:}
1. When \(\mathrm{X} 10=\mathrm{On}\), the instruction will compare the current time in RTC (D20 ~ D22) with the set value 12:20:45 and display the result in M10 ~ M12. When X10 goes from On to Off, the instruction will not be executed, but the On/Off stauts prior to M10 ~ M12 will remain.
2. Connect \(\mathrm{M} 10 \sim \mathrm{M} 12\) in series or in parallel to obtain the result of \(\geqq\), \(\leqq\), and \(\neq\).
\begin{tabular}{l|l|l|l|l|c|c|}
\hline TCMP & K12 & K20 & K45 & D20 & M10 \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|ccc|cc|}
\hline API & Mnemonic & \multicolumn{3}{|c|}{ Operands } & \multicolumn{2}{|c|}{ Function } \\
\hline 161 & TZCP & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{S}\) & D & Time Zone Compare \\
\hline
\end{tabular}


\section*{Operands:}
\(S_{1}\) : Lower bound of the time for comparison \(\mathbf{S}_{\mathbf{2}}\) : Upper bound of the time for comparison

S: Current time of RTC D: Comparison result

\section*{Explanations:}
1. \(\mathbf{S}_{1}, \mathbf{S}_{2}\), and \(\mathbf{S}\) will occupy 3 consecutive devices.
2. The content in \(\mathbf{S}_{\mathbf{1}}\) must be less than the content in \(\mathbf{S}_{\mathbf{2}}\).
3. D will occupy 3 consecutive points.
4. See the specifications of each model for their range of use.
5. \(\mathbf{S}\) is compared with \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\). The comparsion result is stored in \(\mathbf{D}\).
6. \(\mathbf{S}_{1}, \mathbf{S}_{1}+1, \mathbf{S}_{1}+2\) : The "hour", "minute" and "second" of the lower bound of the time for comparison.
7. \(\mathbf{S}_{2}, \mathbf{S}_{\mathbf{2}}+1, \mathbf{S}_{\mathbf{2}}+2\) : The "hour", "minute" and "second"ond" of the upper bound of the time for comparison.
8. \(\mathbf{S}, \mathbf{S}+1, \mathbf{S}+2\) : The "hour", "minute" and "second" of the current time of RTC.
9. DO designated by \(\mathbf{S}\) is read by TRD instruction and the comparison is started by TZCP instruction. If \(\mathbf{S}_{1}, \mathbf{S}_{2}\), and \(\mathbf{S}\) exceed their ranges, the program will regard this as an operation error and the instruction will not be executed, M1067 and M1068 = On and D1067 will record the error code 0E1A (hex).
10. When \(\mathbf{S}<\mathbf{S}_{1}\) and \(\mathbf{S}<\mathbf{S}_{\mathbf{2}}\), \(\mathbf{D}\) will be On. When \(\mathbf{S}>\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}>\mathbf{S}_{\mathbf{2}}, \mathbf{D}+2\) will be On. In other occasions, \(\mathbf{D}+1\) will be On.

\section*{Program Example:}

When X10= On, TZCP instruction will be executed and one of M10 ~ M12 will be On. When X10 = Off, TZCP instruction will not be executed and the status of M10 ~M12 prior to X10 \(=\) Off will remain unchanged.

\begin{tabular}{|c|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{1}{c|}{ Function } \\
\hline 162 & & TADD & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D \\
& & Time Addition & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{TADD, TADDP: 7 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & * & & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Time summand
\(\mathbf{S}_{2}\) : Time addend
D: Time sum

\section*{Explanations:}
1. \(\quad \mathbf{S}_{1}, \mathbf{S}_{2}\), and \(\mathbf{D}\) will occupy 3 consecutive devices.
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag); M1022 (carry flag)
4. \(\mathbf{S}_{\mathbf{1}}+\mathbf{S}_{\mathbf{2}}=\mathbf{D}\). The hour, minute, and second of the RTC designated in \(\mathbf{S}_{\mathbf{1}}\) plus the hour, minute, and second designated in \(\mathbf{S}_{\mathbf{2}}\). The result is stored in the hour, minute, and second of the register designated in \(\mathbf{D}\).
5. If \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) exceed their ranges, the program will regard this as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 record the error code 0E1A (hex).
6. If the sum is larger than 24 hours, the carry flag M1022 will be On and the value in \(\mathbf{D}\) will be the result of "sum minuses 24 hours".
7. If the sum equals 0 (00:00:00), the zero flag M 1020 will be On.

\section*{Program Example:}
1. When \(\mathrm{X} 10=\mathrm{On}\), TADD instruction will be executed and the hour, minute and second in RTC designated in D0 ~ D2 will plus the hour, minute and second in RTC designated in D10 ~ D12. The sum is stored in the hour, minute and second of the register designated in D20 ~ D22.

2. If the sum is larger than 24 hours, M1022 will be On.

\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & Operands & Function \\
\hline 163 & TSUB & P & (S1 S \(\mathbf{S}^{\text {d }}\) & Time Subtraction \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & & & C & D & E & F & \multicolumn{9}{|l|}{TSUB, TSUBP: 7 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & & SS & SA & SX & SC & H & \[
\mathrm{SV} \mathrm{~S}_{\mathrm{S}}
\] & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathrm{S}_{1}\) : Time minuend
\(\mathbf{S}_{2}\) : Time subtrahend
D: Time remainder

\section*{Explanations:}
1. \(\mathbf{S}_{1}, \mathbf{S}_{2}\), and \(\mathbf{D}\) will occupy 3 consecutive devices.
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag); M1021 (borrow flag)
4. \(\mathbf{S}_{1}-\mathbf{S}_{\mathbf{2}}=\mathbf{D}\). The hour, minute, and second of the RTC designated in \(\mathbf{S}_{1}\) minus the hour, minute, and second designated in \(\mathbf{S}_{\mathbf{2}}\). The result is stored in the hour, minute, and second of the register designated in \(\mathbf{D}\).
5. If \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) exceed their ranges, the program will regard this as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 record the error code 0E1A (hex).
6. If the remainder is a negative value, the borrow flag M1021 will be On. The value in \(\mathbf{D}\) will be the result of "the negative value pluses 24 hours".
7. If the remainder equals 0 (00:00:00), the zero flag M 1020 will be On.

\section*{Program Example:}
1. When \(\mathrm{X} 10=\) On, TADD instruction will be executed and the hour, minute and second in RTC designated in D0 \(\sim\) D2 will minus the hour, minute and second in RTC designated in D10 ~ D12. The remainder is stored in the hour, minute and second of the register designated in D20 ~ D22.

2. If the subtraction result is a negative value, M1021 will be On.

\begin{tabular}{|c|c|c|c|ll|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 166 & & TRD & P & D & Time Read \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & & nX & KnY & & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{TRD, TRDP: 3 steps} \\
\hline D & & & & & & & & & & & & & & & & * & & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & & S & SA & S & S & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & S & S & A & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

D: The device for storing the current time read in RTC

\section*{Explanations:}
1. D will occupy 7 consecutive devices.
2. See the specifications of each model for their range of use.
3. Flags: M1016, M1017, M1076. See remarks for more details.
4. The built-in RTC in EH/EH2/SV/EH3/SV2/SA/SXISC series MPU offers 7 data (year, week, month, day, hour, minute, second) stored in D1319 ~ D1313. TRD instruction is for program designers to read the current data in RTC and store the data to the 7 registers designated.
5. D1319 only reads the 2-digit year in A.D. If you wish D1319 to read the 4-digit year, see remarks for more information.

\section*{Program Example:}
1. When \(X 0=O n\), the instruction will read the current time in RTC to the designated registers DO ~D6.
2. The content of D1318: \(1=\) Monday; \(2=\) Tuesday \(\ldots 7=\) Sunday.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Special D & Item & Content & \multirow{3}{*}{\[
\rightarrow
\]} & General D & Item \\
\hline D1319 & Year (A.D.) & 00~99 & & D0 & Year (A.D.) \\
\hline D1318 & \[
\begin{gathered}
\text { Day } \\
\text { (Mon } \sim \text { Sun) }
\end{gathered}
\] & 1~7 & & D1 & \[
\begin{gathered}
\text { Day } \\
\text { (Mon } \sim \text { Sun) }
\end{gathered}
\] \\
\hline D1317 & Month & 1~12 & \multirow[t]{2}{*}{} & D2 & Month \\
\hline D1316 & Day & 1~31 & & D3 & Date \\
\hline D1315 & Hour & 0~23 & \(\rightarrow\) & D4 & Hour \\
\hline D1314 & Minute & 0~59 & \(\rightarrow\) & D5 & Minute \\
\hline D1313 & Second & 0~59 & \(\rightarrow\) & D6 & Second \\
\hline
\end{tabular}

\section*{Remarks:}
1. Flags and special registers for the built-in RTC in SA/SX/SC/EH/EH2/SV/EH3/SV2 series MPU.
\begin{tabular}{|l|l|l|}
\hline Device & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Function } \\
\hline M1016 & \begin{tabular}{l} 
Displaying year in \\
A.D. in RTC
\end{tabular} & \begin{tabular}{l} 
When Off, D1319 will display 2-digit year in A.D. \\
When On, D1319 will display "2-digit year in A.D + 2,000".
\end{tabular} \\
\hline M1017 & \begin{tabular}{l}
\(\pm 30\) seconds \\
correction
\end{tabular} & \begin{tabular}{l} 
Correction takes place when M1017 goes from Off to On (reset to 0 when in \\
\(0 \sim 29\) second; minute pluses 1 and second resets to 0 in 30 \(~ 59\) \\
M1076 second)
\end{tabular} \\
\hline Malfunction of RTC & \begin{tabular}{l} 
On when the set value exceeds the range. (only available when the power \\
is being switched on).
\end{tabular} \\
\hline D1313 & Second & \(0 \sim 59\) \\
\hline D1314 & Minue & \(0 \sim 59\) \\
\hline D1315 & Hour & \(0 \sim 23\) \\
\hline D1316 & Day & \(1 \sim 31\) \\
\hline D1317 & Month & \(1 \sim 12\) \\
\hline D1318 & Week & \(1 \sim 7\) \\
\hline D1319 & Year & \(0 \sim 99\) (2-digit year in A.D.) \\
\hline
\end{tabular}
2. How to correct RTC:

There are 2 ways to correct the built-in RTC.
a) By a specific instruction. (See API 167 TWR instruction)
b) By peripheral devices, WPLSoft, the ladder diagram editing software.
3. How to display 4-digit year in A.D.:
a) Normally, the year is only displayed in 2 digits (e.g. 2003 displayed as 03). If you wish the year to be displayed in 4 digits, please key in the following program at the start of the program.

b) The original 2-digit year will be switched to a 4-digit year, i.e. the 2-digit year will pluses 2,000
c) If you wish to write in new time in the 4-digit year display mode, you can only write in a 2-digit year (0 ~ 99, indicating year 2000 ~ 2099). For example, 00=year 2000, 50=year 2050 and \(99=y e a r 2099\). However, 2000 ~ 2099 can be written in SX V3.0 and above.
\begin{tabular}{|c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 167 & & TWR & P & S & Time Write \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & nX & KnY & & nM & Kn & & T & C & D & E & F & \multicolumn{9}{|l|}{TWR, TWRP: 3 steps} \\
\hline S & & & & & & & & & & & & & & & * & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{Es EX} & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{H} 3 \\
& \text { V2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

S: Device for storing the new time to be written into RTC

\section*{Explanations:}
1. \(\mathbf{S}\) will occupy 7 consecutive devices.
2. See the specifications of each model for their range of use.
3. Flags: M1016, M1017, M1076. See remarks of API 166 TRD for more details.
4. To make adjustment on the RTC built in SA/SX/SC/EH/EH2/SV/EH3/SV2 series MPU, use this instruction to write the correct time into the RTC.
5. When this instruction is executed, the new set time will be written in the RTC built in PLC immediately. Therefore, please be noted that the new set time has to match the current time then when the instruction is executed.
6. If \(\mathbf{S}\) exceeds its range, the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code 0E1A (hex).
7. If you wish to write in new time in the 4-digit year display mode, you can only write in a 2-digit year ( \(0 \sim 99\), indicating year 2000 ~ 2099). For example, 00=year 2000, 50=year 2050 and 99=year 2099. However, \(2000 \sim\) 2099 can be written in SX V3.0 and above

\section*{Program Example 1:}

When X0= On, write the correct current time into the RTC.

\begin{tabular}{|c|c|c|c|}
\hline & General D & Item & Content \\
\hline \multirow{7}{*}{} & D20 & Year (A.D.) & 00~99 \\
\hline & D21 & \[
\begin{gathered}
\text { Day } \\
(\text { Mon } \sim \text { Sun })
\end{gathered}
\] & 1~7 \\
\hline & D22 & Month & 1~12 \\
\hline & D23 & Date & 1~31 \\
\hline & D24 & Hour & 0~23 \\
\hline & D25 & Minute & 0~59 \\
\hline & D26 & Second & 0~59 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Special D & Item \\
\hline D1319 & Year (A.D.) \\
\hline D1318 & \[
\begin{gathered}
\text { Day } \\
\text { (Mon } \sim \text { Sun })
\end{gathered}
\] \\
\hline D1317 & Month \\
\hline D1316 & Date \\
\hline D1315 & Hour \\
\hline D1314 & Minute \\
\hline D1313 & Second \\
\hline
\end{tabular}

\section*{Program Example 2:}
1. Set the current time in the RTC as 15:27:30, Tuesday, August 19, 2003.
2. D0 ~ D6 indicate the new set time in the RTC.
3. \(\mathrm{X} 10=\) On for changing the current time in the RTC and make the changed value the new set value.
4. Whenever X11 = On, RTC will perform a \(\pm 30\) second correction. The correction is performed according to the rules: When the second hand of RTC locates at \(1 \sim 29\), the second will be automatically reset to " 0 " and the minute hand will remain at its location. When the second hand locates at \(30 \sim 59\), the second will be automatically reset to " 0 " and the minute hand will increase by 1 minute.

\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 168 & D & MVM & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & Move the Designated Bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & & KnY & & M & Kn & & T & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{4}{*}{MVM, MVMP: 7 s DMVM,DMVMP: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & * & & * & & & * & & * & * & * & * & * & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & * & & * & & & * & & * & * & & * & & & & & & & & & \\
\hline D & & & & & & & & * & & * & & * & * & & * & * & * & * & * & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{ES EX} & SS & SA & S & SC & \[
\mathrm{EH}
\] & SV \({ }_{\text {E }}^{\text {S }}\) & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & & \[
\mathrm{EX}
\] & & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source device \(1 \quad \mathbf{S}_{2}\) : Bits to be masked (OFF)
D: Source device 2 / Operation results
\(\left[D=\left(S_{1} \& S_{2}\right) \mid\left(D \& \sim S_{2}\right)\right]\)

\section*{Explanations:}
4. The instruction conducts logical AND operation between \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) first, logical AND operation between \(\mathbf{D}\) and \(\sim \mathbf{S}_{2}\) secondly, and combines the \(1^{\text {st }}\) and \(2^{\text {nd }}\) results in \(\mathbf{D}\) by logical OR operation.
5. Rule of Logical AND operation: 0 AND \(1=0,1\) AND \(0=0,0\) AND \(0=0,1\) AND \(1=1\)
6. Rule of Logical OR operation: 0 OR \(1=1,1 \mathrm{OR} 0=1,0 \mathrm{OR} 0=0,1 \mathrm{OR} 1=1\).
7. Among the SX models, only SX V3.0 and above are supported by the 32-bit instruction.

\section*{Program Example 1:}

When X0 = ON, MVM instruction conducts logical AND operation between 16-bit register D0 and H'FF00 first, logical AND operation between D4 and H'00FF secondly, and combines the \(1^{\text {st }}\) and \(2^{\text {nd }}\) results in D4 by logical OR operation.


\section*{Program Example 2:}

Simplify instructions:

\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|r|}{Mnemonic} & Operands & Function \\
\hline 169 & D & HOUR & (S) \(\mathrm{D}_{1}\) ( \({ }_{2}\) & Hour Meter \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & nX & KnY & & & KnS & & T & C & D & E & F & \multicolumn{8}{|l|}{\multirow[t]{4}{*}{HOUR: 7 steps DHOUR: 13 steps}} \\
\hline S & & & & & & * & * & & * & * & & * & * & & * & * & * & * & * & & & & & & & & \\
\hline \(\mathrm{D}_{1}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{D}_{2}\) & & * & * & & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}\) : Period of time when \(\mathbf{D}_{\mathbf{2}}\) is On (in hour)
\(\mathbf{D}_{1}\) : Current value being measured (in hour)
\(D_{2}\) : Output device

\section*{Explanations:}
1. If \(\mathbf{S}\) is used in device F, only 16 -bit instruction is applicable.
2. \(\mathbf{D}_{1}\) will occupy 2 consecutive points. \(\mathbf{D}_{\mathbf{1}}+1\) uses 16 -bit register in 16 -bit or 32 -bit instruction.
3. See the specifications of each model for their range of use.
4. HOUR instruction can be used 4 times of SA/SX/SC.
5. Range of \(\mathbf{S}: \mathrm{K} 1 \sim \mathrm{~K} 32,767\) (unit: hour); range of \(\mathbf{D}_{\mathbf{1}}\) : \(\mathrm{K} 0 \sim \mathrm{~K} 32,767\) (unit: hour). \(\mathbf{D}_{\mathbf{1}}+1\) refers to the current time that is less than an hour (range: K0 ~K3,599; unit: second).
6. This instruction times the time and when the time reaches the set time (in hour), \(\mathbf{D}_{2}\) will be On. This function allows the user to time the operation of the machine or conduct maintenance works.
7. After \(\mathbf{D}_{2}\) is On, the timer will resume the timing.
8. In the 16 -bit instruction, when the current time measured reaches the maximum 32,767 hours/3,599 seconds, the timing will stop. To restart the timing, \(\mathbf{D}_{1}\) and \(\mathbf{D}_{1}+1\) have to be reset to " 0 ".
9. In the 32-bit instruction, when the current time measured reaches the maximum 2,147,483,647 hours/3,599 seconds, the timing will stop. To restart the timing, \(\mathbf{D}_{1} \sim D_{1}+2\) have to be reset to " 0 ".
10. There is no limitations on the times of using this instruction in the program for EH series MPU; however, only 4 instructions can be executed at the same time.

\section*{Program Example 1:}

In 16-bit instruction, when \(\mathrm{X0}=\mathrm{On}, \mathrm{Y} 10\) will be On and the timing will start. When the timing reaches 100 hours, Y0 will be On and D0 will record the current time measured (in hour) and D1 will record the current time that is less than an hour ( \(0 \sim 3,599\); unit: second).


\section*{Program Example 2:}

In 32-bit instruction, when \(\mathrm{X0}=\mathrm{On}, \mathrm{Y} 10\) will be On and the timing will start. When the timing reaches 40,000 hours, Y0 will be On. D1 and D0 will record the current time measured (in hour) and D2 will record the current time that is less than an hour ( \(0 \sim 3,599\); unit: second).

\begin{tabular}{|c||c|c|c|cc|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{|c|}{ Function } \\
\hline 170 & D & GRY & P & S & D \\
BIN \(\rightarrow\) Gray Code & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & GRY, GRYP: 5 steps \\
\hline S & & & & & * & * & * & * & * & * & * & * & * & * & * & DGRY, DGRYP: 9 steps \\
\hline D & & & & & & & & * & * & * & * & * & * & * & * & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Source device for BIN value
D: Device for storing Gray code

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction converts the BIN value in the device designated in \(\mathbf{S}\) into Gray code and stores the value in \(\mathbf{D}\).
4. See the ranges of \(\mathbf{S}\) as indicated below. If \(\mathbf{S}\) exceeds the ranges, the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code 0E1A (hex).

In 16-bit instruction: 0 ~ 32,767
In 32-bit instruction: \(0 \sim 2,147,483,647\)

\section*{Program Example:}

When \(\mathrm{X0} 0=\mathrm{On}\), the instruction will convert constant \(\mathrm{K} 6,513\) into Gray code and store the result in K4Y20.

\begin{tabular}{|c|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \\
\hline \multicolumn{1}{|c|}{} & D & GBIN & P & S & D & Gray Code \(\rightarrow\) BIN
\end{tabular}


\section*{Operands:}
S: Source device for Gray code
D: Device for storing BIN value

\section*{Explanations:}
1. If \(\mathbf{S}\) and \(\mathbf{D}\) are used in device \(F\), only 16 -bit instruction is applicable.
2. See the specifications of each model for their range of use.
3. This instruction converts the Gray code in the device designated in \(\mathbf{S}\) into \(\operatorname{BIN}\) value and stores the value in \(\mathbf{D}\).
4. This instruction converts the content (in Gray code) in the absolute position encoder connected at the PLC input terminal into BIN value and store the result in the designated register.
5. See the ranges of \(\mathbf{S}\) as indicated below. If \(\mathbf{S}\) exceeds the ranges, the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code 0E1A (hex).
In 16-bit instruction: \(0 \sim 32,767\)
In 32-bit instruction: \(0 \sim 2,147,483,647\)

\section*{Program Example:}

When X20 = On, the Gray code in the absolute position encoder connected at X0 \(\sim\) X17 will be converted into BIN value and stored in D10.


\begin{tabular}{|l||c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 172 & D & ADDR & P & S \(_{1}\) & S \(_{2}\) & D
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Floating point summand
\(\mathbf{S}_{2}\) : Floating point addend
D: Sum

\section*{Explanations:}
1. \(S_{1}\) and \(S_{2}\) can be floating point values (FX.XX).
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
4. In DADDR instruction, floating point values (e.g. F1.2) can be entered directly into \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) or stored in register D for operation. When the instruction is being executed, operand \(\mathbf{D}\) will store the operation result.
5. When \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) stores the floating point values in register D , their functions are the same as API 120 EADD.
6. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) can designate the same register. In this case, if the "continuous execution" type instruction is in use and during the On period of the drive contact, the register will be added once in every scan by a "pulse execution" type instruction (DADDRP).
7. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
8. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On.
9. If the operation result is " 0 ", the zero flag M1020 will be On.

\section*{Program Example 1:}

When X0 = On, the floating point F1. 20000004768372 will plus F2.20000004768372 and the result
F3.40000009536743 will be stored in the data registers (D10, D11).


\section*{Program Example 2:}

When \(\mathrm{X0} 0=\mathrm{On}\), the floating point value (D1, D0) + floating point value (D3, D2) and the result will be stored in the registers designated in (D11, D10).
\begin{tabular}{|c|l|l|l|l|}
\hline X0 & DADDR & D0 & D2 & D10 \\
\hline
\end{tabular}

\section*{Remarks:}

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports V1.0 of EH2/SV/EH3/SV2 series, but not EH series.
\begin{tabular}{|c||c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 173 & D & SUBR & P & \(S_{1}\) & \(S_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & & KnY & & & KnS & & T & C & D & E & F & \multicolumn{9}{|l|}{DSUBR, DSUBRP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Floating point minuend
\(\mathbf{S}_{2}\) : Floating point subtrahend
D: Remainder

\section*{Explanations:}
1. \(S_{1}\) and \(S_{2}\) can be floating point values (FX.XX).
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
4. In DSUBR instruction, floating point values (e.g. F1.2) can be entered directly into \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) or stored in register D for operation. When the instruction is being executed, operand \(\mathbf{D}\) will store the operation result.
5. When \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) stores the floating point values in register D , their functions are the same as API 121 ESUB.
6. \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) can designate the same register. In this case, if the "continuous execution" type instruction is in use and during the On period of the drive contact, the register will be subtracted once in every scan by a "pulse execution" type instruction (DSUBRP).
7. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
8. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On.
9. If the operation result is " 0 ", the zero flag M1020 will be On.

\section*{Program Example 1:}

When X0 = On, the floating point F1. 20000004768372 will minus F2. 20000004768372 and the result F-1 will be stored in the data registers (D10, D11).


\section*{Program Example 2:}

When \(\mathrm{X0} 0=\mathrm{On}\), the floating point value (D1, D0) - floating point value (D3, D2) and the result will be stored in the registers designated in (D11, D10).
\begin{tabular}{|c|l|l|l|l|}
\hline X0 & DSUBR & D0 & D2 & D10 \\
\hline
\end{tabular}

\section*{Remarks:}

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports V1.0 of EH2/SV/EH3/SV2 series, but not EH series.
\begin{tabular}{|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & Function \\
\hline 174 & D & MULR & P & (S1) \(S_{2}\) & Floating Point Multiplication \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & & KnY & & & KnS & & T & C & D & E & F & \multicolumn{9}{|l|}{DMULR, DMULRP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & A & S & SC & EH & SV & EH3 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Floating point multiplicand
\(\mathbf{S}_{2}\) : Floating point multiplicator
D: Product

\section*{Explanations:}
1. \(S_{1}\) and \(S_{2}\) can be floating point values (FX.XX).
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
4. In DMULR instruction, floating point values (e.g. F1.2) can be entered directly into \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) or stored in register D for operation. When the instruction is being executed, operand \(\mathbf{D}\) will store the operation result.
5. When \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{2}\) stores the floating point values in register D , their functions are the same as API 122 EMUL.
6. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) can designate the same register. In this case, if the "continuous execution" type instruction is in use and during the On period of the drive contact, the register will be multiplied once in every scan by a "pulse execution" type instruction (DMULRP).
10. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
11. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On.
12. If the operation result is " 0 ", the zero flag M1020 will be On.

\section*{Program Example 1:}

When X0 \(=\) On, the floating point F1.20000004768372 will multiply F2.20000004768372 and the result F2.64000010490417 will be stored in the data registers (D10, D11).


\section*{Program Example 2:}

When X1 = On, the floating point value (D1, D0) \(\times\) floating point value (D11, D10) and the result will be stored in the registers designated in (D21, D20).


\section*{Remarks:}

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports v1.0 of EH2/SV/EH3/SV2 series, but not EH series.
\begin{tabular}{|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{Mnemonic} & Operands & Function \\
\hline 175 & D & DIVR & P & (S1) \(S_{2}\) & Floating Point Division \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & & KnY & & & KnS & & T & C & D & E & F & \multicolumn{9}{|l|}{DDIVR, DDIVRP: 13 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Floating point dividend
\(\mathbf{S}_{2}\) : Floating point divisor
D: Quotient

\section*{Explanations:}
1. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) can be floating point values.
2. See the specifications of each model for their range of use.
3. Flags: M1020 (zero flag), M1021 (borrow flag), M1022 (carry flag)
4. In DDIVR instruction, floating point values (e.g. F1.2) can be entered directly into \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) or stored in register D for operation. When the instruction is being executed, operand \(\mathbf{D}\) will store the operation result.
5. When \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) stores the floating point values in register D , their functions are the same as API 123 EDIV.
6. If \(\mathbf{S}_{\mathbf{2}}\) is " 0 ", the program will regard it as an operation error and the instruction will not be executed. M1067 and M1068 will be On and D1067 will record the error code H'OE19.
7. If the absolute value of the operation result is larger than the maximum floating point displayable, the carry flag M1022 will be On.
8. If the absolute value of the operation result is smaller than the minimum floating point displayable, the borrow flag M1021 will be On.
9. If the operation result is " 0 ", the zero flag M 1020 will be On.

\section*{Program Example 1:}

When X0 = On, the floating point F1. 20000004768372 will be divided by F2.20000004768372 and the result F0.545454561710358 will be stored in the data registers (D10, D11).
\begin{tabular}{|c|c|c|c|c|}
\hline D0 & DDIVR & F1.20000004768372 & F2.20000004768372 & D10 \\
\hline
\end{tabular}

\section*{Program Example 2:}

When \(\mathrm{X} 1=\) On, the floating point value (D1, D0) \(\div\) floating point value (D11, D10) and the quotient will be stored in the registers designated in (D21, D20).
\begin{tabular}{|c|l|l|l|l|}
\hline X1 & \begin{tabular}{|l|l|l|} 
& \\
\hline DDIVR & D0 & D10 \\
\hline
\end{tabular} & D20 \\
\hline
\end{tabular}

\section*{Remarks:}

The functions of this instruction are in V6.6 of ES/EX/SS series, V1.6 of SA/SX series and V1.4 of SC series. DADDR instruction supports V1.0 of EH2/SV/EH3/SV2 series, but not EH series.
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } \\
\hline 176 & MMOV & P & S & (D
\end{tabular}


\section*{Operands:}
S: Data source (16-bit)
D: Data destination (32-bit)

\section*{Explanations:}
1. MMOV instruction sends the data in the 16 -bit \(S\) device to the 32 -bit \(D\) device. The designated sign bit will be copied and stored in the destination device.

\section*{Program Example 1:}

When \(\mathrm{X} 23=\) On, the data in D4 will be sent to D6 and D7.


In the example, b15 of D4 is sent to b15 ~ b31 of (D7, D6) as a negative value (same as it is in D4).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|l|}{Mnemonic} & \multicolumn{8}{|c|}{Operands} & \multicolumn{18}{|c|}{Function} \\
\hline 177 & \multicolumn{3}{|c|}{GPS} & \multicolumn{8}{|c|}{(S) D} & \multicolumn{18}{|l|}{GPS data receiving} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & & S & K & H & & KnX & KnY & Kr & nM & KnS & S & T & C & D & E & F & \multicolumn{9}{|c|}{\multirow[t]{3}{*}{GPS: 5 steps}} \\
\hline & & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & E & S EX & SS & SA & SX & \[
\mathrm{sc}
\] & EH & \multicolumn{2}{|r|}{\[
\begin{array}{l|l}
\hline \text { EV } & \text { EH3 } \\
\hline \text { SV2 } \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
S: Sentence identifier for GPS data receiving
D: Destination device for feedback data

\section*{Explanations:}
1. GPS data receiving instruction is only applicable on COM1 (RS-232), with communication format: \(9600,8, \mathrm{~N}, 1\), protocol: NMEA-0183, and communication frequency: 1 Hz .
2. Operand \(\mathbf{S}\) is sentence identifier for GPS data receiving. K0: \$GPGGA, K1: \$GPRMC.
3. Operand D stores the received data. Up to 17 consecutive words will be occupied and can not be used repeatedly. Please refer to the table below for the explanations of each \(\mathbf{D}\) device.
- When \(\mathbf{S}\) is set as K0, sentence identifier \$GPGGA is specified. \(\mathbf{D}\) devices refer to:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ No. } & Content & Range & Format & Note \\
\hline D + 0 & Hour & \(0 \sim 23\) & Word & \\
\hline D + 1 & Minute & \(0 \sim 59\) & Word & \\
\hline D + 2 & Second & \(0 \sim 59\) & Word & \\
\hline D + 3~4 & Latitude & \(0 \sim 90\) & Float & Unit: dd.mmmmmm \\
\hline D + 5 & North / South & 0 or 1 & Word & \(0(+) \rightarrow\) North, \(1(-) \rightarrow\) South \\
\hline D + 6~7 & Longitude & \(0 \sim 180\) & Float & Unit: ddd.mmmmmm \\
\hline D + 8 & East / West & 0 or 1 & Word & \(0(+) \rightarrow\) East, \(1(-) \rightarrow\) West \\
\hline D + 9 & GPS data valid / invalid & \(0,1,2\) & Word & \(0=\) invalid \\
\hline D + 10~11 & Altitude & \(0 \sim 9999.9\) & Float & Unit: meter \\
\hline D +12~13 & Latitude & \(-90 \sim 90\) & Float & Unit: \(\pm\) dd.ddddd \\
\hline D + 14~15 & Longitude & \(-180 \sim 180\) & Float & Unit: \(\pm\) ddd.ddddd \\
\hline
\end{tabular}
- When \(\mathbf{S}\) is set as K1, sentence identifier \$GPRMC is specified. \(\mathbf{D}\) devices refer to:
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ No. } & Content & Range & Format & Note \\
\hline D +0 & Hour & \(0 \sim 23\) & Word & \\
\hline D + 1 & Minute & \(0 \sim 59\) & Word & \\
\hline \(\mathbf{D}+2\) & Second & \(0 \sim 59\) & Word & \\
\hline \(\mathbf{D}+3 \sim 4\) & Latitude & \(0 \sim 90\) & Float & Unit: dd.mmmmmm \\
\hline \(\mathbf{D}+5\) & North / South & 0 or 1 & Word & \(0(+) \rightarrow\) North, \(1(-) \rightarrow\) South \\
\hline \(\mathbf{D}+6 \sim 7\) & Longitude & \(0 \sim 180\) & Float & Unit: ddd.mmmmmm \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ No. } & Content & Range & Format & Note \\
\hline D +8 & East \(/\) West & 0 or 1 & Word & \(0(+) \rightarrow\) East, \(1(-) \rightarrow\) West \\
\hline D +9 & GPS data valid / invalid & \(0,1,2\) & Word & \(0=\) invalid \\
\hline D +10 & Day & \(1 \sim 31\) & Word & \\
\hline D +11 & Month & \(1 \sim 12\) & Word & \\
\hline D +12 & Year & \(2000 \sim\) & Word & \\
\hline D \(+13 \sim 14\) & Latitude & \(-90 \sim 90\) & Float & Unit: \(\pm\) dd.ddddd \\
\hline D \(+15 \sim 16\) & Longitude & \(-180 \sim 180\) & Float & Unit: \(\pm\) ddd.ddddd \\
\hline
\end{tabular}
4. When applying GPS instruction, COM1 has to be applied in Master mode, i.e. M1312 has to be enabled to sending request. In addition, M1314 = ON indicates receiving completed. M1315 = ON indicates receiving error. (D1250 = K1, receiving time-out; D1250 = K2, checksum error)
5. Associated M flags and special D registers:
\begin{tabular}{|c|l|}
\hline No. & \multicolumn{1}{|c|}{ Function } \\
\hline M1312 & COM1 (RS-232) sending request \\
\hline M1313 & COM1 (RS-232) ready for data receiving \\
\hline M1314 & COM1 (RS-232) data receiving completed \\
\hline M1315 & COM1 (RS-232) data receiving error \\
\hline M1138 & Retaining communication setting of COM1 \\
\hline D1036 & COM1 (RS-232) Communication protocol \\
\hline D1249 & COM1 (RS-232) data receiving time-out setting. (Suggested value: >1s) \\
\hline D1250 & COM1 (RS-232) communication error code \\
\hline
\end{tabular}
6. Before applying the received GPS data, please check the value in \(\mathbf{D}+9\). If \(\mathbf{D}+9=0\), the GPS data is invalid.
7. If data receiving error occurs, the previous data in \(\mathbf{D}\) registers will not be cleared, i.e. the previous received data remains intact.

\section*{Program example: Sentence identifier: \$GPGGA}
1. Set COM1 communication protocol first

2. Then enable MO to execute GPS instruction with sentence identifier \$GPGGA

3. When receiving completed, M1314 \(=\mathrm{ON}\). When receiving failed, M1315 \(=\mathrm{ON}\). The received data will be stored in devices starting with DO.
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{1}{|c|}{ No. } & Content & No. & Content \\
\hline D0 & Hour & D8 & East / West \\
\hline D1 & Minute & D9 & GPS data valid / invalid \\
\hline D2 & Second & D10~D11 & Altitude \\
\hline D3~D4 & Latitude & D12~D13 & Latitude. Unit: \(\pm\) dd.ddddd \\
\hline D5 & North / South & D14~D15 & Longitude. Unit: \(\pm\) ddd.ddddd \\
\hline D6~D7 & Longitude & \multicolumn{3}{|c}{} \\
\end{tabular}
4. Pin number description on GPS module (LS20022)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin No. of GPS & 1 & 2 & 3 & 4 & 5 \\
\hline Definition & \(\mathrm{VCC}(+5 \mathrm{~V})\) & Rx & Tx & GND & GND \\
\hline
\end{tabular}

5. Pin number description on PLC COM1:
\begin{tabular}{|c|l|c|c|c|c|c|c|c|}
\hline Pin No. of COM1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline Definition & \multicolumn{2}{|c|}{\(\mathrm{VCC}(+5 \mathrm{~V})\)} & -- & Rx & Tx & -- & -- & GND \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 179 & D & WSUM & P & S & D & n \\
Snym of multiple devices & \\
\hline
\end{tabular}


\section*{Operands:}
S: Source device
n : Data length to be summed up
D: Device for storing the result

\section*{Explanations:}
1. WSUM instruction sums up \(\mathbf{n}\) devices starting from \(\mathbf{S}\) and store the result in \(\mathbf{D}\).
2. The instruction supports EH3/SV2 series PLCs whose version is 1.0, EH2/SV series PLCs whose version is 1.8, and SX series PLCs whose version is 3.0 (and above).
3. If the specified source devices \(\mathbf{S}\) are out of valid range, only the devices in valid range will be processed.
4. Valid range for \(\mathbf{n}: 1 \sim 64\). If the specified \(\mathbf{n}\) value is out of the available range (1~64), PLC will take the upper (64) or lower (1) bound value as the set value.
5. D used in the 16-bit/32-bit instruction is a 32-bit register.

\section*{Program example 1:}

When \(\mathrm{X} 10=O N, 3\) consecutive devices \((\mathbf{n}=3)\) from D0 will be summed up and the result will be stored in (D11, D10).
\begin{tabular}{|c|c|c|c|c|}
\hline X10 & WSUM & D0 & K3 & D10 \\
\hline
\end{tabular}
(D0+D1+D2) \(\quad \rightarrow \quad(\mathrm{D} 11, \mathrm{D} 10)\)
D0 K100
D1 \(\mathrm{K} 113 \rightarrow\) Result: (D11, D10) K 338
D2
K125

\section*{Program example 2:}

When \(\mathrm{X} 10=\mathrm{ON}, 3\) consecutive devices \((\mathbf{n}=3)\) from (D1, D0) will be summed up and the result will be stored in (D11, D10).
\begin{tabular}{||l|l|l|l|}
\hline X10 & DWSUM & D0 & K3 \\
\hline & D10 \\
\hline
\end{tabular}

\begin{tabular}{|l||c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } \\
\multicolumn{2}{c|}{ Function } \\
\hline 180 & & MAND & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(D\) \\
& D & & Matrix 'AND' Operation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & X & KnY & & nM & Kn & & T & C & D & & E & F & \multicolumn{9}{|l|}{MAND, MANDP: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & S & E & & V & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Matrix source device 1
\(\mathbf{S}_{2}\) : Matrix source device 2
D: Operation result
\(\mathbf{n}\) : Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. \(\mathbf{S}_{1}\), and \(\mathbf{S}_{\mathbf{2}}\) designate \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; \(\mathbf{D}\) designates KnYm KnM and KnS
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. The two matrix sources \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) perform matrix 'AND' operation according to the array length \(\mathbf{n}\). The result is stored in D.
6. Operation rule of matix 'AND' : The result will be 1 if both two bits are 1 ; otherwise the result will be 0 .

\section*{Program Example:}

When X0 \(=\) On, the 3 arrays of 16 -bit registers D0 \(\sim\) D2 and the 3 arrays of 16 -bit registers D10 \(\sim\) D12 will perform a matrix 'AND' operation. The result will be stored in the 3 arrays of 16-bitd registers D20 ~ D22.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mo & MAND & D0 & D10 & D20 & K3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{17}{|c|}{b15} & b0 \\
\hline \multirow{7}{*}{Before execution} & \multirow[t]{3}{*}{(S)} & & 11 & & 11 & 1 & 11 & 11 & 11 & 11 & 1 & 10 & 0 & 0 & 0 & 0 & & 1 \\
\hline & & & 1 & 1 & 11 & 1 & 11 & 1 & 1 & 11 & & 10 & 0 & - & 0 & 0 & & 11 \\
\hline & & & 11 & 11 & 11 & 11 & 11 & 11 & & 11 & 1 & 1 & 0 & 0 & 0 & 0 & & 11 \\
\hline & & & \multicolumn{16}{|c|}{MAND} \\
\hline & \multicolumn{2}{|l|}{(S D10} & \multicolumn{2}{|l|}{00} & \(00_{0} 1\) & \multicolumn{2}{|l|}{10} & 01 & \multicolumn{2}{|l|}{0} & \multicolumn{2}{|l|}{0} & \multicolumn{2}{|l|}{\(1{ }_{1} 1\)} & \multicolumn{2}{|l|}{01} & 1 & 0 \\
\hline & & & 0 & & 01 & 10 & 00 & 01 & 10 & 00 & & 01 & 1 & 10 & 0 & 1 & & 0 \\
\hline & & & 0 & & 01 & 10 & 00 & 01 & 10 & 0 & 0 & 01 & 11 & 10 & 0 & 1 & & \\
\hline
\end{tabular}


\section*{Remarks:}
1. Explanations on the matrix instruction:
a) A matix consists of more than 1 consecutive 16 -bit registers. The number of registers in the matrix is the length of the array (n). A matrix contains \(16 \times n\) bits (points) and there is only 1 bit (point) offered for an operand at a time.
b) The matrix instruction gathers a series of \(16 \times n\) bits \(\left(b_{0} \sim b_{16 n-1}\right)\) and designates a single point for operation. The point will not be seen as a value.
c) The matrix instruction processes the moving, copying, comparing and searching of one-to-many or many-to-many matrix status, which is a very handy and important application instruction.
d) The matrix operation will need a 16-bit register to designate a point among the 16 n points in the matrix for the operation. The register is the Pointer (Pr) of the matrix, designated by the user in the instruction. The vaild range of \(\operatorname{Pr}\) is \(0 \sim 16 n-1\), corresponding to \(b 0 \sim b 16 n-1\) in the matrix.
e) There are left displacement, right displacement and rotation in a matrix operation. The bit number decreases from left to right (see the figure below).

f) The matrix width (C) is fixed at 16 bits.
g) Pr: matrix pointer. E.g. if \(\operatorname{Pr}\) is 15 , the designated point will be b15.
h) Array length \((R)\) is \(n: n=1 \sim 256\).

Example: The matrix is composed of D0, \(\mathrm{n}=3\); D0 = HAAAA, D1 \(=\) H5555, D2 \(=\) HAAFF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{C}_{15}\) & \(\mathrm{C}_{14}\) & \(\mathrm{C}_{13}\) & & , & \(\mathrm{C}_{10}\) & C9 & \(\mathrm{C}_{8}\) & \(\mathrm{C}_{7}\) & \(\mathrm{C}_{6}\) & \(\mathrm{C}_{5}\) & \(\mathrm{C}_{4}\) & \(\mathrm{C}_{3}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{0}\) & \\
\hline \(\mathrm{R}_{0}\) & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & D0 \\
\hline \(\mathrm{R}_{1}\) & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & D1 \\
\hline \(\mathrm{R}_{2}\) & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & D2 \\
\hline
\end{tabular}

Example: The matrix is composed of \(\mathrm{K} 2 \mathrm{XO}, \mathrm{n}=3\); \(\mathrm{K} 2 \mathrm{XO}=\mathrm{H} 37, \mathrm{~K} 2 \mathrm{X} 10=\mathrm{H} 68, \mathrm{~K} 2 \mathrm{X} 20=\mathrm{H} 45\)


Fill "0" into the blank in \(\mathrm{R} 0\left(\mathrm{C}_{15}-\mathrm{C}_{8}\right), \mathrm{R} 1\left(\mathrm{C}_{15}-\mathrm{C}_{8}\right)\), and \(\mathrm{R} 2\left(\mathrm{C}_{15}-\mathrm{C}_{8}\right)\).
\begin{tabular}{|c||c|c|c|cc|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 181 & & MOR & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & n \\
& & Matrix 'OR' Operation & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & X & KnY & & nM & Kn & & T & C & D & & E & F & \multicolumn{9}{|l|}{MOR, MORP: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & S & E & & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Matrix source device 1
\(\mathbf{S}_{2}\) : Matrix source device 2.
D: Operation result
\(\mathbf{n}\) : Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. \(\mathbf{S}_{1}\), and \(\mathbf{S}_{\mathbf{2}}\) designate \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; \(\mathbf{D}\) designates KnYm KnM and KnS
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. The two matrix sources \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) perform matrix 'OR' operation according to the array length \(\mathbf{n}\). The result is stored in D.
6. Operation rule of matrix 'OR': The result will be 1 if either of the two bits is 1 . The result is 0 only when both two bits are 0.

\section*{Program Example:}

When X0 \(=\) On, the 3 arrays of 16 -bit registers D0 ~ D2 and the 3 arrays of 16-bit registers D10 ~ D12 will perform a matrix 'OR' operation. The result will be stored in the 3 arrays of 16 -bit registers D20 ~ D22.
\begin{tabular}{|c|l|l|l|l|l|}
\hline MO & MOR & D0 & D10 & D20 & K3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{15}{|c|}{b15} & b0 \\
\hline \multirow{7}{*}{Before Execution} & (S1) Do & 0 & & 0 & 1 & 01 & 1 & & 10 & 1 & 0 & 1 & & & & 1 \\
\hline & D1 & 0 & 1 & 0 & 10 & 01 & 1 & 01 & 10 & 1 & & 1 & 0 & 1 & & 1 \\
\hline & & & & 0 & 1. & 01 & & & 10 & 1 & & & & & & \\
\hline & & \multicolumn{15}{|c|}{MOR} \\
\hline & (S2) D10 & 0 & 0 & 0 & 01 & 11 & 1 & 11 & 11 & 0 & 1 & & 0 & 1 & & 1 \\
\hline & D11 & & 0 & 0 & 01 & 11 & 1 & 11 & 1 & 0 & 1 & 0 & 0 & 1 & & 1 \\
\hline & D12 & 0 & 0 & 0 & 01 & 11 & 1 & 11 & 1 & 0 & & 0 & & 1 & & 1 \\
\hline \multirow{4}{*}{\begin{tabular}{l}
After \\
Execution
\end{tabular}} & & \multicolumn{15}{|c|}{\(\cdots\)} \\
\hline & (D) D20 & 0 & 1 & 0 & 1 & 11 & 11 & 11 & 11 & & 1 & 1 & 0 & 1 & 0 & 1 \\
\hline & D21 & 0 & 1 & 0 & 1 & 11 & 1 & 11 & 11 & 1 & 1 & 1 & & 1 & & 1 \\
\hline & D22 & 0 & 1 & & 1 & 11 & 11 & 11 & 11 & 1 & 1 & 1 & 0 & 1 & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } \\
\multicolumn{1}{c|}{ Function } \\
\hline 182 & & MXOR & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(D\) \\
\hline & n & Matrix 'XOR' Operation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & X & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & T & C & D & E & \multicolumn{2}{|r|}{F} & \multicolumn{9}{|l|}{MXOR, MXORP: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & * & * & * & & * & * & & * & * & * & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & * & * & * & & & * & & * & * & * & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & * & * & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & & & & & PUL & SE & & & & & & & & & -bit & & & & & & & & & 32 & & & & \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & S & EH & S & & \[
\begin{array}{r}
\mathrm{H} 3 \\
\mathrm{~V} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Matrix source device 1
\(\mathbf{S}_{\mathbf{2}}\) : Matrix source device 2
D: Operation result
\(\mathbf{n}\) : Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. \(\quad \mathbf{S}_{\mathbf{1}}\), and \(\mathbf{S}_{\mathbf{2}}\) designate \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; \(\mathbf{D}\) designates KnYm KnM and KnS
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. The two matrix sources \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) perform matrix 'XOR' operation according to the array length \(\mathbf{n}\). The result is stored in D.
6. Operation rule of matrix 'XOR': The result will be 1 if the two bits are different. The result will be 0 if the two bits are the same.

\section*{Program Example:}

When X0 = On, the 3 arrays of 16-bit registers D0 ~ D2 and the 3 arrays of 16-bit registers D10 ~ D12 will perform a matrix 'XOR' operation. The result will be stored in the 3 arrays of 16-bit registers D20 ~ D22.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mo & MXOR & D0 & D10 & D20 & K3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{6}{*}{Before Execution} & \multicolumn{16}{|c|}{b15} & b0 \\
\hline & \multirow[t]{3}{*}{\(\left(\begin{array}{ll}\text { S } & \\ & \\ & \\ & D \\ & \\ & \end{array}\right.\)} & 0 & & 0 & & & & 0 & & & & & & 0 & 1 & & 01 \\
\hline & & 0 & & 0 & 1 & & 1 & 0 & & 0 & 1 & 0 & 1 & 0 & 1 & & 01 \\
\hline & & 0 & & 0 & & & & 0 & & 0 & & & 1 & 0 & 1 & & \\
\hline & \multicolumn{17}{|c|}{MXOR} \\
\hline & (S2) D10 & 0 & & 0 & 0 & & 1 & 1 & 1 & 1 & 0 & & & 0 & 1 & & 1 \\
\hline & D11 & 0 & & 0 & 0 & & 1 & 1 & 1 & & 0 & & & 0 & 1 & & 1 \\
\hline & ( D12 & 0 & & & 0 & & & & 1 & 1 & 0 & & & & 1 & & 1 \\
\hline \multicolumn{18}{|c|}{- E} \\
\hline \multirow[t]{3}{*}{After
Execution} & (D) D20 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 01 \\
\hline & D21 & 0 & & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 01 \\
\hline & D22 & 0 & 1 & 0 & 1 & & 1 & 1 & & 1 & 1 & & 1 & 0 & 1 & 1 & 01 \\
\hline
\end{tabular}
\begin{tabular}{|l||c|c|c|cc|c|c|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 183 & & MXNR & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & D & n \\
& & Matrix 'XNR' Operation & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & & H & & nX & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & T & C & \multicolumn{2}{|l|}{D} & E & F & \multicolumn{9}{|l|}{MXNR, MXNRP: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & * & * & & * & * & & * & * & * & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & * & * & & * & * & & * & * & * & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & * & & * & * & & * & * & * & & & & & & & & & & & & \\
\hline n & & & & & & * & & * & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & S & S & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & Sx & S & EH & & V & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Matrix source device 1
\(\mathbf{S}_{2}\) : Matrix source device 2
D: Operation result
n: Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. \(\mathbf{S}_{1}\), and \(\mathbf{S}_{\mathbf{2}}\) designate \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; \(\mathbf{D}\) designates KnYm KnM and KnS
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. The two matrix sources \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) perform matrix 'XNR' operation according to the array length \(\mathbf{n}\). The result is stored in D.
6. Operation rule of matrix 'XNR': The result will be 1 if the two bits are the same. The result will be 0 if the two bits are different.

\section*{Program Example:}

When \(\mathrm{X0} 0=\mathrm{On}\), the 3 arrays of 16 -bit registers D0 ~ D2 and the 3 arrays of 16 -bit registers D10 ~ D12 will perform a matrix 'XNR' operation. The result will be stored in the 3 arrays of 16 -bit registers D20 ~ D22.
\begin{tabular}{|c|l|l|l|l|l|}
\hline M0 & MXNR & D0 & D10 & D20 & K3 \\
\hline
\end{tabular}


After Execution

\begin{tabular}{|c|c|c|c|c|c|l|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 184 & & MINV & P & S & D & n \\
& & Matrix Inverse Operation & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & nX & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & T & \multicolumn{2}{|l|}{C} & D & E & F & \multicolumn{9}{|l|}{} \\
\hline S & & & & & & & & & * & * & & * & * & & * & * & & * & & & & & & \multicolumn{6}{|l|}{MINV, MINVP: 7 steps} \\
\hline D & & & & & & & & & & * & & * & * & & * & * & & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & S & S & C & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Matrix source device
D: Operation result
\(\mathbf{n}\) : Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. S designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; \(\mathbf{D}\) designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. SA/SX/SC can designate \(n=4\). EH/EH2/SV/EH3/SV2 can designate \(n \leqq 4\).
4. See the specifications of each model for their range of use.
5. \(\mathbf{S}\) performs an inverse matrix operation according to the array length \(\mathbf{n}\). The result is stored in \(\mathbf{D}\).

\section*{Program Example:}

When \(\mathrm{X0}=\mathrm{On}\), the 3 arrays of 16 -bit registers D0 ~ D2 perform a matrix inverse operation. The result will be stored in the 3 arrays of 16-bit registers D20 ~ D22.
\begin{tabular}{|l|l|l|l|l|}
\hline XO & MINV & D0 & D20 & K3 \\
\hline
\end{tabular}

Before Execution

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{b15} \\
\hline Do & 0 & 10 & 0 & 0 & 1 & 0 & 10 & 1 & 0 & 0 & 10 & & 1 & 0 & 1 \\
\hline D1 & 0 & 10 & 01 & 0 & 1 & 01 & 10 & 1 & 10 & 0 & & 0 & 1 & 0 & 1 \\
\hline D2 & 0 & 10 & 1 & 0 & 1 & 0 & 10 & & 10 & 0 & 1 & & 1 & 0 & \\
\hline
\end{tabular}

MINV
気

After Execution



\begin{tabular}{|l||c|c|c|c|c|cc|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{3}{|c|}{ Operands } & \\
\hline 185 & & MCMP & P & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{n}\) & D \\
& & Matrix Compare & Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & nX & KnY & & KnM & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{MCMP, MCMPP: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & * & * & & * & * & & * & & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & * & * & & * & * & & * & & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & & * & * & * & * & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & S & & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Matrix source device \(1 \quad \mathbf{S}_{\mathbf{2}}\) : Matrix source device \(2 \quad \mathbf{n}\) : Array length \(\mathbf{D}\) : Pointer (Pr), for storing the value of target location

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. \(\mathbf{S}_{1}\), and \(\mathbf{S}_{2}\) designate \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; \(\mathbf{D}\) designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. Flags: M1088 ~ M1092. See remarks for more details.
6. This instruction compares every bit in \(\mathbf{S}_{\mathbf{1}}\) with every bit in \(\mathbf{S}_{\mathbf{2}}\) starting from location \(\mathbf{D}+1\) and finds out the location of different bits. The location will be stored in \(\mathbf{D}\).
7. The matrix comparison flag ( M 1088 ) decides to compare between equivalent values \((\mathrm{M} 1088=1)\) or different values (M1088 = 0). When the comparison is completed, it will stop immediately and the matrix bit search flag will turn "On" (M1091 = 1). When the comparison progresses to the last bit, the matrix search end flag (M1089) will turn "On" and the No. where the comparison is completed is stored in \(\mathbf{D}\). The comparison will start from the \(0^{\text {th }}\) bit in the next scan period when the matrix search start flag turns "On" (M1090 = 1). When D exceeds the range, the pointer error flag will turn "On" (M1092 = 1).
8. The matrix operation will need a 16-bit register to designate a point among the 16 n points in the matrix for the operation. The register is the Pointer (Pr) of the matrix, designated by the user in the instruction. The vaild range of \(\operatorname{Pr}\) is \(0 \sim 16 n-1\), corresponding to \(b 0 \sim b 16 n-1\) in the matrix. Please avoid changing the \(\operatorname{Pr}\) value during the operation in case the comparing and searching will not ne correct. If the Pr value exceeds its range, M1092 will be On and the instruction will not be executed.
9. When M1089 and M1091 take place at the same time, both flags will be " 1 " at the same time.

\section*{Program Example:}
1. When X 0 goes from Off to On, the matrix search start falg M1090 \(=0\). The searching will start from the bit marked with "*" (current Pr value +1 ) for bits of different status (M1088 = 0).
2. Set the Pr value \(D 20=2\). When \(X 0\) goes from Off to On for 4 times, we can obtain the 4 execution results © , 2 ,
(3) 4.
(1) D20 \(=5, \mathrm{M} 1091=1, \mathrm{M} 1089=0\).
(2) D20 \(=45, \mathrm{M} 1091=1, \mathrm{M} 1089=0\).
(3) D20 \(=47, \mathrm{M} 1091=0, \mathrm{M} 1089=1\).
(4) \(\mathrm{D} 20=1, \mathrm{M} 1091=1, \mathrm{M} 1089=0\).
\begin{tabular}{|l|l|l|l|l|l|}
\hline X0 & MCMPP & D0 & D10 & K3 & D20 \\
\hline
\end{tabular}


\section*{Remarks:}

Flags explanations:
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline M1088 & \begin{tabular}{l} 
Matrix comparison flag. Comparing between equivalent values \((\mathrm{M} 1088=1)\) or different \\
values \((\mathrm{M} 1088=0)\).
\end{tabular} \\
\hline M1089 & Matrix search end flag. When the comparison reaches the last bit, M1089 \(=1\). \\
\hline M1090 & Matrix search start flag. Comparing from bit \(0(\mathrm{M} 1090=1)\). \\
\hline M1091 & \begin{tabular}{l} 
Matrix bit search flag. When the comparison is completed, the comparison will stop \\
immediately (M1091=1).
\end{tabular} \\
\hline M1092 & Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 =1. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & Operands & Function \\
\hline 186 & MBRD & P & (S) D & Read Matrix Bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & \multicolumn{2}{|l|}{KnM} & KnS & \multicolumn{2}{|r|}{T} & C & D & E & F & \multicolumn{8}{|l|}{MBRD, MBRDP: 7 steps} \\
\hline S & & & & & & & & * & * & * & & * & * & & * & * & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & * & & & & & & & & & & \\
\hline D & & & & & & & & & * & * & & * & * & & * & * & * & * & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Matrix source device
\(\mathbf{n}\) : Array length
D: Pointer (Pr), for storing the value of target location

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. S designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; D designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. Flags: M1089 ~ M1095. See remarks for more details.
6. When this instruction is executed, it first determines if the matrix pointer clear flag (M1094) is "On". If it is "On", pointer \(D\) is cleared as 0 . The instruction then reads the On/Off status from the \(0^{\text {th }}\) bit of \(\boldsymbol{S}\) to the matrix rotation/displacement/output carry flag (M1095). Whenever finishing reading 1 bit, the instruction determines whether the matrix pointer increasing flag (M1093) is "On". If it is "On", the value of pointer D will plus 1 . When the reading is processed to the last bit, the matrix search end flag (M1089) will turn "On" and pointer D record the No. of read bits.
7. The Pointer \((\operatorname{Pr})\) of the matrix is designated by the user in the instruction. The vaild range of \(\operatorname{Pr}\) is \(0 \sim 16 n-1\), corresponding to \(b_{0} \sim b_{16 n-1}\) in the matrix. If the Pr value exceeds its range, M1092 will be On and the instruction will not be executed.

\section*{Program Example:}
1. When X0 goes from Off to On, M1094 will be set to " 0 " and M1093 to " 1 ". Therefore, the Pr will plus 1 after every reading.
2. Set the Pr value \(\mathrm{D} 20=45\). When X 0 goes from Off to On for 3 times, we can obtain the 3 execution results \(\mathbf{D}\),
© 3 .
(1) D20 \(=46, \mathrm{M} 1095=0, \mathrm{M} 1089=0\).
(2) D20 \(=47, \mathrm{M} 1095=1, \mathrm{M} 1089=0\).
(3) D20 \(=47, \mathrm{M} 1095=1, \mathrm{M} 1089=1\).



\section*{Remarks:}

Flag explanations:
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline M1088 & Matrix search end flag. When the comparison reaches the last bit, M1089 \(=1\). \\
\hline M1092 & Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 \(=1\). \\
\hline M1093 & Matrix pointer increasing flag. Adding 1 to the current value of the Pr. \\
\hline M1094 & Matrix pointer clear flag. Clearing the current value of the Pr to 0. \\
\hline M1095 & Matrix rotation/displacement/output carry flag. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 187 & & MBWR & P & S & n & D & Write Matrix Bit
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & nX & KnY & \multicolumn{2}{|l|}{KnM} & KnS & \multicolumn{2}{|r|}{T} & C & D & E & F & \multicolumn{9}{|l|}{MBWR, MBWRP: 7 steps} \\
\hline S & & & & & & & & & * & * & * & & * & & * & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & & * & & * & * & * & * & * & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Matrix source device
n: Array length
D: Pointer (Pr), for storing the value of target location

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. S designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; D designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. Flags: M1089 ~ M1096. See remarks for more details.
6. When this instruction is executed, if first determines if the matrix pointer clear flag (M1094) is "On", If it is "On", pointer \(D\) is cleared as 0 . The instruction then writes the value in the matrix displacement/input complement flag (M1096) into the location starting from the \(0^{\text {th }}\) bit of \(\mathbf{S}\). Whenever finishing writing 1 bit, the instruction determines whether the matrix pointer increasing flag (M1093) is "On". If it is "On", the value of pointer D will plus 1. When the writing is processed to the last bit, the matrix search end flag (M1089) will turn "On" and pointer D records the No. of written bits. If D exceeds its range, M1092 will be On.
7. The Pointer \((\operatorname{Pr})\) of the matrix is designated by the user in the instruction. The vaild range of \(\operatorname{Pr}\) is \(0 \sim 16 n-1\), corresponding to \(b_{0} \sim b_{16 n-1}\) in the matrix. If the Pr value exceeds its range, M1092 will be On and the instruction will not be executed.

\section*{Program Example:}
1. When X0 goes from Off to On, M1094 will be set to " 0 " and M1093 to " 1 ". Therefore, the Pr will plus 1 after every writing.
2. Set the Pr value \(\mathrm{D} 20=45\) and \(\mathrm{M} 1096=1\). When X 0 goes from Off to On for 1 time, we can obtain the execution results: \(\mathrm{D} 20=46, \mathrm{M} 1096=1, \mathrm{M} 1089=0\).
\begin{tabular}{|c|c|c|c|c|}
\hline X0 & MBWRP & D0 & K3 & D20 \\
\hline
\end{tabular}


\section*{Remarks:}

Flag explanations:
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline M1088 & Matrix search end flag. When the comparison reaches the last bit, M1089 \(=1\). \\
\hline M1092 & Matrix pointer error flag. When the pointer Pr exceeds its range, M1092 \(=1\). \\
\hline M1093 & Matrix pointer increasing flag. Adding 1 to the current value of the Pr. \\
\hline M1094 & Matrix pointer clear flag. Clearing the current value of the Pr to 0. \\
\hline M1096 & Matrix displacement/input complement flag. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 188 & & MBS & P & S & D & n \\
Matrix Bit Displacement & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & KX & KnY & & M & KnS & & T & C & D & E & F & \multicolumn{9}{|l|}{MBS, MBSP: 7 steps} \\
\hline S & & & & & & & & & * & * & & * & * & & * & * & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
S: Matrix source device
D: Operation result
\(\mathbf{n}\) : Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. S designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; D designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. Flags: M1095 ~ M1097. See remarks for more details.
6. This instruction performs left-right displacement on the matrix bits in S according to array length \(\mathbf{n}\). M1097 determines the left \((\mathrm{M} 1097=0)\) or right \((\mathrm{M} 1097=1)\) displacement of matrix bits. The empty bits derived from every displacement of 1 bit (when left displacement: \(b_{0}\); when right displacement: \(b_{16 n-1}\) ) is filled by the status of the complement flag (M1096). The spare bits (when left displacement: \(b_{16 n-1} ;\) when right displacement: \(b_{0}\) ) are sent to the carry flag (M1095). The result is stored in \(\mathbf{D}\).
7. The pulse execution instruction MBSP is generally adopted.

\section*{Program Example 1:}

When X0 = On, M1097 = Off, indicating a left matrix displacement is performed. Set M1096=0 and the 16-bit registers D0 ~ D2 will perform a left matrix displacement and the result will be stored in the matrix of the 16-bit registers D20 ~ D22. The carry flag M1095 will be "1".



\section*{Program Example 2:}

When X1 = On, M1097 = On, indicating a right matrix displacement is performed. Set M1096 = 1 and the 16-bit registers D0 ~ D2 will perform a right matrix displacement and the result will be stored in the matrix of the 16-bit registers D20 ~ D22. The carry flag M1095 will be "0".


\section*{Explanations:}

Flag explanations:
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline M1095 & Matrix rotation/displacement/output carry flag. \\
\hline M1096 & Matrix displacement/input complement flag. \\
\hline M1097 & Matrix rotation/displacement direction flag. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|ll|}
\hline API & \multicolumn{3}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 189 & & MBR & P & S & D & n & Matrix Bit Rotation
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{12}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & KnM & KnS & \multicolumn{2}{|l|}{T} & C & D & E & F & \multicolumn{8}{|l|}{MBR, MBRP: 7 steps} \\
\hline S & & & & & & & & * & * & * & * & * & & * & * & & & & & & & & & & \\
\hline D & & & & & & & & & * & * & * & * & & * & * & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & * & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{8}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
S: Matrix source device
D: Operation result
\(\mathbf{n}\) : Array length

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. \(\mathbf{S}\) designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; D designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. Flags: M1095, M1097. See remarks for more details.
6. This instruction performs left-right rotation on the matrix bits in \(\mathbf{S}\) according to array length \(\mathbf{n}\). M1097 determines the left \((\mathrm{M} 1097=0)\) or right \((\mathrm{M} 1097=1)\) rotation of matrix bits. The empty bits derived from every rotation of 1 bit (when left rotation: \(b_{0}\); when right rotation: \(b_{16 n-1}\) ) is filled by rotation bits (when left rotation: \(b_{16 n-1}\); when right rotation: \(b_{0}\) ). The result is stored in \(\mathbf{D}\). Rotation bits not only fill the empty bits but also send the status of bits to the carry flag M1095.
7. The pulse execution instruction MBRP is generally adopted.

\section*{Program Example 1:}

When X0 = On, M1097 = Off, indicating a left matrix rotation is performed. The 16-bit registers D0 ~ D2 will perform a left matrix rotation and the result will be stored in the matrix of the 16-bit registers D20 ~ D22. The carry flag M1095 will be " 1 ".


\section*{Program Example 2:}

When X1 = On, M1097 = On, indicating a right matrix rotation is performed. The 16-bit registers D0 ~ D2 will perform a right matrix rotation and the result will be stored in the matrix of the 16-bit registers D20 ~ D22. The carry flag M1095 will be "0".


\section*{Remarks:}

Flag explanations:
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline M1095 & Matrix rotation/displacement/output carry flag. \\
\hline M1097 & Matrix rotation/displacement direction flag. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{c|}{ Operands } & \multicolumn{2}{c|}{ Function } \\
\hline 190 & & MBC & P & S & n & D \\
& Matrix Bit Status Counting & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & & nX & KnY & & M & Kn & & T & C & D & D & E & F & \multicolumn{9}{|l|}{MBC, MBCP: 7 steps} \\
\hline S & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & & & \\
\hline n & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline D & & & & & & & & & & * & & * & * & & * & * & & & * & * & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH & \[
\mathrm{SV} \left\lvert\, \begin{array}{c|}
\mathrm{El} \\
\mathrm{~S}
\end{array}\right.
\] & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{ES Ex} & SS & SA & \[
s x ;
\] & S & \multicolumn{2}{|l|}{EH} & sv & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & ss & SA & SX & SC & EH & \multicolumn{2}{|l|}{\begin{tabular}{l|l} 
SV & EH3 \\
SV2
\end{tabular}} \\
\hline
\end{tabular}

\section*{Operands:}
S: Matrix source device
n: Array length
D: Counting result

\section*{Explanations:}
1. Range of \(\mathbf{n}: \mathrm{K} 1 \sim \mathrm{~K} 256\)
2. S designates \(\mathrm{KnX}, \mathrm{KnY}, \mathrm{KnM}\) and KnS ; D designates \(\mathrm{KnY}, \mathrm{KnM}\) and KnS .
3. \(\mathrm{SA} / \mathrm{SX} / \mathrm{SC}\) can designate \(\mathrm{n}=4\). EH/EH2/SV/EH3/SV2 can designate \(\mathrm{n} \leqq 4\).
4. See the specifications of each model for their range of use.
5. Flags: M1098, M1099. See remarks for more details.
6. This instruction counts the number of bits which are " 1 " or " 0 " in \(\mathbf{S}\) by array length \(\mathbf{n}\). The result is stored in \(\mathbf{D}\).
7. The instruction counts the number of bits which are " 1 " when \(\mathrm{M} 1098=1\) and counts the number of bits which are "0" when M1098 \(=0\). When the operation result is " 0 ", M1099 \(=1\).

\section*{Program Example:}

When X10 = On, in the matrix of D0 ~ D2, when M1098 = 1, the instruction counts the total number of bits which are " 1 " and store the number in D10. When M1098 = 0, the instruction counts the total number of bits which are " 0 " and store the number in D10.
\begin{tabular}{|c|c|c|c|c|}
\hline X10 & MBC & D0 & K3 & D10 \\
\hline \multirow{4}{|c|}{}
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\cline { 2 - 3 } & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}


D10 36 M1098 \(=1\)

\section*{Remarks:}

Flag explanations:
\begin{tabular}{|c|l|}
\hline Flags & \multicolumn{1}{c|}{ Function } \\
\hline M1098 & Counting the number of bits which are "1" or "0" \\
\hline M 1099 & On when the counting result is "0". \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & Function \\
\hline 191 & D & PPMR & & \(\mathbf{S}_{1}\) & \(S_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & X & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & \multicolumn{2}{|l|}{T} & C & D & E & F & \multicolumn{9}{|l|}{DPPMR: 17 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline S & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & 16 & & & & & & & & & 32- & & & & \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & S & & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Number of output pulses of \(X\) axis \(\mathbf{S}_{2}\) : Number of output pulses of Y axis
S: Max. point to point output frequency D: Pulse output device

\section*{Explanations:}
1. Flags: M1029, M1030, M1334, M1335. See remarks for more details.
2. This instruction only supports EH2/SV/EH3/SV2 series MPU, not EH series. In terms of pulse output methods, this instructin only supports "pulse + direction" mode.
3. \(\quad \mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) are the designated (relative designation) number of output pulses in X axis ( Y 0 or Y 4 ) and Y axis ( Y 2 or Y6). The range of the number is \(-2,147,483,648 \sim+2,147,483,647\) (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
4. D can designate Y 0 and Y 4 .

When YO is designated:
YO refers to \(1^{\text {st }}\) group X -axis pulse output device.
Y 1 refers to \(1^{\text {st }}\) group X -axis direction signal.
\(Y 2\) refers to \(1^{\text {st }}\) group Y -axis pulse output device.
\(Y 3\) refers to \(1^{\text {st }}\) group \(Y\)-axis direction signal.
Y 4 refers to \(2^{\text {nd }}\) group X -axis pulse output device.
\(Y 5\) refers to \(2^{\text {nd }}\) group \(X\)-axis direction signal.
Y6 refers to \(2^{\text {nd }}\) group \(Y\)-axis pulse output device.
\(Y 7\) refers to \(2^{\text {nd }}\) group \(Y\)-axis direction signal.
When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.
5. D1340 (D1379) refers to the settings of the start/end frequencies of the \(1^{\text {st/}} / 2^{\text {nd }} 2\)-axis motion. D1343 (D1381) refers to the time of the first acceleration segment and last deceleration segment of the \(1^{\text {st }} / 2^{\text {nd }} 2\)-axis motion.

The time shall be longer than 10 ms . If the time is shorter than 10 ms or longer than \(10,000 \mathrm{~ms}\), the output will be operated at 10 ms . Default setting \(=100 \mathrm{~ms}\).
6. If the maximum output frequency setting is less than 10 Hz , the output will be operated at 10 Hz . If the setting is
more than 200 kHz , the output will be operated at 200 kHz .
7. When the 2-axis synchronous motion instruction is enabled, the start frequency and acceleration/deceleration time in \(Y\) axis will be same as the settings in \(X\) axis.
8. The number of output pulses for the 2-axis motion shall not be less than 59; otherwise the line drawn will not be straight enough.
9. There is no limitation on the number of times using the instruction. However, assume CH 1 or CH 2 output is in use, the \(1^{\text {st }}\) group \(\mathrm{X} / \mathrm{Y}\) axis will not be able to output. If CH 3 or CH 4 output is in use, the \(2^{\text {nd }}\) group \(\mathrm{X} / \mathrm{Y}\) axis will not be able to output.

\section*{Program Example:}
1. Draw a rhombus as the figure below.

2. Steps:
a) Set the four coordinates \((0,0),(-27000,-27000),(0,-55000),(27000,-27000)\) (as the figure above). Calculate the relative coordinates of the four points and obtain (-27000, -27000), (27000, -28000), (27000, 27000), and (-27000, 27000). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
b) Write program codes as follows.
c) PLC RUN. Set MO as On and start the 2-axis line drawing.

3. Motion explanation:

When PLC RUN and M0 = On, PLC will start the first point-to-point motion by 100kHz. D0 will plus 1 whenever a point-to-point motion is completed and the second point-to-point motion will start to execute automatically. The
same motion will keep executing until the fourth point-to-point motion is completed.

\section*{Remarks:}
1. Flag explanations:

M1029: On when the \(1^{\text {st }}\) group 2-axis pulse output is completed.
M1036: On when the \(2^{\text {nd }}\) group 2-axis pulse output is completed.
M1334 \& When M1334 and M1335 are On, the first group of pulses outputs of the two axes stops
M1335: immediately.
M1336: \(\quad 1^{\text {st }}\) group 2-axis pulse output indication flag
M1520 \& When M1520 and M1521 are On, the second group of pulse outputs of the two axes stops
M1521: immediately.
M1522: \(\quad 2^{\text {nd }}\) group 2-axis pulse output indication flag
2. Special register explanations:

D1336, D1337: Pulse present value register for Y0 output of the \(1^{\text {st }}\) group \(X\)-axis motion. The present value increases or decreases following the rotation direction. (D1337 high word; D1336 low word)

D1338, D1339: Pulse present value register for Y2 output of the \(1^{\text {st }}\) group Y -axis motion. The present value increases or decreases following the rotation direction. (D1339 high word; D1338 low word)
D1340: Frequency settings of the first acceleration and last deceleration segment for the Y0 output of the \(1^{\text {st }}\) group X-axis motion and Y2 of the Y-axis motion for API 191 DPPMR and API 192 DPPMA.
D1343: Time settings of the first acceleration and last deceleration segment for the Y0 output of the \(1^{\text {st }}\) group X-axis motion and Y2 of the Y-axis motion for API 191 DPPMR and API 192 DPPMA.

D1375, D1376: Pulse present value register for Y4 output of the \(2^{\text {nd }}\) group X -axis motion. The present value increases or decreases following the rotation direction. (D1337 high word; D1336 low word)
D1377, D1378: Pulse present value register for Y6 output of the \(2^{\text {nd }}\) group Y -axis motion. The present value increases or decreases following the rotation direction. (D1339 high word; D1338 low word)
D1379: Frequency settings of the first acceleration and last deceleration segment for the Y4 output of the \(2^{\text {nd }}\) group X-axis motion and Y6 of the Y-axis motion for API 191 DPPMR and API 192 DPPMA.

D1381: Time settings of the first acceleration and last deceleration segment for the Y 4 output of the \(2^{\text {nd }}\) group X-axis motion and Y6 of the Y-axis motion for API 191 DPPMR and API 192 DPPMA.
\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & Function \\
\hline 192 & D & PPMA & & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & \multicolumn{2}{|l|}{KnM} & KnS & \multicolumn{2}{|r|}{T} & C & D & E & F & \multicolumn{9}{|l|}{DPPMA: 17 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline S & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Number of output pulses of \(X\) axis \(\mathbf{S}_{2}\) : Number of output pulses of Y axis

S: Max. point to point output frequency D: Pulse output device

\section*{Explanations:}
1. Flags: M1029, M1030, M1334, M1335. See remarks of API 191 DPPMR for more details.
2. This instruction only supports EH2/SV/EH3/SV2 series MPU, not EH series. In terms of pulse output methods, this instructin only supports "pulse + direction" mode.
3. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) are the designated (absolute designation) number of output pulses in X axis ( Y 0 or Y 4 ) and Y axis ( Y 2 or Y6). The range of the number is \(-2,147,483,648 \sim+2,147,483,647\) (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH 0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
4. D can designate Y 0 and Y 4 .

When YO is designated:
YO refers to \(1^{\text {st }}\) group X -axis pulse output device.
Y 1 refers to \(1^{\text {st }}\) group X -axis direction signal.
Y 2 refers to \(1^{\text {st }}\) group Y -axis pulse output device.
\(Y 3\) refers to \(1^{\text {st }}\) group \(Y\)-axis direction signal.
\(Y 4\) refers to \(2^{\text {nd }}\) group \(X\)-axis pulse output device.
Y 5 refers to \(2^{\text {nd }}\) group X -axis direction signal.
\(Y 6\) refers to \(2^{\text {nd }}\) group \(Y\)-axis pulse output device.
\(Y 7\) refers to \(2^{\text {nd }}\) group \(Y\)-axis direction signal.
When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.
5. D1340 (D1379) refers to the settings of the start/end frequencies of the \(1 / 2^{\text {st }} 2\)-axis motion. D1343 (D1381) refers to the time of the first acceleration segment and last deceleration segment of the \(1^{\text {st }} / 2^{\text {nd }} 2\)-axis motion. The time shall be longer than 10 ms . If the time is shorter than 10 ms or longer than \(10,000 \mathrm{~ms}\), the output will be operated at 10 ms . Default setting \(=100 \mathrm{~ms}\).
6. If the maximum output frequency setting is less than 10 Hz , the output will be operated at 10 Hz . If the setting is
more than 200 kHz , the output will be operated at 200 kHz .
7. When the 2-axis synchronous motion instruction is enabled, the start frequency and acceleration/deceleration time in \(Y\) axis will be same as the settings in \(X\) axis.
8. The number of output pulses for the 2-axis motion shall not be the values within \(1 \sim 59\); otherwise the line drawn will not be straight enough.
9. There is no limitation on the number of times using the instruction. However, assume CH 1 or CH 2 output is in use, the \(1^{\text {st }}\) group \(X / Y\) axis will not be able to output. If CH 3 or CH 4 output is in use, the \(2^{\text {nd }}\) group \(\mathrm{X} / \mathrm{Y}\) axis will not be able to output.

\section*{Program Example:}
1. Draw a rhombus as the figure below.

2. Steps:
a) Set the four coordinate \((-27,000,-27,000),(0,-55,000),(27,000,-27,000),(0,0)\) (as the figure above). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
b) Write program codes as follows.
c) PLC RUN. Set MO as On and start the 2-axis line drawing.

3. Motion explanation:

When PLC RUN and MO = On, PLC will start the first point-to-point motion by 100 kHz . D0 will plus 1 whenever a
point-to-point motion is completed and the second point-to-point motion will start to execute automatically. The same motion will keep executing until the fourth point-to-point motion is completed.
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|r|}{Mnemonic} & Operands & Function \\
\hline 193 & D & CIMR & (S1) S \(\mathbf{S}^{\text {d }}\) & 2-Axis Relative Position Arc Interpolation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & Kn & X & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & T & C & D & \multicolumn{2}{|r|}{E} & F & \multicolumn{9}{|l|}{DCIMR: 17 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & & & & & & & & & & & & & \\
\hline S & & & & & & & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & PU & & & & & & & & & & & & & & & & & & & & -bit & & & \\
\hline & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & E & & & \[
\begin{aligned}
& \mathrm{E} 3 \\
& \mathrm{~B} 2
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Number of output pulses of \(X\) axis
\(\mathbf{S}_{\mathbf{2}}\) : Number of output pulses of Y axis
S: Parameter setting
D: Pulse output device

\section*{Explanations:}
1. Flags: M1029, M1030, M1334, M1335. See remarks of API 191 DPPMR for more details.
2. This instruction only supports EH2/SV/EH3/SV2 series MPU, not EH series. In terms of pulse output methods, this instructin only supports "pulse + direction" mode.
3. \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are the designated (relative designation) number of output pulses in X axis ( Y 0 or Y 4 ) and Y axis ( Y 2 or Y6). The range of the number is \(-2,147,483,648 \sim+2,147,483,647\) (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH 0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
4. The lower 16 bits of \(\mathbf{S}\) (settings of direction and resolution): K0 refers to clockwise 10-segment (average resolution) output; K2 refers to clockwise 20-segment (higher resolution) output and a \(90^{\circ}\) arc can be drawn (see figure 1 and 2). K1 refers to counterclockwise 10-segment (average resolution) output; K3 refers to counterclockwise 20-segment (higher resolution) output and a \(90^{\circ}\) arc can be drawn (see figure 3 and 4).
5. The higher 16 bits of \(\mathbf{S}\) (settings of motion time): K 1 refers to 0.1 second. The setting range for average resolution is K1 ~ K100 ( 0.1 sec. \(\sim 10\) secs.) , for higher resolution is K2 \(\sim\) K200 ( 0.2 sec. \(\sim 20\) secs.) This instruction is restricted by the maximum pulse output frequency; therefore when the set time goes faster than the actual output time, the set time will be automatically modified.




Figure 3


Figure 4
6. D can designate \(Y 0\) and \(Y 4\).

When YO is designated:
YO refers to \(1^{\text {st }}\) group X -axis pulse output device.
\(Y 1\) refers to \(1^{\text {st }}\) group \(X\)-axis direction signal.
Y2 refers to \(1^{\text {st }}\) group Y -axis pulse output device.
Y3 refers to \(1^{\text {st }}\) group Y -axis direction signal.
When Y 4 is designated:
Y 4 refers to \(2^{\text {nd }}\) group X -axis pulse output device.
Y 5 refers to \(2^{\text {nd }}\) group X -axis direction signal.
Y6 refers to \(2^{\text {nd }}\) group \(Y\)-axis pulse output device.
Y 7 refers to \(2^{\text {nd }}\) group Y -axis direction signal.
When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.
7. Draw four \(90^{\circ}\) arcs.
8. When the direction signal is On, the direction is positive. When the direction signal is Off, the direction is negative. When \(\mathbf{S}\) is set as \(K 0, K 2\), the arcs will be clockwise (see figure 5 ). When \(\mathbf{S}\) is set as \(K 1, K 3\), the arcs will be counterclockwise (see figure 6).


9. When the 2 -axis motion is being executed in 10 segments (of average resolution), the operation time of the instruction when the instruction is first enabled is approximately 5 ms . The number of output pulses cannot be less than 100 and more than 1,000,000; otherwise, the instruction cannot be enabled.
10. When the 2-axis motion is being executed in 20 segments (of high resolution), the operation time of the instruction when the instruction is first enabled is approximately 10 ms . The number of output pulses cannot be less than 1,000 and more than 10,000,000; otherwise, the instruction cannot be enabled.
11. If you wish the number of pulses in 10-segment or 20 -segment motion to be off the range, you may adjust the gear ratio of the servo for obtaining your desired number.
12. Every time when the instruction is executed, only one \(90^{\circ}\) arc can be drawn. It is not necessary that the arc has to be a precise arc, i.e. the numbers of output pulses in \(X\) and \(Y\) axes can be different.
13. There are no settings of start frequency and acceleration/deceleration time.
14. There is no limitation on the number of times using the instruction. However, assume CH 1 or CH 2 output is in use, the \(1^{\text {st }}\) group \(X / Y\) axis will not be able to output. If CH 3 or CH 4 output is in use, the \(2^{\text {nd }}\) group \(\mathrm{X} / \mathrm{Y}\) axis will not be able to output.
15. The settings of direction and resolution in the lower 16 bits of \(\mathbf{S}\) can only be K0 \(\sim K 3\).
16. The settings of motion time in the high 16 bits of \(\mathbf{S}\) can be slower than the the fastest suggested time but shall not be faster than the fastest suggested time.
17. The fastest suggested time for the arc interpolation:
\begin{tabular}{|l|c|c|}
\hline Segments & Max. target position (pulse) & Fastest suggested set time (unit:100ms) \\
\hline \multirow{4}{*}{\begin{tabular}{l} 
Average \\
resolution
\end{tabular}} & \(100 \sim 10,000\) & 1 \\
\cline { 2 - 3 } & \(10,001 \sim 19,999\) & 2 \\
\cline { 2 - 3 } & \(:\) & \(:\) \\
\cline { 2 - 3 } & Less than \(1,000,000\) & Less than 100 \\
\hline \multirow{3}{*}{\begin{tabular}{l} 
Higher \\
resolution
\end{tabular}} & \(1,000 \sim 20,000\) & 2 \\
\cline { 2 - 3 } & \(20,000 \sim 29,999\) & 3 \\
\cline { 2 - 3 } & \(:\) & \(:\) \\
\cline { 2 - 3 } & Less than \(10,000,000\) & Less than 200 \\
\hline
\end{tabular}

\section*{Program Example 1:}
1. Draw an ellipse as the figure below.

2. Steps:
a) Set the four coordinates \((0,0),(1600,2200),(3200,0),(1600,-2200)\) (as the figure above). Calculate the relative coordinates of the four points and obtain (1600, 2200), (1600, -2200), (-1600, -2200), and (-1600, 2200). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
b) Select "draw clockwise arc" and "average resolution" ( \(\mathrm{S}=\mathrm{KO}\) ).
c) Write program codes as follows.
d) PLC RUN. Set MO as On and start the drawing of the ellipse.

3. Motion explanation:

When PLC RUN and MO = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.

\section*{Program Example 2:}
1. Draw a tilted ellipse as the figure below.

2. Steps:
a) Find the max. and min. coordinates on \(X\) and \(Y\) axes ( 0,0 ), (26000, 26000), (34000, 18000), (8000, -8000) (as the figure above). Calculate the relative coordinates of the four points and obtain \((26000,26000), ~(8000,-8000)\), (-26000, -26000), (-8000, 8000). Place them respectively in the 32-bit (D200, D202), (D204, D206), (D208, D210) and (D212, D214).
b) Select "draw clockwise arc" and "average resolution" (S = K0).
c) Select DCIMR instruction for drawing arc and write program codes as follows.
d) PLC RUN. Set MO as On and start the drawing of the ellipse.

3. Motion explanation:

When PLC RUN and MO = On, PLC will start the drawing of the first segment of the arc. DO will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.
\begin{tabular}{|c||c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & Function \\
\hline 194 & D & CIMA & & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & Kn & & Kns & & T & C & & D & E & F & \multicolumn{9}{|l|}{DCIMA: 17 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline S & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & S & & EH & V & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Number of output pulses of \(X\) axis
\(S_{2}\) : Number of output pulses of \(Y\) axis
S: Parameter setting
D: Pulse output device

\section*{Explanations:}
1. Flags: M1029, M1030, M1334, M1335. See remarks of API 191 DPPMR for more details.
2. This instruction only supports EH2/SV/EH3/SV2 series MPU, not EH series. In terms of pulse output methods, this instructin only supports "pulse + direction" mode.
3. \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) are the designated (absolute designation) number of output pulses in X axis \((\mathrm{Y} 0\) or Y 4\()\) and Y axis ( Y 2 or Y6). The range of the number is \(-2,147,483,648 \sim+2,147,483,647\). When \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) are larger than pulse present value registers CH0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word), and CH3 (D1378 high word, D1377 low word), the output direction will be positive and direction signals \(\mathrm{Y} 1, \mathrm{Y} 3, \mathrm{Y} 5, \mathrm{Y} 7\) will be On . When \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) are less than pulse present value registers, the output direction will be negative and direction signals \(\mathrm{Y} 1, \mathrm{Y} 3, \mathrm{Y} 5, \mathrm{Y} 7\) will be Off.
4. The lower 16 bits of \(\mathbf{S}\) (settings of direction and resolution): K0 refers to clockwise 10-segment (average resolution) output; K2 refers to clockwise 20-segment (higher resolution) output and a \(90^{\circ}\) arc can be drawn (see figure 1 and 2). K1 refers to counterclockwise 10-segment (average resolution) output; K3 refers to counterclockwise 20-segment (higher resolution) output and a \(90^{\circ}\) arc can be drawn (see figure 3 and 4).
5. The higher 16 bits of \(\mathbf{S}\) (settings of motion time): \(K 0\) refers to 0.1 second. The setting range for average resolution is K1 ~ K100 ( 0.1 sec. ~ 10 secs.), for higher resolution is K2 ~ K200 ( 0.2 sec. \(\sim 20\) secs.) This instruction is restricted by the maximum pulse output frequency; therefore when the set time goes faster than the actual output time, the set time will be automatically modified.



6. D can designate Y 0 and Y 4 .

When YO is designated:
Y 0 refers to \(1^{\text {st }}\) group X -axis pulse output device.
Y 1 refers to \(1^{\text {st }}\) group X -axis direction signal.
Y2 refers to \(1^{\text {st }}\) group \(Y\)-axis pulse output device.
Y3 refers to \(1^{\text {st }}\) group Y -axis direction signal.
When Y 4 is designated:
Y 4 refers to \(2^{\text {nd }}\) group X -axis pulse output device.
\(Y 5\) refers to \(2^{\text {nd }}\) group \(X\)-axis direction signal.
Y6 refers to \(2^{\text {nd }}\) group \(Y\)-axis pulse output device.
Y 7 refers to \(2^{\text {nd }}\) group Y -axis direction signal.
When direction signal outputs, Off will not occur immediately after the pulse output is over. Direction signal will turn Off when the drive contact is Off.
7. Draw four \(90^{\circ}\) arcs.
8. When the direction signal is On, the direction is positive. When the direction signal is Off, the direction is negative. When \(\mathbf{S}\) is set as K0, K2, the arcs will be clockwise (see figure 5). When \(\mathbf{S}\) is set as K1, K3, the arcs will be counterclockwise (see figure 6).


9. When the 2-axis motion is being executed in 10 segments (of average resolution), the operation time of the instruction when the instruction is first enabled is approximately 5 ms . The number of output pulses cannot be less than 100 and more than 1,000,000; otherwise, the instruction cannot be enabled.
10. When the 2 -axis motion is being executed in 20 segments (of high resolution), the operation time of the instruction when the instruction is first enabled is approximately 10 ms . The number of output pulses cannot be
less than 1,000 and more than 10,000,000; otherwise, the instruction cannot be enabled.
11. If you wish the number of pulses in 10-segment or 20 -segment motion to be off the range, you may adjust the gear ratio of the servo for obtaining your desired number.
12. Every time when the instruction is executed, only one \(90^{\circ}\) arc can be drawn. It is not necessary that the arc has to be a precise arc, i.e. the numbers of output pulses in \(X\) and \(Y\) axes can be different.
13. There are no settings of start frequency and acceleration/deceleration time.
14. There is no limitation on the number of times using the instruction. However, assume CH 1 or CH 2 output is in use, the \(1^{\text {st }}\) group \(\mathrm{X} / \mathrm{Y}\) axis will not be able to output. If CH 3 or CH 4 output is in use, the \(2^{\text {nd }}\) group \(\mathrm{X} / \mathrm{Y}\) axis will not be able to output.
15. The settings of direction and resolution in the lower 16 bits of \(\mathbf{S}\) can only be K0 \(\sim \mathrm{K} 3\).
16. The settings of motion time in the high 16 bits of \(\mathbf{S}\) can be slower than the the fastest suggested time but shall not be faster than the fastest suggested time.
17. The fastest suggested time for the arc interpolation:
\begin{tabular}{|l|c|c|}
\hline Segments & Max. target position (pulse) & Fastest suggested set time (unit:100ms) \\
\hline \multirow{4}{*}{\begin{tabular}{c} 
Average \\
resolution
\end{tabular}} & \(100 \sim 10,000\) & 1 \\
\cline { 2 - 3 } & \(10,001 \sim 19,999\) & 2 \\
\cline { 2 - 3 } & \(:\) & \(:\) \\
\cline { 2 - 3 } \begin{tabular}{l} 
Higher \\
resolution
\end{tabular} & Less than \(1,000,000\) & Less than 100 \\
\cline { 2 - 3 } & \(1,000 \sim 20,000\) & 2 \\
\cline { 2 - 3 } & \(20,000 \sim 29,999\) & 3 \\
\cline { 2 - 3 } & \(:\) & \(:\) \\
\hline
\end{tabular}

\section*{Program Example 1:}
1. Draw an ellipse as the figure below.

2. Steps:
a) Set the four coordinates \((0,0),(16000,22000),(32000,0),(16000,-22000)\) (as the figure above). Place them in the 32-bit (D200, D202), (D204, D206), (D208, D210), (D212, D214).
b) Select "draw clockwise arc" and "average resolution" (S =D100=K0).
c) Select DCIMA instruction for drawing arc and write program codes as follows.
d) PLC RUN. Set MO as On and start the drawing of the ellipse.

3. Motion explanation:

When PLC RUN and MO = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.

Program Example 2:
1. Draw a tilted ellipse as the figure below.

2. Steps:
a) Find the max. and min. coordinates on \(X\) and \(Y\) axes ( 0,0 ), (26000, 26000), (34000, 18000), (8000, -8000) (as the figure above). Place them respectively in the 32-bit (D200, D202), (D204, D206), (D208, D210) and (D212, D214).
b) Select "draw clockwise arc" and "average resolution" (S =D100= K0).
c) Select DCIMA instruction for drawing arc and write program codes as follows.
d) PLC RUN. Set MO as On and start the drawing of the ellipse.

3. Motion explanation:

When PLC RUN and MO = On, PLC will start the drawing of the first segment of the arc. D0 will plus 1 whenever a segment of arc is completed and the second segment of the arc will start to execute automatically. The same motion will keep executing until the fourth segment of arc is completed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|r|}{Mnemonic} & \multicolumn{7}{|c|}{Operands} & \multicolumn{19}{|c|}{Function} \\
\hline 195 & D & \multicolumn{2}{|l|}{PTPO} & \multicolumn{7}{|c|}{(S1) \(\mathbf{S}_{2}\)} & \multicolumn{19}{|l|}{Single-Axis Pulse Output by Table} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & & S & K & H & & KnX & KnY & & nM & Kns & S & T & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{DPTPO: 13 steps}} \\
\hline \multicolumn{3}{|c|}{\(\mathrm{S}_{1}\)} & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \multicolumn{3}{|c|}{\(\mathrm{S}_{2}\)} & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \multicolumn{2}{|c|}{D} & & * & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \multicolumn{21}{|c|}{PULSE \({ }^{\text {l }}\)} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & H SV & \[
\begin{array}{|c|c|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & \multicolumn{6}{|l|}{} & H & sV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES Ex & \multicolumn{2}{|l|}{X SS} & A & \multicolumn{2}{|r|}{\(\times \mathrm{S}\)} & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source start device
\(\mathbf{S}_{\mathbf{2}}\) : Number of segments
D: Pulse output device

\section*{Explanations:}
1. Flags: M1029, M1030, M1334, M1335. See remarks for more details.
2. This instruction only supports EH2/SV/EH3/SV2 series MPU, not EH series.
3. According to the value of \(\mathbf{S}_{2}+0\), every segment consecutively occupy four register \(D\). \(\left(\mathbf{S}_{1}+0\right)\) refers to output frequency. \(\left(S_{1}+2\right)\) refers to the number of output pulses.
4. When the output frequency of \(\mathbf{S}_{1}\) is less than 1 , PLC will automatically modify it as 1 . When the value is larger than \(200,000 \mathrm{kHz}\), PLC will automatically modify it as \(200,000 \mathrm{kHz}\).
5. \(S_{2}+0\) : number of segments (range: \(1 \sim 60\) ). \(\mathbf{S}_{\mathbf{2}}+1\) : number of segments being executed. Whenever the program scans to this instruction, the instruction will automatically update the segment No. that is currently being executed.
6. D can only designate output devices \(\mathrm{Y} 0, \mathrm{Y} 2, \mathrm{Y} 4\) and Y 6 and can only perform pulse output control. For the pin for direction control, the user has to compile other programs to control.
7. This instruction does not offer acceleration and deceleration functions. Therefore, when the instruction is disabled, the output pulses will stop immediately.
8. In every program scan, each channel can only be executed by one instruction. However, there is no limitation on the number of times using this instruction.
9. When the instruction is being executed, the user is not allowed to update the frequency or number of the segments. Changes made will not be able to make changes in the actual output.

\section*{Program Example:}
1. When \(\mathrm{XO}=\mathrm{On}\), the output will be operated according to the set frequency and number of pulses in every segment.
2. Format of the table:
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l}
\(\mathbf{S}_{2}=\) D300, number of segments \\
\((D 300=\) K60 \()\)
\end{tabular} & \(\mathbf{S}_{1}=\) D0, frequency \(\left(\mathbf{S}_{\mathbf{1}}+0\right)\) & \begin{tabular}{l}
\(\mathbf{S}_{1}=\) D0, number of output pulses \\
\(\left(\mathbf{S}_{1}+2\right)\)
\end{tabular} \\
\hline K1 \(\left(1^{\text {st }}\right.\) segment \()\) & D3, D2 \\
\hline K2 \(\left(2^{\text {nd }}\right.\) segment \()\) & D5, D4 & D7, D6 \\
\hline\(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(\vdots\) & \(\vdots\) & D239, D238 \\
\hline K60 \(\left(60^{\text {th }}\right.\) segment \()\) & D237, D236 & \\
\hline
\end{tabular}
3. Monitor the segment No. that is currently being executed in register D301.

4. The pulse output curve:


\section*{Remarks:}
1. Flag explanations:

M1029: On when CHO (YO) pulse output is completed.
M1030: On when CH1 (Y2) pulse output is completed.
M1036: On when \(\mathrm{CH} 2(\mathrm{Y} 4)\) pulse output is completed.
M1037: On when CH3 (Y6) pulse output is completed.
M1334: When On, CH0 (Y0) pulse output will be forbidden.
M1335: When On, CH1 (Y2) pulse output will be forbidden.
M1520: When On, CH2 (Y4) pulse output will be forbidden.
M1521: When On, CH3 (Y6) pulse output will be forbidden.
M1336: \(\quad \mathrm{CHO}(\mathrm{YO})\) pulse output indication flag
M1337: \(\quad \mathrm{CH} 1(\mathrm{Y} 2)\) pulse output indication flag
M1522: \(\quad \mathrm{CH} 2(\mathrm{Y} 4)\) pulse output indication flag
M1523: \(\quad \mathrm{CH} 3\) (Y6) pulse output indication flag
2. Special register explanations:

D1336, D1337: Pulse present value register of \(\mathrm{CH}(\mathrm{YO})\) (D1337 high word, D1336 low word) D1338, D1339: Pulse present value register of CH1 (Y2) (D1339 high word, D1338 low word) D1375, D1376: Pulse present value register of \(\mathrm{CH} 2(\mathrm{Y} 4)\) (D1376 high word, D1375 low word) D1377, D1378: Pulse present value register of CH3 (Y6) (D1378 high word, D1377 low word)
\begin{tabular}{|c|c|c|c|cc|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 196 & & HST & P & S & High Speed Timer
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word Devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & HST, HSTP: 3 steps \\
\hline S & & & & & * & * & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

S: Condition to stop the startup of high speed timer

\section*{Explanations:}
1. Range of \(\mathbf{S}: \mathrm{S}=\mathrm{KO}(\mathrm{H} 0), \mathrm{K} 1(\mathrm{H} 1)\).
2. Flag: M1015
3. When \(\mathbf{S}=1\), the high speed timer will be enabled and \(\mathrm{M} 1015=O n\). The high speed timer starts to time and record the present value in D1015 (min. unit: 100us).
4. Timing range of D1015: K0 \(\sim K 32,767\). When the timing reaches \(\mathrm{K} 32,767\), the next timing will restart from 0 .
5. When \(\mathbf{S}=0\), the high speed timer will be disabled and M1015 \(=\) Off. D1015 will stop the timing immediately.
6. When \(\mathbf{S}\) is neither 1 nor 0 , HST instruction will not be executed.

\section*{Program Example:}
1. When \(\mathrm{X} 10=\mathrm{On}, \mathrm{M} 1015\) will be On. The high speed timer will start to time and record the present value in D1015.
2. When \(\mathrm{X} 10=\mathrm{Off}, \mathrm{M} 1015\) will be Off. The high speed timer will be shut down.


\section*{Remarks:}
1. Flag explanations:

M1015: high speed timer start-up flag
D1015: high speed timer
2. EH/EH2/SV/EH3/SV2 series MPU do not use this instruction and use special M and special D directly for the timer.
a) Special M and special D are only applicable when PLC RUN.
b) When M1015 \(=\) On and PLC scans to END instruction, the high speed timer D1015 will be enabled. The minimum timing unit of D1015: 100us.
c) Timing range of D1015: K0 ~ K32,767. When the timing reaches \(\mathrm{K} 32,767\), the next timing will restart from KO.
d) When M1015 = Off, D1015 will stop the timing when encountering END or HST instruction.
3. SA/SX/SC series MPU do not use this instruction and use special M and special D directly for the timer.
a) Special M and special D are applicable when PLC RUN or STOP.
b) When M1015 = On, the high speed timer D1015 will be enabled. The minimum timing unit of D1015: 100us.
c) Timing range of D1015: K0 ~ K32,767. When the timing reaches \(\mathrm{K} 32,767\), the next timing will restart from KO.
d) When M1015 = Off, D1015 will stop the timing immediately.
\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|r|}{Mnemonic} & Operands & Function \\
\hline 197 & D & CLLM & \(S_{1} S_{2} S_{3}\) D & Close Loop Position Control \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{8}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & & nM & Kn & & T & C & D & E & F & \multicolumn{8}{|l|}{DCLLM: 17 steps} \\
\hline \(\mathrm{S}_{1}\) & * & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & \\
\hline D & & * & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{8}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & EH SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & S & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA S & SX & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Feedback source device
\(\mathbf{S}_{2}\) : Target number of feedbacks
\(\mathbf{S}_{3}\) : Target frequency of output
D: Pulse output device

\section*{Explanations:}
1. Flags: M1029, M1030, M1334, M1335. See remarks for more details.
2. This instruction only supports EH2/SV/EH3/SV2 series MPU, not EH series.
3. The corresponding interruption of \(\mathbf{S}_{1}\) :
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Source device & X0 & X1 & X2 & X3 & \multicolumn{4}{|c|}{ C241~C254 } \\
\hline Corresponding outout & Y0 & Y2 & Y4 & Y6 & Y0 & Y2 & Y4 & Y6 \\
\hline Interruption No. & \(100 \square\) & \(I 10 \square\) & \(120 \square\) & \(I 30 \square\) & 1010 & 1020 & 1030 & 1040 \\
\hline
\end{tabular}
\(\square=1\) : rising-edige trigger; \(\square=0\) : falling-edge trigger
a) When \(S_{1}\) designates \(X\) as the input points and the pulse output reaches the set target number of feedbacks in \(\mathbf{S}_{\mathbf{2}}\), the output will continue to operate by the frequency of the last segment until the interruption of \(X\) input points occurs.
b) When \(\mathbf{S}_{1}\) designates a high speed counter and the pulse output reaches the set target number of feedbacks in \(\mathbf{S}_{\mathbf{2}}\), the output will continue to operate by the frequency of the last segment until the feedback pulses reaches the target number.
c) \(\mathbf{S}_{1}\) can be a high speed counter \(C\) or an external interruption \(X\). If \(S_{1}\) is \(C\), DCNT instruction should be first executed to enable the high-speed counting function and El and IOx0 interruption service program to enable the high-speed interruption. If \(\mathbf{S}_{1}\) is \(X\), El instruction and I0x0 interruption service program should be executed to enable the external interruption function.
4. The range of \(\mathbf{S}_{2}:-2,147,483,648 \sim+2,147,483,647\) (+/- represents the forward/backward direction). When in forward direction, the pulse present value registers CH 0 (D1337 high word, D1336 low word), CH1 (D1339 high word, D1338 low word), CH2 (D1376 high word, D1375 low word) and CH3 (D1378 high word, D1377 low word) will increase. When in backward direction, the present value will decrease.
5. If \(\mathbf{S}_{3}\) is lower than 10 Hz , the output will operate at 10 Hz ; if \(\mathbf{S}_{3}\) is higher than 200 kHz , the output will operate at 200kHz.
6. D can only designate \(\mathrm{Y} 0, \mathrm{Y} 2, \mathrm{Y} 4\) and Y 6 and the direction signals repectively are \(\mathrm{Y} 1, \mathrm{Y} 3, \mathrm{Y} 5\) and Y 7 . When there is a direction signal output, the direction signal will not be Off immediately after the pulse output is
completed. The direction signal will be Off only when the drive contact is Off.
7. D1340, D1352, D1379 and D1380 are the settings of start/end frequencies of \(\mathrm{CH} 0 \sim \mathrm{CH}\). The minimun frequency is 10 Hz and default is 200 Hz .
8. D1343, D1353, D1381 and D1382 are the settings of the time of the first segment and the last deceleration segment of \(\mathrm{CHO} \sim \mathrm{CH} 3\). The acceleration/deceleration time cannot be shorter than 10 ms . The outptu will be operated in 10 ms if the time set is shorter than 10 ms or longer than \(10,000 \mathrm{~ms}\). The dafault setting is 100 ms .
9. D1131, D1132, D1478 and D1479 are the output/input ratio of the close loop control in \(\mathrm{CH} 0 \sim \mathrm{CH} 3\). K1 refers to 1 output pulse out of the 100 target feedback input pulses; K200 refers to 200 output pulses out of the 100 target feedback input pulses. D1131, D1132, D1478 and D1479 are the numerators of the ratio (range: K1~ \(\mathrm{K} 10,000\) ) and the denominator is fixed as K100 (the user does not have to enter a denominator).
10. M1305, M1306, M1532 and M1533 are the direction signal flags for \(\mathrm{CH} 0 \sim \mathrm{CH} 3\). When \(\mathrm{S}_{2}\) is a positive value, the output will be in forward direction and the flag will be Off. When \(\boldsymbol{S}_{\mathbf{2}}\) is a negative value, the output will be in backward direction and the flag will be On.

\section*{Close Loop Explanations:}
1. Function: Immediately stop the high-speed pulse output according to the number of feedback pulses or external interruption signals.
2. The execution:

3. How to adjust the time for the completion of the positioning:
a) The time for the completion of the positioning refers to the time for "acceleration + high speed + deceleration + idling" (see the figure above). For example, you can increase or decrease the entire number of output pulses by making adjustment on the percentage value and further increase or decrease the time required for the positioning.
b) Among the four segments of time, only the idling time cannot be adjusted directly by the user. However, you can determine if the execution result is good or bad by the length of the idling time. In theory, a bit of idling left is the best result for a positioning.
c) Owing to the close loop operation, the length of idling time will not be the same in every execution. Therefore, when the content in the special \(D\) for displaying the actial number of output pulses is smaller or larger than the calculated number of output pulses (taget number of feedbacks \(\times\) percentage value/100),
you can improve the situation by adjusting the percentage value, acceleration/decelartion time or target frequency.

\section*{Program Example:}
1. Assume we adopt \(X 0\) as the external interruption, together with 1001 (rising-edge trigger) interruption program; target number of feedbacks \(=50,000\); target frequency \(=10 \mathrm{kHz}\); Y0, \(\mathrm{Y} 1(\mathrm{CHO})\) as output pulses; start/end frequency \((D 1340)=200 \mathrm{~Hz}\); acceleration time \((\) D1343 \()=300 \mathrm{~ms}\); deceleration time \((\) D1348 \()=600 \mathrm{~ms}\); percentage value \((\mathrm{D} 1131)=100\); current number of output pulses \((D 1336, D 1337)=0\).
2. Write the program codes as follows:

3. Assume the first execution result as:

4. Observe the result of the first execution:
a) The actual output number 49,200 - estimated output number 50,000 \(=-800\) (a negative value). A negative value indicates that the entire execution finishes earlier and has not completed yet.
b) Try to shorten the acceleration time (D1343) into 250 ms and deceleration time (D1348) into 550ms.
5. Obtain the result of the second execution:

6. Observe the result of the second execution:
a) The actual output number 50,020 - estimated output number 50,000 \(=20\)
b) \(20 \times(1 / 200 \mathrm{~Hz})=100 \mathrm{~ms}\) (idling time)
c) 100 ms is an appropriate value. Therefore, set the acceleration time as 250 ms and deceleration time as 550 ms to complete the design.

\section*{Program Example 2:}
1. Assume the feedback of the encoder is an \(A / B\) phase input and we adopt \(C 251\) timing (we suggust you clear it to 0 before the execution); target number of feedbacks \(=50,000\); target output frequency \(=100 \mathrm{kHz} ; \mathrm{Y} 0, \mathrm{Y} 1\) \((\mathrm{CHO})\) as output pulses; start/end frequency \((\mathrm{D} 1340)=200 \mathrm{~Hz}\); acceleration time (D1343) \(=300 \mathrm{~ms}\); deceleration time \((D 1348)=600 \mathrm{~ms}\); precentage value \((D 1131)=100\); current number of output pulses \((D 1336, D 1337)=0\).
2. Write the program codes as follows:

3. Assume the first execution result as:

4. Observe the result of the first execution:
a) The actual output number 50,600 - estimated output number 50,000 \(=600\)
b) \(600 \times(1 / 200 \mathrm{~Hz})=3 \mathrm{~s}\) (idling time)
c) 3 seconds are too long. Therefore, increase the percentage value (D1131) to K101.
5. Obatin the result of the second execution:

6. Observe the result of the second execution:
a) The actual output number 50,560 - estimated output number 50,500 \(=60\)
b) \(60 \times(1 / 200 \mathrm{~Hz})=300 \mathrm{~ms}\) (idling time)
c) 300 ms is an appropriate value. Therefore, set the percentage value (D1131) as K101 to complete the design.

\section*{Remarks:}
1. Flag explanations:

M1010: When On, \(\mathrm{CH}, \mathrm{CH} 1, \mathrm{CH} 2\) and CH 3 will output pulses when encountering END instruction. Off when the output starts.
M1029: On when CH 0 pulse output is completed.
M1030: On when CH 1 pulse output is completed.
M1036: On when CH 2 pulse output is completed.
M1037: On when CH 3 pulse output is completed.
M1257: The acceleration/deceleration slope of the high-speed pulse output is an Scurve.
\begin{tabular}{ll} 
M1334: & When On, CH0 pulse output will be forbidden. \\
M1335: & When On, CH1 pulse output will be forbidden. \\
M1520: & When On, CH2 pulse output will be forbidden. \\
M1521: & When On, CH3 pulse output will be forbidden. \\
M1336: & CH0 pulse output indication flag \\
M1337: & CH1 pulse output indication flag \\
M1522: & CH2 pulse output indication flag \\
M1523: & CH3 pulse output indication flag \\
M1305: & CH0 direction signal flag \\
M1306: & CH1 direction signal flag \\
M1532: & CH2 direction signal flag \\
M1533: & CH3 direction signal flag \\
M1534: & Deceleration time of CH a setup flag (must used with D1348) \\
M1535: & Deceleration time of CH 1 setup flag (must used with D1349) \\
M1536: & Deceleration time of CH 2 setup flag (must used with D1350) \\
M1537: & Deceleration time of CH 3 setup flag (must used with D1351)
\end{tabular}
2. Special register explanations:

D1127: The number of pulses in the acceleration section in the position instruction (low word)
D1128: The number of pulses in the acceleration section in the position instruction (high word)
D1131: Close loop output/input ratio of CH (default: K100)
D1132: Close loop output/input ratio of CH 1 (default: K100)
D1133: The number of pulses in the deceleration section in the position instruction (low word)
D1134: The number of pulses in the deceleration section in the position instruction (high word)
D1220: Phase setting of CH ( \(\mathrm{Y} 0, \mathrm{Y} 1\) ): determined by the last 2 digits of D1220; other digits are invalid.
1. KO: YO output
2. K1: Y0, Y1 AB-phase output; \(A\) ahead of \(B\)
3. K2: Y0, Y1 AB-phase output; \(B\) ahead of \(A\)

D1221: \(\quad\) Phase setting of \(\mathrm{CH}(\mathrm{Y} 2, \mathrm{Y} 3)\) : determined by the last 2 digits of D1221; other digits are invalid.
1. K0: Y2 output
2. K1: Y2, Y3 AB-phase output; \(A\) ahead of \(B\)
3. K2: Y2, Y3 AB-phase output; \(B\) ahead of \(A\)

D1229: Phase setting of CH (Y4, Y5): determined by the last 2 digits of D1229; other digits are invalid.
1. KO: Y4 output
2. K1: Y4, Y5 AB-phase output; \(A\) ahead of \(B\)
3. K2: Y4, Y5 AB-phase output; \(B\) ahead of \(A\)

D1230: Phase setting of \(\mathrm{CH} 3(\mathrm{Y} 6, \mathrm{Y} 7)\) : determined by the last 2 digits of D1230; other digits are invalid.
1. KO: Y6 output
2. \(\mathrm{K} 1: \mathrm{Y} 6, \mathrm{Y} 7 \mathrm{AB}\)-phase output; A ahead of \(B\)
3. K2: Y6, Y7 AB-phase output; \(B\) ahead of \(A\)

D1222: Time difference between the direction signal and pulse output of CH 0
D1223: Time difference between the direction signal and pulse output of CH 1
D1240: Low 16 bytes of the setting value for the end frequency of the high-speed output CH 0 (available when the acceleration and deceleration are separate) (If D1240 < D1340, D1340 is adopted.)

D1241: High 16 bytes of the setting value for the end frequency of the high-speed output CH0 (available when the acceleration and deceleration are separate) (If D1240 < D1340, D1340 is adopted.)
D1244
D1245:
D1246:
D1247:
D1383:
D1384
Number of idle speed output from CHO ( \(>0\) : Effective vale; <= 0 : Continuous output)
Number of idle speed output from CH 1 ( \(>0\) : Effective vale; <= 0 : Continuous output) Number of idle speed output from CH 2 ( \(>0\) : Effective vale; \(<=0\) : Continuous output)

D1336
D1337 Number of idle speed output from CH3 (>0: Effective vale; <= 0: Continuous output)

D1338 High word of the current number of output pulses of CH 0

D1339 Low word of the current number of output pulses of CH 1

D1375 High word of the current number of output pulses of CH 1

D1376 Low word of the current number of output pulses of CH 2 High word of the current number of output pulses of CH 2

D1378: High word of the current number of output pulses of CH 3
D1340: Start/end frequency settings of CH0 (default: K200)
D1352: Start/end frequency settings of CH 1 (default: K200)
D1379: Start/end frequency settings of CH 2 (default: K200)
D1380: Start/end frequency settings of CH3 (default: K200)
D1348: Deceleration time of CH0 pulse output when M1534 = On (default: K100)
D1349: Deceleration time of CH1 pulse output when M1535 = On (default: K100)
D1350: Deceleration time of CH2 pulse output when M1536 = On (default: K100)
D1351: Deceleration time of CH3 pulse output when M1537 = On (default: K100)
D1343: Acceleration/deceleration time of CH0 pulse output (default: K100)
D1353: Acceleration/deceleration time of CH1 pulse output (default: K100)
D1381: Acceleration/deceleration time of CH 2 pulse output (default: K100)
D1382: Acceleration/deceleration time of CH3 pulse output (default: K100)
D1478: Close loop output/input ratio of CH 2 (default: K100)
D1479: Close loop output/input ratio of CH3 (default: K100)


\section*{Operands:}

\section*{\(\mathbf{S}_{1}\) : Target frequency of output \(\quad \mathbf{S}_{2}\) : Target number of pulses \(\quad \mathbf{S}_{3}\) : Gap time and gap frequency}

D: Pulse output device (EH2/SV2 supports Y0, Y2, Y4, and Y6.) (SX supports Y0.)

\section*{Explanations:}
1. The instruciton only supports EH2 V2.0, SX V3.0. and above. It also supports EH3 and SV2.
2. Max frequency for \(\mathbf{S}_{1}: 200 \mathrm{kHz}\). (The maximum frequency that \(S X V 3.0\) and above support is 32767 Hz .) Target frequency can be modified during the execution of instruction. When \(\mathbf{S}_{1}\) is modified, VSPO will ramp up/down to the target frequency according to the ramp-up gap time and gap frequency set in \(\mathbf{S}_{3}\).
3. \(\mathbf{S}_{\mathbf{2}}\) target number of pulses is valid only when the instruction is executed first time. \(\mathbf{S}_{\mathbf{2}}\) can NOT be modified during the execution of instruction. \(\mathbf{S}_{\mathbf{2}}\) can be a negative value. When target number of pulses are specified with 0, PLC will perform continuous output.
4. In an EH3/SV2 series PLC, \(\mathbf{S}_{\mathbf{3}}\) occupies 2 consecutive 16 -bit devices. \(\mathbf{S}_{\mathbf{3}}+0\) stores the gap frequency \(\mathbf{S}_{\mathbf{3}}+1\) stores the gap time. Parameter setting can be modified during the execution of instruction. Set range for \(\mathbf{S}_{3}+0\) : \(1 \mathrm{~Hz} \sim 32767 \mathrm{~Hz}\); set range for \(\mathrm{S}_{3}+0\) : \(1 \mathrm{~ms} \sim 32767 \mathrm{~ms}\). If a setting value exceeds the available range, the PLC will take the maximum or the minimum value.
5. In an SX series PLC, the gap frequency in \(\mathbf{S}_{\mathbf{3}}+0\) is in the range of 6 Hz to 32767 Hz , and the gap time in \(\mathbf{S}_{\mathbf{3}}+1\) is in the range of 1 ms to 80 ms . If a setting value exceeds the available range, the PLC will take the maximum or the minimum value.
6. D pulse output device supports Y0, Y2, Y4 and Y6. Y1, Y3, Y5 and Y7 are corresponding output direction. The positive direction is On.
7. Parameters set in \(\mathbf{S}_{3}\) can only be modified while modifying the value in \(\mathbf{S}_{\mathbf{1}}\). When target frequency is set as 0 , PLC will ramp down to stop according to parameters set in \(\mathbf{S}_{3}\). When the output is stopped, PLC will enable the flags indicating pause status (CH0: M1538; CH1: M1539; CH2: M1540; CH3: M1541). If target frequency other than 0 is specified again, pulse output will ramp up to target frequency and operates untill target number of pulses are completed.

\section*{Function Explanations:}

Pulse output diagram:

1. Definitions:
t1 \(\rightarrow\) target frequency of \(1^{\text {st }}\) shift
t2 \(\rightarrow\) target frequency of \(2^{\text {nd }}\) shift
t3 \(\rightarrow\) target frequency of \(3^{\text {rd }}\) shift
g1 \(\rightarrow\) ramp-up time of \(1^{\text {st }}\) shift
g2 \(\rightarrow\) ramp-up time of \(2^{\text {nd }}\) shift
g3 \(\rightarrow\) ramp-down time of \(3^{\text {rd }}\) shift
\(\mathrm{S}_{2} \rightarrow\) total output pulses
2. Explanations on each shift:
- \(1^{\text {st }}\) shift:

Assume \(\mathrm{t} 1=6 \mathrm{kHz}\), gap freqency \(=1 \mathrm{kHz}\), gap time \(=10 \mathrm{~ms}\)
Ramp-up steps of \(1^{\text {st }}\) shift:

- \(2^{\text {nd }}\) shift:

Assume t2 \(=11 \mathrm{kHz}\), internal frequency \(=2 \mathrm{kHz}\), gap time \(=20 \mathrm{~ms}\)
Ramp-up steps of \(2^{\text {nd }}\) shift:

- \(3^{\text {rd }}\) shift:

Assume t3 \(=3 \mathrm{kHz}\), gap frequency \(=2 \mathrm{kHz}\), gap time \(=20 \mathrm{~ms}\)
Ramp-down steps of \(3^{\text {rd }}\) shift:

- For program examples please refer to API 199

\section*{Points to note:}
1. Associated flags:

M1029: CH0 pulse output execution is completed
M1030: CH1 pulse output execution is completed
M1036: CH 2 pulse output execution is completed
M1037: CH3 pulse output execution is completed
M1538: Indicating pause status of CHO
M1539: Indicating pause status of CH 1
M1540: Indicating pause status of CH 2
M1541: Indicating pause status of CHO

M1542: CH0 executes the function that the constant speed output section reaches the target frequency.
M1544: CH1 executes the function that the constant speed output section reaches the target frequency.

M1546: CH 2 executes the function that the constant speed output section reaches the target frequency.
M1548: CH3 executes the function that the constant speed output section reaches the target frequency.

M1543: CH0 executed the function that the constant speed output section reaches the target number.
M1545: CH1 executed the function that the constant speed output section reaches the target number.

M1547: CH 2 executed the function that the constant speed output section reaches the target number.
M1549: CH 3 executed the function that the constant speed output section reaches the target number.

M1528: Enabling the instruction DICF to execute the constant speed output section
M1529: Enabling the instruction DICF to execute the final output section
2. Special register explanations:

D1336: Low word of the present value of Y2 pulse output
D1337: High word of the present value of Y2 pulse output
D1338: Low word of the current number of output pulses from CH 1
D1339: High word of the current number of output pulses from CH 1
D1375: Low word of the current number of output pulses from CH 2
D1376: High word of the current number of output pulses from CH 2
D1377: Low word of the current number of output pulses from CH 3
D1378: High word of the current number of output pulses from CH 3


\section*{Operands:}
\(\mathbf{S}_{1}\) : Target frequency to be changed \(\mathbf{S}_{2}\) : Gap time and gap frequency
D: Pulse output device (EH3/SV2 supports Y0, Y2, Y4, and Y6.) (SX supports Y0.)

\section*{Explanations:}
1. The instruciton supports EH2 V2.0, SX V3.0, and above. It also supports EH3 and SV2.
2. Max frequency for \(\mathbf{S}_{1}: 200 \mathrm{kHz}\). (The maxumum freuency that \(\mathrm{SX} V 3.0\) and above suppors is 32767 Hz .) When ICF instruction executes, frequecy changing will start immediately with ramp-up/down process.
3. ICF instruction has to be executed after the execution of DVSPO or DPLSY instructions. When the instruction is used together with DVSPO, operands \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}\), \(\mathbf{D}\) of DICF has to be assigned the same device with \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{3}}\), \(\mathbf{D}\) of DVSPO. When the instruction is used with DPLSY, operands \(\mathbf{S}_{1}\) and \(\mathbf{D}\) has to be assigned the same device with \(\mathrm{S}_{1}\) and \(\mathbf{D}\) of DPLSY.
4. If ICF instruction is used with DPLSY instruction, operand \(\mathbf{S}_{\mathbf{2}}\) is invalid.
5. When ICF instruction is used with DVSPO instruction, parameter setting of \(\mathbf{S}_{2}\) functions the same as \(\mathbf{S}_{\mathbf{3}}\) in DVSPO instruction, specifying the gap time and gap frequency of ramp-up/down process.
6. The instruction is suggested to be applied in interrupt subroutines for obtaining the better response time and execution results
7. For associated flags and registers, please refer to Points to note of API 198 DVSPO instruction.

\section*{Function Explanations:}
1. If users change the target frequency by using DVSPO instruction, the actual changing timing will be delayed due to the program scan time and the gap time as below.

2. If users change the target frequency by applying DICF instruction in insterupt subroutines, the actual changing timing will be executed immediately with only an approx. 10us delay (execution time of DICF instruction).
The timing diagram is as below:


\section*{Program Example:}
1. When \(M 0=O N\), pulse output ramps up to 100 kHz . Total shifts: 100 , Gap frequency: 1000 Hz , Gap time: 10 ms . Calculation of total shifts: \((100,000-0) \div 1000=100\).
2. When X 6 external interrupt executes, target frequency is changed and ramp down to 50 kHz immediately. Total shifts: 150 , Gap frequency: 800 Hz , Gap time: 20 ms . Calculation of total shifts: \((100,000-50,000) \div 800=125\)
3. When X 7 external interrupt executes, target frequency is changed and ramp down to 100 Hz immediately. Total shifts: 25 , Gap frequency: 2000 Hz , Gap time: 100 ms . Calculation of total shifts: \((50,000-100) \div 2000=25\).
4. When pulse output reaches 100 Hz , the frequency is kept constant and pulse output stops when \(1,000,000\) pulses is completed.


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{2}{|l|}{Mnemonic} & \multicolumn{4}{|c|}{Operands} & Function \\
\hline 202 & SCAL & P & ( \(\mathbf{S}_{1}\) & (S2) & \(\mathrm{S}_{3}\) & (D) & Proportional Value Calculation \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & \(\mathrm{Kn} \times\) & & KnY & Kn & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{SCAL, SCALP: 9 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & * & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & & SC & \multicolumn{2}{|l|}{\[
\text { EH } \mathrm{SV}
\]} & \[
\begin{array}{|l|l}
\mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & \multicolumn{2}{|l|}{ES E} & EX & SA & & SX & SC & EH S & \[
\mathrm{Sv} \stackrel{\mathrm{E}}{\mathrm{~S}}_{\mathrm{S}}^{2}
\] & \[
\begin{array}{|l}
\text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & \[
\mathrm{EH}
\] & \multicolumn{2}{|l|}{\[
\begin{array}{c|c|}
\hline \text { EH3 } \\
\text { sV2 } \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
\(S_{1}\) : Source value
\(\mathbf{S}_{2}\) : Slope
\(S_{3}\) : Offset
D: Destination device

\section*{Explanations:}
1. Range of \(\mathbf{S}_{\mathbf{1}}, \mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{3}}:-32,768 \sim 32,767\)
2. Unit of \(\mathbf{S}_{2}: 0.001\)
3. See the specifications of each model for their range of use.
4. Operation equation in the instruction: \(\mathbf{D}=\left(\mathbf{S}_{\mathbf{1}} \times \mathbf{S}_{\mathbf{2}}\right) \div 1,000+\mathbf{S}_{3}\).

Users have to obtain \(\mathbf{S}_{\mathbf{2}}\) and \(\mathbf{S}_{\mathbf{3}}\) (decimals are rounded up into 16-bit integers) by using the slope and offset equations below.
Slope equation: \(\mathbf{S}_{\mathbf{2}}=[(\) max. destination value \(-\min\). destination value \() \div(\max\). source value \(-\min\). source value \()]\) \(\times 1,000\)

Offset equation: \(\mathbf{S}_{\mathbf{3}}=\mathbf{m i n}\). destination value -min . source value \(\times \mathbf{S}_{\mathbf{2}} \div 1,000\)
The output curve is shown as the figure:


\section*{Program Example 1:}
1. Assume \(\mathbf{S}_{1}=500, \mathbf{S}_{2}=168, \mathbf{S}_{3}=-4\). When \(X 0=O n, S C A L\) instruction will be executed and obtain the proportional value at D0.
2. Equation: \(\mathrm{DO}=(500 \times 168) \div 1,000+(-4)=80\)



\section*{Program Example 2:}
1. Assume \(\mathbf{S}_{1}=500, \mathbf{S}_{2}=-168, \mathbf{S}_{\mathbf{3}}=534\). When \(\mathrm{X} 10=\mathrm{On}, \mathrm{SCAL}\) instruction will be executed and obtain the proportional value at D10.
2. Equation: \(\mathrm{DO}=(500 \times-168) \div 1,000+534=450\)



\section*{Remarks:}
1. This instruction is applicable for known slope and offset. If slope and offset are unknown, use SCLP instruction for the calculation.
2. \(\mathbf{S}_{\mathbf{2}}\) has to be within the range \(-32,768 \sim 32,767\). If \(\mathbf{S}_{\mathbf{2}}\) falls without the range, use SCLP instruction for the calculation.
3. When using the slope equation, please be aware that the max. source value must \(>\) min. source value, but it is not necessary that max. destination value \(>\min\). destination value.
4. If the value of \(\mathbf{D}>32,767, \mathbf{D}=32,767\); if the value of \(\mathbf{D}<-32,768, \mathbf{D}=-32,768\).
5. Only ES_V6.2, SA/SX_V1.6, SC_V1.4, EH2/SV/EH3_V1.0 and versions above support this instruction. EH series MPU does not support this instruction.
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{3}{c|}{ Operands } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{13}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & KnY & KnI & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{SCLP, SCLPP: 7 steps DSCLP, DSCLPP: 13 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{8}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & E & EX & SS & SA & SX & SC & EH & \[
\begin{array}{|c|c|c|}
\hline \text { EH3 } \\
\mathrm{SV} 2
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source value \(\quad \mathbf{S}_{2}\) : Parameter \(\quad \mathbf{D}\) : Destination device

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. Flags: M1162 (decimal integer or binary floating point); M1162 = On -> Binary floating point
3. Settings of \(\mathbf{S}_{\mathbf{2}}\) for \(\mathbf{1 6}\)-bit instruction:
\(S_{2}\) occupies 4 consecutive devices in 16-bit instruction.
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Device No. } & Parameter & Range \\
\hline \(\mathbf{S}_{2}\) & Maximum source value & \(-32,768 \sim 32,767\) \\
\hline \(\mathbf{S}_{2}+1\) & Minimum source value & \(-32,768 \sim 32,767\) \\
\hline \(\mathbf{S}_{2}+2\) & Maximum destination value & \(-32,768 \sim 32,767\) \\
\hline \(\mathbf{S}_{2}+3\) & Minimum destination value & \(-32,768 \sim 32,767\) \\
\hline
\end{tabular}
4. Settings of \(\mathbf{S}_{\mathbf{2}}\) for 32-bit instruction:
\(\mathbf{S}_{\mathbf{2}}\) occupies 8 consecutive devices in 32-bit instruction.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Device No. } & Parameter & \multicolumn{2}{c|}{ Range } \\
& & Integer & Floating point \\
\hline \(\mathbf{S}_{\mathbf{2}}, \mathbf{S}_{\mathbf{2}}+1\) & Maximum source value & & \\
\hline \(\mathbf{S}_{\mathbf{2}}+2,3\) & Minimum source value & \multirow{2}{*}{\(-2,147,483,648 \sim\)} & \begin{tabular}{c} 
Range of 32-bit \\
floating point
\end{tabular} \\
\hline \(\mathbf{S}_{\mathbf{2}}+4,5\) & Maximum destination value & & \\
\hline \(\mathbf{S}_{\mathbf{2}}+6,7\) & Minimum destination value & & \\
\hline
\end{tabular}
5. Operation equation in the instruction: \(\mathbf{D}=\left[\left(\mathbf{S}_{\mathbf{1}}-\min\right.\right.\). source value \() \times(\max\). destination value - min. destination value) \(] \div\) (max. source value - min. source value) + min. destination value
6. The operational relation between source value and destination value is as stated below:
\(\mathbf{y}=k x+b\)
\(y=\) Destination value (D)
\(\mathrm{k}=\) Slope \(=(\) max. destination value \(-\min\). destination value \() \div(\max\). source value \(-\min\). source value \()\)
\(x=\) Source value ( \(S_{1}\) )
\(\mathrm{b}=\) Offset \(=\) Min. destination value - Min. source value \(\times\) slope

Bring all the parameters into equation \(y=k x+b\) and obtain the equation in the instruction:
\(y=k x+b=D=k S_{1}+b=\) slope \(\times S_{1}+\) offset \(=\) slope \(\times S_{1}+\) min. destination value - min. source value \(\times\) slope \(=\) slope \(\times\left(S_{1}-\min\right.\). source value \()+\min\). destination value \(=\left(S_{1}-\min\right.\). source value \() \times(\max\). destination value \(\min\). destination value \() \div(\max\). source value \(-\min\). source value \()+\min\). destination value
7. If \(\mathbf{S 1}>\max\). source value, \(\mathbf{S 1}=\max\). source value

If \(\mathbf{S 1}<\min\). source value, \(\mathbf{S 1}=\min\). source value
When all the input values and parameters are set, the output curve is shown as the figure:


\section*{Program Example 1:}
1. Assume \(S_{1}=500\), max. source value \(D 0=3,000\), min. source value \(D 1=200\), max. destination value \(D 2=500\), and \(\min\). destination value \(\mathrm{D} 3=30\). When \(\mathrm{XO}=\mathrm{On}, \mathrm{SCLP}\) instruction will be executed and obtain the proportional value at D10.
2. Equation: \(\mathrm{D} 10=[(500-200) \times(500-30)] \div(3,000-200)+30=80.35\). Round off the result into an integer D10 \(=80\).



\section*{Program Example 2:}
1. Assume \(\mathbf{S}_{1}=500\), max. source value \(D 0=3,000\), min. source value \(D 1=200\), max. destination value \(D 2=30\), and min. destination value D3 \(=500\). When \(\mathrm{XO}=\mathrm{On}, \mathrm{SCLP}\) instruction will be executed and obtain the proportional value at D10.
2. Equation: \(\mathrm{D} 10=[(500-200) \times(30-500)] \div(3,000-200)+500=449.64\). Round off the result into an integer \(\mathrm{D} 10=450\).


\section*{Program Example 3:}
1. Assume the source of \(S_{1} D 100=F 500\), max. source value \(D 0=F 3000\), min. source value \(D 2=F 200\), max.
destination value D4 = F500, and min. destination value D6 = F30. When X0 \(=\) On, set up M1162, adopt floating point operation and execute DSCLP instruction. The proportional value will be obtained at D10.
2. Equation: \(\mathrm{D} 10=[(F 500-F 200) \times(F 500-F 30)] \div(F 3000-F 200)+F 30=F 80.35\). Round off the result into an
integer D10 = F80.


\section*{Remarks:}
1. Range of \(\mathbf{S}_{1}\) for 16 -bit instruction: max. source value \(\geq \mathbf{S}_{\mathbf{1}} \geq\) min. source value; \(-32,768 \sim 32,767\). If the value falls without the bounds, the bound value will be used for calculation.
2. Range of integer \(\mathbf{S}_{1}\) for 32-bit instruction: max. source value \(\geq \mathbf{S}_{1} \geq\) min. source value; -2,147,483,648~ \(2,147,483,647\). If the value falls without the bounds, the bound value will be used for calculation.
3. Range of floating point \(\mathbf{S}_{1}\) for 32 -bit instruction: max. source value \(\geq \mathbf{S}_{1} \geq \mathrm{min}\). source value; following the range of 32-bit floating point. If the value falls without the bounds, the bound value will be used for calculation.
4. Please be aware that the max. source value must > min. source value, but it is not necessary that max. destination value \(>\min\). destination value.
5. Only ES_V6.2, SA/SX_V1.6, SC_V1.4, EH2/SV/EH3_V1.0 and versions above support this instruction. EH series MPU does not support this instruction.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|l|}{Mnemonic} & \multicolumn{9}{|c|}{Operands} & & \multicolumn{18}{|c|}{Function} \\
\hline 205 & \multicolumn{2}{|l|}{CMPT} & P & \multicolumn{10}{|l|}{\(S_{1} S_{2}\) ( \({ }^{\text {d }}\)} & \multicolumn{18}{|l|}{Compare table} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{16}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & & S & K & & H & & KnX & & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{5}{*}{CMPT: 9 steps DCMPT: 17 steps DCMPTP: 17 steps}} \\
\hline S & & & & & & & & & & & & & & & & & * & & * & * & & & & & & & & & & & \\
\hline S & & & & & & & & & & & & & & & & & * & & * & * & & & & & & & & & & & \\
\hline & & & & & & & * & & * & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & * & * & & * & * & & * & * & & & & & & & & & & & \\
\hline & & & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & E & EX & SS & SA & S & X & SC & EH & H & sv & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source device 1
\(S_{2}\) : Source device 2
n: Data length/function
D: Destination device

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 support the 16-bit instruction. EH3_V1.20 and version above, and SV2 support the 32-bit instruction
2. \(\quad S_{1}\) and \(S_{2}\) can be T/C/D devices, for \(C\) devices only 16-bit devices are applicable (C0~C199).
3. The high 16 -bit value in the operand \(\mathbf{n}\) used in the 32 -bit instruction is an invalid value.
4. The low 8-bit value in the operand \(\mathbf{n}\) indicates the data length. The operand \(\mathbf{n}\) used in the 16-bit instruction should be within the range between 1 and 16 . The operand \(\mathbf{n}\) used in the 32 -bit instruction should be within the range between 1 and 32 . PLC will take the upper/lower bound value if set value exceeds the available range.
5. The high 8-bit value in the operand \(\mathbf{n}\) indicates the comparison condition.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Value & K0 & K1 & K2 & K3 & K4 \\
\hline Comparison condition & \(\mathbf{S}_{1}=\mathbf{S}_{2}\) & \(\mathbf{S}_{1}<\mathbf{S}_{2}\) & \(\mathbf{S}_{1}<=\mathbf{S}_{2}\) & \(\mathbf{S}_{1}>\mathbf{S}_{2}\) & \(\mathbf{S}_{1}>=\mathbf{S}_{2}\) \\
\hline
\end{tabular}
6. If n used in the 16 -bit instruction is set to H 0108 , it means that 8 pieces of data are compared to 8 pieces of data, and the "larger than" comparison is performed. If \(n\) used in the 32-bit instruction is set to H00000320, it means that 32 pieces data are compared to 32 pieces of data, and the "less than" comparison is performed.
7. If the setting value for the comparison condition exceeds the range, or the firmware version does not support the comparison condition, the default "equal to" comparison is performed. EH3_V1.20 and version above, and SV2 and versions above support the setting value for the comparison condition.
8. The comparison values used in the 16-bit instruction are signed values. The comparison values used in the 32-bit instruction are 32-bit values (M1162=Off), or floating-point values (M1162=On).
9. Data written in operand \(\mathbf{D}\) will all be stored in 16 -bit format or in 32 -bit format. When data length is less than 16 or 32 , the null bits are fixed as 0 , e.g. if \(\mathbf{n}=\mathrm{K} 8\), bit \(0 \sim 7\) will be set according to compare results, and bit \(8 \sim 15\) will all be 0 .
10. If the comparison result meets the condition, the corresponding bit is set to 1 . Otherwise, it is set to 0 .

\section*{Program example:}

When M0 = ON, compare the 16-bit value in D0~D7 with D20~D27 and store the results in D100.
\begin{tabular}{|c|c|c|c|c|c|} 
Mo & CMPT & D0 & D20 & K8 & D100 \\
\hline
\end{tabular}
- Content in D0~D7:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & D0 & D1 & D2 & D3 & D4 & D5 & D6 & D7 \\
\hline Value & K10 & K20 & K30 & K40 & K50 & K60 & K70 & K80 \\
\hline
\end{tabular}
- Content in D20~D27:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline No. & D20 & D21 & D22 & D23 & D24 & D25 & D26 & D27 \\
\hline Value & K12 & K20 & K33 & K44 & K50 & K66 & K70 & K88 \\
\hline
\end{tabular}
- After the comparison of CMPT instruction, the associated bit will be 1 if two devices have the same value, and other bits will all be 0 . Therefore the results in D 100 will be as below:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Bit0 & Bit1 & Bit2 & Bit3 & Bit4 & Bit5 & Bit6 & Bit7 & Bit8~15 \\
\cline { 2 - 10 } D100 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \(0 \ldots 0\) \\
\cline { 2 - 8 } & \multicolumn{8}{c|}{ H0052 (K82) } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|lc|}
\hline API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 206 & ASDRW & \(\mathbf{S}_{1}\left(\mathbf{S}_{2}\right.\) & S & ASDA servo drive R/W \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Type \\
OP
\end{tabular}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{ASDRW: 7 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & * & * & & & & & & & & & & * & & & & & & & & & & & \\
\hline S & & & & & & & & & & & & & & & & & * & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & H SV & sv & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES Ex & EX & SS & \multicolumn{2}{|l|}{SA S} & X SC & EH & SV \({ }_{\text {S }}^{\text {E }}\) & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] & ES & EX & SS & SA & sx & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{sV} & \mathrm{SV} 2 \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathrm{S}_{1}\) : Address of servo drive (K0~K254)
\(S_{2}\) : Function code
S: Register for read/written data

\section*{Explanations:}
1. ASDRW communication instruction supports COM2 (RS-485) and COM3 (RS-485)
2. \(S_{1}\) : station number of servo drive. Range: K0~K254. K0 indicates broadcasting, i.e. PLC will not receive feedback data.
3. \(S_{2}\) : function code. Please refer to the table below.
4. \(\mathbf{S}\) : Register for read/written data. Please refer to the table below for explanations.
5. Explanations of function code:
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Exclusively for ASDA of A-type, AB type, A+ type, B type} \\
\hline Code & Function & Parameter & Com. Addr. & Read/Write data (Settings) \\
\hline K0(H0) & Status monitor & P0-04 ~ P0-08 & 0004H ~ 0008H & S+0 ~ S+4: Please refer to explanations in ASDA manuals. \\
\hline K1(H1) & Block Data Read Register & P0-09 ~ P0-16 & 0009H ~ 0010H & \(\mathbf{S}+0 \sim \mathbf{S}+7\) : Please refer to explanations in ASDA manuals. B Type is not supported. \\
\hline K2(H2) & Block Data Write Register & P0-09 ~ P0-16 & 0009H \(\sim 0010 \mathrm{H}\) & \(\mathbf{S}+0 \sim \mathbf{S}+7\) : Please refer to explanations in ASDA manuals. \(B\) Type is not supported. \\
\hline K3(H3) & JOG Operation & P4-05 & 0405H & S: Range: 1~3000, 4999, 4998, 5000 \\
\hline K4(H4) & Servo ON/OFF & P2-30 & 021EH & S: K1 = ON, Others = OFF \\
\hline K5(H5) & Speed Command (3 sets) & P1-09 ~ P1-11 & 0109H ~ 010BH & S+0 ~ S+2: Range:
|-5000~+5000 \\
\hline K6(H6) & Torque Command (3 sets) & P1-12 ~ P1-14 & 010CH ~ 010EH & \[
\begin{aligned}
& \text { S+0 ~ S+2: Range: } \\
& -300 \sim+300
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{For A2-type only} \\
\hline Code & Function & Parameter & Com. Addr. & Read/Write data (Settings) \\
\hline K16(H10) & Status monitor (Read) & P0-09 ~ P0-13 & 0012H ~ 001BH & \(\mathbf{S}+0 \sim \mathbf{S}+9\) : Please refer to explanations in ASDA-A2 manual. \\
\hline K17(H11) & Status monitor selection (Write) & P0-17 ~ P0-21 & 0022H ~ 002BH & \(\mathbf{S}+0 \sim \mathbf{S}+9:\) Please refer to explanations in ASDA-A2 manual. \\
\hline K18(H12) & Mapping parameter (Write) & P0-25 ~ P0-32 & 0032H ~ 0041H & S+0 ~ S+15: Please refer to explanations in ASDA-A2 manual. \\
\hline K19(H13) & JOG Operation & P4-05 & 040AH & S: Range:
\[
1 ~ 5000,4999,4998,0
\] \\
\hline K20(H14) & Auxiliary Function (Servo ON/OFF) & P2-30 & 023CH & S: K1 = ON, Others = OFF \\
\hline K21(H15) & Speed Command (3 sets) & P1-09 ~ P1-11 & 0112H ~ 0117H & \[
\begin{aligned}
& \text { S+0 ~ S+5: Range: } \\
& -60000 \sim+60000
\end{aligned}
\] \\
\hline K22(H16) & Torque Command (3 sets) & P1-12 ~ P1-14 & 0118H ~ 011DH & S+0 ~ S+5: Range: -300~+300 \\
\hline K23(H17) & Block Data Read / Write Register (for mapping parameter ) & P0-35 ~ P0-42 & 0046H~0055H & \(\mathbf{S + 0}\) ~ S+15: Please refer to explanations in ASDA-A2 manual. \\
\hline
\end{tabular}
6. For relative M flags and special D registers, please refer to explanations of API 80 RS instruction.

\section*{Program example 1: COM2 (RS-485)}
1. When \(\mathrm{XO}=\mathrm{ON}, \mathrm{PLC}\) will send out communication commands by COM2 to read status of servo drive.
2. When PLC received the feedback data from ASDA, M1127 will be active and the read data will be stored in D0~D4.


\section*{Program example 2: COM3(RS-485)}
1. When \(\mathrm{MO}=\mathrm{ON}, \mathrm{PLC}\) sends communication commands by COM3 to read servo drive status.
2. When PLC received the feedback data from ASDA, M1318 will be active and the read data will be stored in D0~D4.


\section*{Points to note:}

Relative flags and special D registers of COM2/COM3 :
\begin{tabular}{|c|c|c|c|}
\hline & COM2 & сом3 & Function Description \\
\hline \multirow{4}{*}{\begin{tabular}{l}
Protocol \\
setting
\end{tabular}} & M1120 & M1136 & Retain communication setting \\
\hline & M1143 & M1320 & ASCII/RTU mode selection \\
\hline & D1120 & D1109 & Communication protocol \\
\hline & D1121 & D1255 & PLC communication address \\
\hline \multirow[t]{2}{*}{Sending request} & M1122 & M1316 & Sending request \\
\hline & D1129 & D1252 & Communication timeout setting (ms) \\
\hline Receiving completed & M1127 & M1318 & Data receiving completed \\
\hline \multirow{6}{*}{Errors} & - & M1319 & Data receiving error \\
\hline & - & D1253 & Communication error code \\
\hline & M1129 & - & Communication timeout setting (ms) \\
\hline & M1140 & - & COM2 (RS-485) MODRD/MODWR/MODRW data receiving error \\
\hline & M1141 & - & MODRD/MODWR/MODRW parameter error (Exception Code exists in received data) Exception Code is stored in D1130 \\
\hline & D1130 & - & COM2 (RS-485) Error code (exception code) returning from Modbus communication \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & \multicolumn{1}{|c|}{ Function } \\
\hline 207 & CSFO & S & \(\mathbf{S}_{1}\) \\
& & \(D\) & Catch speed and proportional output \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline OP & X & Y & M & S & S & K & H & KnX & & KnY & Kn & & KnS & T & & C & D & & E & F & \multicolumn{9}{|l|}{\multirow[t]{4}{*}{CSFO: 7 steps}} \\
\hline S & * & & & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline D & & & & & & & & & & & & & & & & & * & & & & & & & & & & & & \\
\hline & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & ES & EX & SS & SA & SX & SC & & sv & \[
\begin{array}{|l|l|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{ES EX} & & SA & SX & SC & \multicolumn{2}{|l|}{EH} & \[
\mathrm{sv}
\] & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & E & EX & SS & SA & S & S & \multicolumn{3}{|l|}{EH \begin{tabular}{l|l|l|} 
SV & \(\begin{array}{l}\text { EH3 } \\
\text { SV2 }\end{array}\) \\
\hline
\end{tabular}} \\
\hline
\end{tabular}

\section*{Operands:}

S: Source device of signal input (Only X0 and X1 are available) \(\quad \mathbf{S}_{1}\) : Sample time setting and the input speed information D: Output proportion setting and output speed information

\section*{Explanations:}
1. When \(\mathbf{S}\) specifies XO , PLC only uses XO input point and its associated high speed pulse output: YO , in this case Y 1 is normal output point. When S specifies X 1 , PLC uses X0 (A phase) and X 1 ( B phase) input points and their associated output: Y0 (Pulse) / Y1 (Dir).
2. The execution of CSFO requires hardware high speed counter function as well as the high speed output function. Therefore, when program scan proceeds to CSFO instruction with high speed counter input points (X0, X1) enabled by DCNT instruction, or high speed pulse outputs (Y0, Y1) enabled by other high speed output instructions, CSFO instruction will not be activated.
3. If \(\mathbf{S}\) specifies X 1 with 2-phase 2 inputs, the counting mode is fixed as quadruple frequency.
4. During pulse output process of Y0, special registers (D1337, D1336) storing the current number of output pulses will be updated when program scan proceeds to this instruction.
5. \(\quad \mathbf{S}_{1}\) occupies consecutive 416 -bit registers. \(\mathbf{S}_{1}+0\) specifies the sampling times, i.e. when \(\mathbf{S}_{1}+0\) specifies K1, PLC catches the speed every time when 1 pulse is outputted. Valid range for \(\mathbf{S}_{1}+0\) in 1-phase 1-input mode: K1~K100, and 2-phase 2-input mode: K2~K100. If the specified value exceeds the valid range, PLC will take the lower/upper bound value as the set value. Sample time can be changed during PLC operation, however the modified value will take effect until program scan proceeds to this instruction. \(\mathbf{S}_{\mathbf{1}}+1\) indicates the latest speed sampled by PLC (Read-only). Unit: 1 Hz . Valid range: \(\pm 10 \mathrm{kHz} . \mathbf{S}_{1}+2\) and \(\mathbf{S}_{1}+3\) indicate the accumulated number of pulses in 32-bit data (Read-only).
6. For single phase input, the max frequency is 10 kHz ; for 2 -phase 2 inputs, the max frequency is 2 kHz .
7. D occupies 3 consecutive 16-bit registers. D +0 specifies the output proportion value. Valid range: K1 (1\%) ~ K10000 (10000\%). If the specified value exceeds the valid range, PLC will take the lower/upper bound value as the set value. Output proportion can be changed during PLC operation, however the modified value will take effect until program scan proceeds to this instruction. \(\mathbf{D}+2\) and \(\mathbf{D}+1\) indicates the output speed in 32-bit data. Unit: 1 Hz . Valid range: \(\pm 100 \mathrm{kHz}\).
8. The speed sampled by the PLC will be multiplied with the output proportion \(\mathbf{D}+0\), then the PLC will generate the actual output speed. The PLC will take the integer of the calculated value, i.e. if the calculated result is smaller than 1 Hz , the PLC will output with 0 Hz . For example, input speed: 10 Hz , output proportion: \(\mathrm{K} 5(5 \%)\), then the
calculation result will be \(10 \times 0.05=0.5 \mathrm{~Hz}\). Pulse output will be 0 Hz ; if output proportion is modified as K 15 (15\%), then the calculation result will be \(10 \times 0.15=1.5 \mathrm{~Hz}\). Pulse output will be 1 Hz .

\section*{Program Example:}
1. If D0 is set as K2, D10 is set as K100:

When the sampled speed on \((\mathrm{X0}, \mathrm{X} 1)\) is \(+10 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K} 10),(\mathrm{YO}, \mathrm{Y} 1)\) will output pulses with \(+10 \mathrm{~Hz}(\mathrm{D} 12, \mathrm{D} 11=\) \(\mathrm{K} 10)\); When the sampled speed is \(-10 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K}-10),(\mathrm{Y} 0, \mathrm{Y} 1)\) will output pulses with \(-10 \mathrm{~Hz}(\mathrm{D} 12, \mathrm{D} 11=\mathrm{K}-10)\)
2. If D0 is set as K2, D10 is set as K1000:

When the sampled speed on \((X 0, X 1)\) is \(+10 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K} 10),(\mathrm{YO}, \mathrm{Y} 1)\) will output pulses with \(+100 \mathrm{~Hz}(\mathrm{D} 12, \mathrm{D} 11=\) K 100 ); When the sampled speed is \(-100 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K}-100)\), (Y0, Y1) will output pulses with \(-100 \mathrm{~Hz}(\mathrm{D} 12, \mathrm{D} 11=\) K-100)
3. If D0 is set as K10, D10 is set as K10:

When the sampled speed on \((\mathrm{X0}, \mathrm{X} 1)\) is \(+10 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K} 10)\), \((\mathrm{Y} 0, \mathrm{Y} 1)\) will output pulses with \(+1 \mathrm{~Hz}(\mathrm{D} 12\), \(\mathrm{D} 11=\) K 1 ); When the sampled speed is \(-10 \mathrm{~Hz}(\mathrm{D} 1=\mathrm{K}-10),(\mathrm{Y} 0, \mathrm{Y} 1)\) will output pulses with -1 Hz (D12, D11 = K-1)
\begin{tabular}{|c|c|c|c|c|} 
Mo & CSFO & X1 & D0 & D10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & Function \\
\hline \begin{tabular}{c}
\(215 \sim\) \\
217
\end{tabular} & D & LD\# & & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) \\
& & Contact Logical Operation LD\# \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Data source device \(1 \quad \mathbf{S}_{\mathbf{2}}\) : Data source device 2

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. This instruction compares the content in \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\). If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. LD\# instruction is used for direct connection with BUS.
\begin{tabular}{|c|c|c|c|c|}
\hline API No. & \begin{tabular}{c}
16 -bit \\
instruction
\end{tabular} & \begin{tabular}{c}
32 -bit \\
instruction
\end{tabular} & \begin{tabular}{c} 
Continuity \\
condition
\end{tabular} & \begin{tabular}{c} 
No-continuity \\
condition
\end{tabular} \\
\hline 215 & LD\& & DLD\& & \(\mathbf{S}_{1} \& \mathbf{S}_{2} \neq 0\) & \(\mathbf{S}_{1} \& \mathbf{S}_{2}=0\) \\
\hline 216 & LD & DLD & \(\mathbf{S}_{1} \mid \mathbf{S}_{2} \neq 0\) & \(\mathbf{S}_{1} \mid \mathbf{S}_{2}=0\) \\
\hline 217 & LD \(^{\wedge}\) & DLD \(^{\wedge}\) & \(\mathbf{S}_{1} \wedge \mathbf{S}_{2} \neq 0\) & \(\mathbf{S}_{1} \wedge \mathbf{S}_{2}=0\) \\
\hline
\end{tabular}
4. \&: Logical "AND" operation
5. |: Logical "OR" operation
6. ^: Logical "XOR" operation
7. When 32 -bit counters ( \(\mathrm{C} 200 \sim \mathrm{C} 255\) ) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DLD\#). If 16-bit instructions (LD\#) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

\section*{Program Example:}
1. When the result of logical AND operation of C 0 and \(\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}\).
2. When the result of logical OR operation of \(D 200\) and \(D 300 \neq 0\) and \(X 1=O n, Y 11=O n\) will be retained.
3. When the result of logical XOR operation of C201 and C200 \(=0\) or M3 \(=\mathrm{On}, \mathrm{M} 50=\mathrm{On}\).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|r|}{Mnemonic} & \multicolumn{8}{|c|}{Operands} & \multicolumn{19}{|c|}{Function} \\
\hline \[
\begin{array}{|c|}
\hline 218 ~ \\
220 \\
\hline
\end{array}
\] & D & \multicolumn{2}{|l|}{AND\#} & \multicolumn{8}{|c|}{S \(\mathbf{S}_{1}\)} & \multicolumn{19}{|l|}{Contact Logical Operation AND\#} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & S & & K & H & & nX & KnY & Kn & & Kn & & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{3}{*}{AND\#: 5 steps DAND\#: 9 steps}} \\
\hline & 1 & & & & & & * & * & & * & * & * & & * & & * & & * & * & * & * & & & & & & & & & \\
\hline & & & & & & & * & * & & * & * & * & & * & & * & & * & * & * & * & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & \multicolumn{2}{|l|}{SC E} & \[
\mathrm{EH} \mathrm{SV}
\] & \[
\begin{array}{|l|l}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2
\end{array}
\] & \multicolumn{2}{|l|}{\[
\begin{array}{|l|l|}
\hline \mathrm{ES} & \mathrm{EX} \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{Ss} & & \multicolumn{2}{|l|}{X} & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & E & Ex & ss & SA & SX & sc & & \[
\mathrm{H} \text { SV }
\] & \[
\begin{array}{|l}
\hline \mathrm{EH3} \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Data source device \(1 \quad \mathbf{S}_{2}\) : Data source device 2

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. AND\# is an operation instruction used on series contacts.
\begin{tabular}{|c|c|c|c|c|}
\hline API No. & \begin{tabular}{c}
16 -bit \\
instruction
\end{tabular} & \begin{tabular}{c}
32 -bit \\
instruction
\end{tabular} & \begin{tabular}{c} 
Continuity \\
condition
\end{tabular} & \begin{tabular}{c} 
No-continuity \\
condition
\end{tabular} \\
\hline 218 & AND\& & DAND\& & \(\mathbf{S}_{\mathbf{1}} \& \mathbf{S}_{\mathbf{2}} \neq 0\) & \(\mathbf{S}_{\mathbf{1}} \& \mathbf{S}_{\mathbf{2}}=0\) \\
\hline 219 & AND & DAND & \(\mathbf{S}_{\mathbf{1}} \mid \mathbf{S}_{\mathbf{2}} \neq 0\) & \(\mathbf{S}_{\mathbf{1}} \mid \mathbf{S}_{\mathbf{2}}=0\) \\
\hline 220 & AND^ \(^{\wedge}\) & DAND \(^{\wedge}\) & \(\mathbf{S}_{\mathbf{1}} \wedge \mathbf{S}_{\mathbf{2}} \neq 0\) & \(\mathbf{S}_{\mathbf{1}} \wedge \mathbf{S}_{\mathbf{2}}=0\) \\
\hline
\end{tabular}
4. \&: Logical "AND" operation
5. |: Logical "OR" operation
6. \(\wedge\) : Logical "XOR" operation
7. When 32-bit counters (C200~C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DAND\#). If 16-bit instructions (AND\#) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

\section*{Program Example:}
1. When \(\mathrm{X0}=\mathrm{On}\) and the result of logical AND operation of C 0 and \(\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}\).
2. When \(\mathrm{X} 1=\mathrm{Off}\) and the result of logical OR operation of D 10 and \(\mathrm{D} 0 \neq 0\) and \(\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}\) will be retained.
3. When X2 = On and the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit register D100 \((D 101) \neq 0\) or M3 \(=\) On, M50 \(=\) On.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline API & \multicolumn{3}{|r|}{Mnemonic} & \multicolumn{8}{|c|}{Operands} & \multicolumn{18}{|c|}{Function} \\
\hline \[
\begin{array}{|c|}
\hline 221 ~ \\
223 \\
\hline
\end{array}
\] & D & \multicolumn{2}{|l|}{OR\#} & \multicolumn{8}{|c|}{( \(S_{1}\) S} & \multicolumn{18}{|l|}{Contact Logical operation OR\#} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Type OP}} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word Devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & & X & Y & M & S & & K & H & Kn & X & KnY & KnM & & KnS & T & & C & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{3}{*}{OR\#: 5 steps DOR\#: 9 steps}} \\
\hline & & & & & & & * & * & * & & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline & & & & & & & * & * & * & & * & * & & * & * & & * & * & * & * & & & & & & & & & \\
\hline & & & \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Data source device \(1 \quad \mathbf{S}_{2}\) : Data source device 2

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). If the result is not " 0 ", the continuity of the instruction is enabled. If the result is " 0 ", the continuity of the instruction is disabled.
3. OR\# is an operation instruction used on parallel contacts.
\begin{tabular}{|c|c|c|c|c|}
\hline API No. & \begin{tabular}{c}
16 -bit \\
instruction
\end{tabular} & \begin{tabular}{c}
32 -bit \\
instruction
\end{tabular} & \begin{tabular}{c} 
Continuity \\
condition
\end{tabular} & \begin{tabular}{c} 
No-continuity \\
condition
\end{tabular} \\
\hline 221 & OR\& & DOR\& & \(\mathbf{S}_{1} \& \mathbf{S}_{\mathbf{2}} \neq 0\) & \(\mathbf{S}_{1} \& \mathbf{S}_{2}=0\) \\
\hline 222 & OR & DOR & \(\mathbf{S}_{1} \mid \mathbf{S}_{2} \neq 0\) & \(\mathbf{S}_{1} \mid \mathbf{S}_{2}=0\) \\
\hline 223 & OR \(^{\wedge}\) & DOR^ \(^{\wedge}\) & \(\mathbf{S}_{1} \wedge \mathbf{S}_{2} \neq 0\) & \(\mathbf{S}_{1} \wedge \mathbf{S}_{\mathbf{2}}=0\) \\
\hline
\end{tabular}
4. \&: Logical "AND" operation
5. |: Logical "OR" operation
6. ^: Logical "XOR" operation
7. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DOR\#). If 16-bit instructions (OR\#) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

\section*{Program Example:}
1. When \(\mathrm{X} 1=\mathrm{On}\) and the result of logical \(A N D\) operation of C 0 and \(\mathrm{C} 10 \neq 0, \mathrm{Y} 10=\mathrm{On}\).
2. M60 will be On when \(X 2=O n\) and \(M 30=O n\), or the result of logical OR operation of 32-bit register D10 (D11) and 32-bit register D20 (D21) \(=0\), or the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit counter C235 \(=0\).

\begin{tabular}{|c|c|c|c|l|l|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \\
\hline \begin{tabular}{rl}
\(224 \sim\) \\
230
\end{tabular} & D & LD \(\%\) & & Function \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Data source device \(1 \quad \mathbf{S}_{2}\) : Data source device 2

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). Take API224 (LD=) for example, if the result is " \(=\) ", the continuity of the instruction is enabled. If the result is " \(\neq\) ", the continuity of the instruction is disabled.
3. LD※ instruction is used for direct connection with BUS.
\begin{tabular}{|c|l|l|c|c|}
\hline API No. & \begin{tabular}{c}
16 -bit \\
instruction
\end{tabular} & \begin{tabular}{c}
32 -bit \\
instruction
\end{tabular} & \begin{tabular}{c} 
Continuity \\
condition
\end{tabular} & \begin{tabular}{c} 
No-continuity \\
condition
\end{tabular} \\
\hline 224 & LD \(=\) & DLD \(=\) & \(\mathbf{S}_{1}=\mathbf{S}_{2}\) & \(\mathbf{S}_{1} \neq \mathbf{S}_{2}\) \\
\hline 225 & LD \(>\) & DLD \(>\) & \(\mathbf{S}_{1}>\mathbf{S}_{2}\) & \(\mathbf{S}_{1} \leq \mathbf{S}_{2}\) \\
\hline 226 & LD \(<\) & DLD \(<\) & \(\mathbf{S}_{1}<\mathbf{S}_{2}\) & \(\mathbf{S}_{1} \geq \mathbf{S}_{2}\) \\
\hline 228 & LD \(<>\) & DLD \(<>\) & \(\mathbf{S}_{1} \neq \mathbf{S}_{2}\) & \(\mathbf{S}_{1}=\mathbf{S}_{2}\) \\
\hline 229 & LD \(<=\) & DLD \(<=\) & \(\mathbf{S}_{1} \leq \mathbf{S}_{2}\) & \(\mathbf{S}_{1}>\mathbf{S}_{2}\) \\
\hline 230 & LD \(>=\) & DLD \(>=\) & \(\mathbf{S}_{1} \geq \mathbf{S}_{2}\) & \(\mathbf{S}_{1}<\mathbf{S}_{2}\) \\
\hline
\end{tabular}
4. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DLD\%). If 16-bit instructions (LD※) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

\section*{Program Example:}
1. When the content in \(\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}\).
2. When the content in \(\mathrm{D} 200>\mathrm{K}-30\) and \(\mathrm{X} 1=\mathrm{On}, \mathrm{Y} 11=\mathrm{On}\) will be retained.
3. When the content in \(\mathrm{C} 200<\mathrm{K} 678,493\) or \(\mathrm{M} 3=\mathrm{On}, \mathrm{M} 50=\mathrm{On}\).

\begin{tabular}{|c||c|c|c|cc|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \\
\hline \begin{tabular}{c}
\(232 \sim\) \\
238
\end{tabular} & D & AND \(\%\) & Function \\
\hline
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Data source device \(1 \quad \mathbf{S}_{2}\) : Data source device 2

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. This instruction compares the content in \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\). Take API232 (AND=) for example, if the result is " \(=\) ", the continuity of the instruction is enabled. If the result is " \(\neq\) ", the continuity of the instruction is disabled.
3. AND※ is a comparison instruction is used on series contacts.
\begin{tabular}{|c|c|c|c|c|}
\hline API No. & \[
\begin{gathered}
16 \text {-bit } \\
\text { instruction }
\end{gathered}
\] & \[
32 \text {-bit }
\] instruction & Continuity condition & No-continuity condition \\
\hline 232 & AND = & DAND = & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) \\
\hline 233 & AND > & DAND > & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) & \(\mathrm{S}_{1} \leq \mathrm{S}_{2}\) \\
\hline 234 & AND < & DAND < & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) & \(\mathrm{S}_{1} \geq \mathrm{S}_{2}\) \\
\hline 236 & AND < > & DAND < > & \(\mathrm{S}_{1} \neq \mathrm{S}_{2}\) & \(\mathrm{S}_{1}=\mathrm{S}_{2}\) \\
\hline 237 & AND < = & DAND < = & \(\mathrm{S}_{1} \leq \mathrm{S}_{2}\) & \(\mathrm{S}_{1}>\mathrm{S}_{2}\) \\
\hline 238 & AND > = & DAND > = & \(\mathrm{S}_{1} \geq \mathrm{S}_{2}\) & \(\mathrm{S}_{1}<\mathrm{S}_{2}\) \\
\hline
\end{tabular}
4. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DAND※). If 16-bit instructions (AND \(\%\) ) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

\section*{Program Example:}
1. When \(\mathrm{X} 0=\mathrm{On}\) and the content in \(\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 10=\mathrm{On}\).
2. When \(\mathrm{X} 1=\mathrm{Off}\) and the content in \(\mathrm{D} 0 \neq \mathrm{K}-10, \mathrm{Y} 11=\) On will be retained.
3. When \(\mathrm{X} 2=\) On and the content in 32-bit register \(\mathrm{D} 0(\mathrm{D} 11)<678,493\) or \(\mathrm{M} 3=\mathrm{On}, \mathrm{M} 50=\mathrm{On}\).

\begin{tabular}{|c|c|c|c|c|ll|}
\hline \multicolumn{1}{|c|}{ API } & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & & Function \\
\hline \begin{tabular}{c}
\(240 \sim\) \\
246
\end{tabular} & D & OR \(\%\) & & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & OR Compare
\end{tabular}


\section*{Operands:}
\(\mathbf{S}_{1}\) : Data source device \(1 \quad \mathbf{S}_{2}\) : Data source device 2

\section*{Explanations:}
1. See the specifications of each model for the range of operands.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). Take API240 (OR=) for example, if the result is "=", the continuity of the instruction is enabled. If the result is " \(\neq\) ", the continuity of the instruction is disabled.
3. \(\mathrm{OR} \%\) is an comparison instruction used on parallel contacts.
\begin{tabular}{|c|l|l|c|c|}
\hline API No. & \multicolumn{1}{|c|}{\begin{tabular}{c}
16 -bit \\
instruction
\end{tabular}} & \begin{tabular}{c}
32 -bit \\
instruction
\end{tabular} & \begin{tabular}{c} 
Continuity \\
condition
\end{tabular} & \begin{tabular}{c} 
No-continuity \\
condition
\end{tabular} \\
\hline 240 & OR \(=\) & DOR \(=\) & \(\mathbf{S}_{1}=\mathbf{S}_{2}\) & \(\mathbf{S}_{1} \neq \mathbf{S}_{2}\) \\
\hline 241 & OR \(>\) & DOR \(>\) & \(\mathbf{S}_{1}>\mathbf{S}_{2}\) & \(\mathbf{S}_{1} \leq \mathbf{S}_{2}\) \\
\hline 242 & OR \(<\) & DOR \(<\) & \(\mathbf{S}_{1}<\mathbf{S}_{2}\) & \(\mathbf{S}_{1} \geq \mathbf{S}_{2}\) \\
\hline 244 & OR \(<>\) & DOR \(<>\) & \(\mathbf{S}_{1} \neq \mathbf{S}_{2}\) & \(\mathbf{S}_{1}=\mathbf{S}_{2}\) \\
\hline 245 & OR \(<=\) & DOR \(<=\) & \(\mathbf{S}_{1} \leq \mathbf{S}_{2}\) & \(\mathbf{S}_{1}>\mathbf{S}_{2}\) \\
\hline 246 & OR \(>=\) & DOR \(>=\) & \(\mathbf{S}_{1} \geq \mathbf{S}_{2}\) & \(\mathbf{S}_{1}<\mathbf{S}_{2}\) \\
\hline
\end{tabular}
4. When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, make sure to adopt 32-bit instruction (DOR※). If 16-bit instructions (OR \(\%\) ) is adopted, a "program error" will occur and the ERROR indicator on the MPU panel will flash.

\section*{Program Example:}
1. When \(\mathrm{X} 1=\mathrm{On}\) and the present value of \(\mathrm{C} 10=\mathrm{K} 200, \mathrm{Y} 0=\mathrm{On}\).
2. M60 will be On when \(X 2=O n, M 30=O n\) and the content in 32-bit register D100 \((D 101) \geq K 100,000\).

\begin{tabular}{|l|l|c|c|cc|}
\hline API & Mnemonic & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 266 & D & BOUT & D & n & Output Specified Bit of a Word \\
\hline
\end{tabular}


\section*{Operands:}

D: Destination output device
\(\mathbf{n}\) : Device specifying the output bit

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16-bit instruction; K0~K31 for 32-bit instruction.
3. BOUT instruction performs bit output on the output device according to the value specified by operand \(\mathbf{n}\).

Status of Coils and Associated Contacts:
\begin{tabular}{|l|l|l|l|}
\hline \multirow{2}{*}{ Evaluation result } & \multicolumn{3}{|c|}{ BOUT instruction } \\
\cline { 2 - 4 } & \multirow{2}{*}{ Coil } & \multicolumn{2}{|c|}{ Associated Contacts } \\
\cline { 2 - 4 } & & NO contact (normally open) & NC contact (normally closed) \\
\hline FALSE & OFF & Current blocked & Current flows \\
\hline TRUE & ON & Current flows & Current blocked \\
\hline
\end{tabular}

\section*{Program Example:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{\[
\mid
\]} & & & & \multicolumn{2}{|l|}{Instruction:} & \multirow[t]{2}{*}{\begin{tabular}{l}
Operation: \\
Load NC contact XO
\end{tabular}} \\
\hline & BOUT & K4Y0 & D0 & LDI & X0 & \\
\hline & & & & AND & X1 & Connect NO contact \\
\hline & & & & & & X1 in series. \\
\hline & & & & BOUT & K4Y0 & D0 When D0 = k1, executes output on Y1 \\
\hline & & & & & & When D0 = k2, executes output on Y 2 \\
\hline
\end{tabular}
\begin{tabular}{|l||c|c|c|l|l|}
\hline API & Mnemonic & Operands & & Function \\
\hline 267 & D & BSET & D & n & Set ON Specified Bit of a Word \\
\hline
\end{tabular}


\section*{Operands:}

\section*{D: Destination device to be Set ON \\ n : Device specifying the bit to be Set ON}

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16 -bit instruction; K0~K31 for 32 -bit instruction.
3. When BSET instruction executes, the output device specified by operand \(\mathbf{n}\) will be On and latched. To reset the On state of the device, BRST instruction is required.

\section*{Program Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\stackrel{x 0}{x_{0}}
\]} & & & & \multicolumn{2}{|l|}{Instruction:} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Operation: \\
Load NC contact XO
\end{tabular}} \\
\hline & BSET & K4Y0 & Do & LDI & X0 & & \\
\hline & & & & AND & X1 & & Connect NO contact \\
\hline & & & & & & & X 1 in series. \\
\hline & & & & BSET & K4YO & DO & When D0 = k1, \\
\hline & & & & & & & Y 1 is ON and latched \\
\hline & & & & & & & When D0 = k2, \\
\hline & & & & & & & \(\mathrm{Y} 2=\mathrm{ON}\) and latched \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|cc|}
\cline { 3 - 6 } API & Mnemonic & Operands & \multicolumn{2}{|c|}{ Function } \\
\hline 268 & D & BRST & D & n & Reset Specified Bit of a Word \\
& & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & BRST: 5 steps \\
\hline D & & & & & & & & * & * & * & * & * & * & & & DBRST: 9 steps \\
\hline n & & & & & * & * & * & * & * & * & * & * & * & * & * & DBRST: 9 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Operands:
D: Destination device to be reset \(\quad \mathbf{n}\) : Device specifying the bit to be reset

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16-bit instruction; K0~K31 for 32-bit instruction.
3. When BRST instruction executes, the output device specified by operand \(\mathbf{n}\) will be reset (OFF).

\section*{Program Example:}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\stackrel{\text { xo }}{H}
\]} & & & & \multicolumn{2}{|l|}{Instruction:} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Operation: \\
Load NO contact XO
\end{tabular}} \\
\hline & BRST & K4Yo & Do & & X0 & & \\
\hline & & & & BRST & K4Y0 & D0 & When D0 = k1, Y 1 is OFF \\
\hline & & & & & & & When \(\mathrm{DO}=\mathrm{k} 2\),
Y2 = OFF \\
\hline
\end{tabular}
\begin{tabular}{|c||c|c|c|c|}
\hline API & Mnemonic & Operands & \multicolumn{2}{c|}{ Function } \\
\hline 269 & D & BLD & S & n \\
& & Load NO Contact by Specified Bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{5}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & K & H & KnX & & KnY & & M & Kn & & T & & C & D & E & F & \multicolumn{9}{|c|}{\multirow[t]{3}{*}{BLD: 5 steps DBLD: 9 steps}} \\
\hline S & & & & & & & & & & * & & * & & & * & & * & * & & & & & & & & & & & \\
\hline n & & & & & & * & * & * & & * & & * & & & * & & * & * & * & * & & & & & & & & & \\
\hline \multicolumn{21}{|c|}{PULSE} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & SS & SA & SX & SC & EH & Sv & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & \multicolumn{6}{|l|}{} & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 }
\end{aligned}
\] & ES & S EX & SS & SA & sx & SC & EH & \multicolumn{2}{|l|}{\[
\begin{array}{c|c|}
\hline \text { SVH3 } \\
\hline & \text { SV2 } \\
\hline
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Operands:}

\section*{S: Reference source device \\ n: Reference bit}

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16-bit instruction; K0~K31 for 32-bit instruction.
3. BLD instruction is used to load NO contact whose contact state is defined by the reference bit \(\mathbf{n}\) in reference device \(\mathbf{D}\), i.e. if the bit specified by \(\mathbf{n}\) is \(O N\), the NO contact will be ON, and vice versa.

\section*{Program Example:}

\begin{tabular}{lll} 
Instruction: & Operation: \\
BLD & DO \(\quad\) K3 & \begin{tabular}{l} 
Load NO contact X0 with bit \\
Status of bit3 in D0
\end{tabular} \\
OUT & & YO
\end{tabular}
\begin{tabular}{|l||c|c|c|c|}
\hline API & Mnemonic & Operands & \multicolumn{1}{c|}{ Function } \\
\hline 270 & D & BLDI & S & n \\
Load NC Contact by Specified Bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & BLDI: 5 steps \\
\hline S & & & & & & & & * & * & * & * & * & * & & & DBLDI: 9 steps \\
\hline n & & & & & * & * & * & * & * & * & * & * & * & * & * & DBLDI. 9 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}\) : Reference source device \(\mathbf{n}\) : Reference bit

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16 -bit instruction; K0~K31 for 32-bit instruction.
3. BLD instruction is used to load NC contact whose contact state is defined by the reference bit \(\mathbf{n}\) in reference device \(\mathbf{D}\), i.e. if the bit specified by \(\mathbf{n}\) is \(O N\), the NC contact will be ON, and vice versa.

\section*{Program Example:}

\begin{tabular}{|c||c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 271 & D & BAND & \(\mathbf{S} \subset \mathbf{n}\) & Connect NO Contact in Series by Specified Bit \\
\hline
\end{tabular}


\section*{Operands:}
S: Reference source device
n: Reference bit

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16-bit instruction; K0~K31 for 32-bit instruction.
3. BAND instruction is used to connect NO contact in series. The current state of the contact which is connected in series is read, and then the logical AND operation is performed on the current state and the previous logical operation result. The final result is stored in the accumulative register.

\section*{Program Example:}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline X1 & & & \multicolumn{2}{|l|}{Instruction:} & & \multirow[t]{2}{*}{\begin{tabular}{l}
Operation: \\
Load NC contact X1
\end{tabular}} \\
\hline И- BAND & D0 & K0 & LDI & X1 & & \\
\hline & & & BAND & D0 & K0 & Connect NO contact in series, whose state is defined by bit0 of DO \\
\hline & & & OUT & Yo & & Drive coil Y0 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 272 & D & BANI & S & Connect NC Contact in Series by Specified Bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & BANI: 5 steps \\
\hline S & & & & & & & & * & * & * & * & * & * & & & DBANI: 9 steps \\
\hline n & & & & & * & * & * & * & * & * & * & * & * & * & * & DBAN: 9 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}\) : Reference source device \(\quad \mathbf{n}\) : Reference bit

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16-bit instruction; K0~K31 for 32-bit instruction.
3. BANI instruction is used to connect NC contact in series. The current state of the contact which is connected in series is read, and then the logical AND operation is performed on the current state and the previous logical operation result. The final result is stored in the accumulative register.

\section*{Program Example:}
\begin{tabular}{ll|l|lll} 
X1
\end{tabular}
\begin{tabular}{|c||c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 273 & D & BOR & S & ( \\
nnyyy & Connect NO Contact in Parallel by Specified Bit \\
\hline
\end{tabular}


\section*{Operands:}

\section*{S: Reference source device n : Reference bit}

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16 -bit instruction; K0~K31 for 32 -bit instruction.
3. BOR instruction is used to connect NO contact in parallel. The current state of the contact which is connected in series is read, and then the logical OR operation is performed on the current state and the previous logical operation result. The final result is stored in the accumulative register.

\section*{Program Example:}

\begin{tabular}{lll}
\multicolumn{2}{l}{ Instruction: } & Operation: \\
LD & X0 & Load NO contact X0 \\
BOR & D0 & K0 \\
& & \begin{tabular}{l} 
Connect NO contact in \\
parallel, whose state is \\
defined by bito of D0
\end{tabular} \\
OUT & Y1 & Drive coil Y1
\end{tabular}
\begin{tabular}{|l|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline 274 & D & BORI & S & n \\
& & Connect NC Contact in Parallel by Specified Bit \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & BORI: 5 steps \\
\hline S & & & & & & & & * & * & * & * & * & * & & & DBORI: 9 steps \\
\hline n & & & & & * & * & * & * & * & * & * & * & * & * & * & DBORI. 9 steps \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

\section*{S: Reference source device \(\quad \mathbf{n}\) : Reference bit}

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. Available range for the value in operand \(\mathbf{n}\) : K0~K15 for 16-bit instruction; K0~K31 for 32-bit instruction.
3. BORI instruction is used to connect NC contact in parallel. The current state of the contact which is connected in series is read, and then the logical OR operation is performed on the current state and the previous logical operation result. The final result is stored in the accumulative register.

\section*{Program Example:}

\begin{tabular}{llll}
\multicolumn{2}{l}{ Instruction: } & Operation: \\
LD & X0 & Load NO contact X0 \\
BORI & D0 & K0 & \begin{tabular}{l} 
Connect NC contact in \\
\\
\end{tabular} \\
& & \begin{tabular}{l} 
parallel, whose state is \\
defined by bit0 of D0
\end{tabular} \\
OUT & Y1 & Drive coil Y1
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline \begin{tabular}{c}
\(275 \sim\) \\
280
\end{tabular} & FLD & \(\boldsymbol{S}_{1} \boldsymbol{S}_{2}\) & Floating Point Contact Type Comparison \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word devices} & \multicolumn{9}{|l|}{Program Steps} \\
\hline & X & Y & M & & & S & K & H & Kn & & KnY & \multicolumn{2}{|l|}{KnM} & \multicolumn{2}{|l|}{KnS} & T & C & D & E & F & \multicolumn{9}{|c|}{FLD※: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & * & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & * & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] & ES & EX & SS & SA & Sx & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH3} \\
& \mathrm{SV} 2
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(\mathbf{S}_{1}\) : Source device \(1 \quad \mathbf{S}_{2}\) : Source device 2}

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). Take API275 (FLD=) for example, if the result is " \(=\) ", the continuity of the instruction is enabled. If the result is " \(\neq\) ", the continuity of the instruction is disabled.
3. The user can specify the floating point value directly into operands \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) (e.g. F1.2) or store the floating point value in D registers for further operation.
4. FLD \((\ldots\) : \(=,>,<,<>, \leq, \geq\) ) instruction is used for direct connection with left hand bus bar.
\begin{tabular}{|l|l|l|l|}
\hline API No. & \(\mathbf{3 2}\)-bit instruction & Continuity condition & Discontinuity condition \\
\hline 275 & FLD \(=\) & \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}\) \\
\hline 276 & FLD \(>\) & \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}\) \\
\hline 277 & FLD \(<\) & \(\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}\) \\
\hline 278 & FLD \(<>\) & \(\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\) \\
\hline 279 & FLD \(<=\) & \(\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}\) \\
\hline 280 & FLD \(>=\) & \(\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}\) \\
\hline
\end{tabular}

\section*{Program Example:}

When the content in D200 (D201) \(\leq \mathrm{F} 1.2\) and X 1 is \(\mathrm{ON}, \mathrm{Y} 21=\mathrm{ON}\) and latched.

\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline \[
\begin{array}{|c}
\hline 281 ~ \\
286
\end{array}
\] & FAND* & (S1) \(\mathbf{S}_{2}\) & Floating Point Serial Type Comparison \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline OP & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & FAND※: 9 steps \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & * & * & * & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & * & * & * & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l}
EH3 \\
SV2
\end{tabular} & ES & EX & SS & SA & SX & SC & EH & SV & \begin{tabular}{l}
EH3 \\
SV2
\end{tabular} \\
\hline
\end{tabular}

\section*{Operands:}
\(\mathbf{S}_{1}\) : Source device \(1 \quad \mathbf{S}_{2}\) : Source device 2

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). Take API281 (FAND =) for example, if the result is " \(=\) ", the continuity of the instruction is enabled. If the result is " \(\neq\) ", the continuity of the instruction is disabled.
3. The user can specify the floating point value directly into operands \(S_{1}\) and \(\mathbf{S}_{2}\) (e.g. F1.2) or store the floating point value in \(D\) registers for further operation.
4. FAND \(\%(\ldots:=,>,<,<>, \leq, \geq)\) instruction is used for serial connection with contacts.
\begin{tabular}{|l|l|l|l|}
\hline API No. & 32-bit instruction & Continuity condition & Discontinuity condition \\
\hline 281 & FAND \(=\) & \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}\) \\
\hline 282 & FAND \(>\) & \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}\) \\
\hline 283 & FAND \(<\) & \(\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}\) \\
\hline 284 & FAND \(<>\) & \(\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\) \\
\hline 285 & FAND \(<=\) & \(\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}\) \\
\hline 286 & FAND \(>=\) & \(\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}\) \\
\hline
\end{tabular}

\section*{Program Example:}

When X 1 is OFF and the content in D0 (D1) does not equal to F1.2, Y21 = ON and latched.

\begin{tabular}{|c|c|c|c|}
\hline API & Mnemonic & Operands & Function \\
\hline \[
\begin{gathered}
287 ~ \\
292
\end{gathered}
\] & FOR※ & (S1) \(S_{2}\) & Floating Point Parallel Type Comparison \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{14}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & S & & K & H & KnX & & KnY & & nM & Kn & & T & C & D & E & F & \multicolumn{9}{|c|}{FOR※: 9 steps} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & & & & & & & & & & * & * & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & & & & & & & & & & * & * & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & EX & S & S & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 } \\
\hline
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(\mathbf{S}_{1}\) : Source device \(1 \quad \mathbf{S}_{2}\) : Source device 2}

\section*{Explanations:}
1. EH2/SV_V1.9 and versions above, and EH3/SV2 supports the function. EH series does not support the dunction.
2. This instruction compares the content in \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\). Take API287 (FOR =) for example, if the result is " \(=\) ", the continuity of the instruction is enabled. If the result is " \(\neq\) ", the continuity of the instruction is disabled
3. The user can specify the floating point value directly into operands \(\mathbf{S}_{1}\) and \(\mathbf{S}_{2}\) (e.g. F1.2) or store the floating point value in \(D\) registers for further operation.
4. OR \(\%(\ldots:=,>,<,<>, \leq, \geq)\) instruction is used for parallel connection with contacts.
\begin{tabular}{|l|l|l|l|}
\hline API No. & 32-bit instruction & Continuity condition & Discontinuity condition \\
\hline 287 & FOR \(=\) & \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}\) \\
\hline 288 & FOR \(>\) & \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}\) \\
\hline 289 & FOR \(<\) & \(\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}\) \\
\hline 290 & FOR \(<>\) & \(\mathbf{S}_{\mathbf{1}} \neq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}=\mathbf{S}_{\mathbf{2}}\) \\
\hline 291 & FOR \(<=\) & \(\mathbf{S}_{\mathbf{1}} \leqq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}>\mathbf{S}_{\mathbf{2}}\) \\
\hline 292 & FOR \(>=\) & \(\mathbf{S}_{\mathbf{1}} \geqq \mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{1}}<\mathbf{S}_{\mathbf{2}}\) \\
\hline
\end{tabular}

\section*{Program Example:}

When both X2 and M30 are OFF and the content in D100 (D101) \(\geq\) F1.234, M60 \(=\mathrm{ON}\).

\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|r|}{Mnemonic} & Operands & Function \\
\hline \[
\begin{array}{|c}
\hline 296 ~ \\
301
\end{array}
\] & D & LDZ※ & (S1) S \(\mathbf{S}_{3}\) & Comparing contact type absolute values LDZ※ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & LDZ※: 7 steps \\
\hline \(\mathrm{S}_{1}\) & & & & & * & * & * & * & * & * & * & * & * & & & DLDZ※: 13 steps \\
\hline \(\mathrm{S}_{2}\) & & & & & * & * & * & * & * & * & * & * & * & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & * & * & * & * & * & * & * & * & * & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \hline \text { EH3 } \\
& \text { SV2 } \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(S_{1}\) : Source device 1 \\ \(\mathbf{S}_{2}\) : Source device 2 \\ \(\mathbf{S}_{3}\) : Source device 3}

\section*{Explanations:}
1. EH3 V1.40 and SV2 V1.20 (and above) are supported.
2. The absolute value of the difference between \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) is compared with the absolute value of \(\mathbf{S}_{\mathbf{3}}\). Take LDZ> for example. If the comparison result is that the absolute value of the difference between \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) is greater than the absolute value of \(\mathbf{S}_{\mathbf{3}}\), the condition of the instruction is met. If the comparison result is that the absolute value of the difference between \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) is less than or equal to the absolute value of \(\mathbf{S}_{\mathbf{3}}\), the condition of the instruction is not met.
3. The instruction can be connected to a busbar
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{API No.} & \multirow[t]{2}{*}{16-bit instruction} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 32-bit } \\
\text { instruction }
\end{gathered}
\]} & \multicolumn{2}{|c|}{Comparison result} \\
\hline & & & On & Off \\
\hline 296 & LDZ> & DLDZ> & \(\left|S_{1}-S_{2}\right|>\left|S_{3}\right|\) & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) \\
\hline 297 & LDZ>= & DLDZ>= & \(\left|S_{1}-S_{2}\right| \geqq\left|S_{3}\right|\) & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) \\
\hline 298 & LDZ< & DLDZ< & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) & \(\left|S_{1}-S_{2}\right| \geqq\left|S_{3}\right|\) \\
\hline 299 & LDZ<= & DLDZ<= & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) & \(\left|S_{1}-S_{2}\right|>\left|S_{3}\right|\) \\
\hline 300 & LDZ = & DLDZ= & \(\left|S_{1}-S_{2}\right|=\left|S_{3}\right|\) & \(\left|S_{1}-S_{2}\right| \neq\left|S_{3}\right|\) \\
\hline 301 & LDZ<> & DLDZ<> & \(\left|S_{1}-S_{2}\right| \neq\left|S_{3}\right|\) & \(\left|S_{1}-S_{2}\right|=\left|S_{3}\right|\) \\
\hline
\end{tabular}
4. A 32-bit counter (C200~C255) must be used with the 32-bit instruction DLDZ※. If it is used with the 16-bit instruction LDZ※, a program error will occur, and the ERROR LED indicator on the PLC will blink.

\section*{Program Example:}

If the absolute value of the difference between D10 and D11 is greater than K200, Y0 will be On. If the absolute value of the difference between D10 and D11 is less than or equal to K200, Y0 will be Off.

\begin{tabular}{|c|c|c|cc|c|}
\hline API & \multicolumn{2}{|c|}{ Mnemonic } & \multicolumn{2}{|c|}{ Operands } & \\
\hline \begin{tabular}{c}
\(302 \sim\) \\
307
\end{tabular} & D & ANDZ \(\%\) & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & \(\mathbf{S}_{3}\) \\
& Comparing contact type absolute values ANDZ & Function \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{4}{|c|}{Bit Devices} & \multicolumn{11}{|c|}{Word devices} & Program Steps \\
\hline & X & Y & M & S & K & H & KnX & KnY & KnM & KnS & T & C & D & E & F & ANDZ※: 7 steps \\
\hline \(\mathrm{S}_{1}\) & & & & & * & * & * & * & * & * & * & * & * & & & DANDZ※: 13 steps \\
\hline \(\mathrm{S}_{2}\) & & & & & * & * & * & * & * & * & * & * & * & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & * & * & * & * & * & * & * & * & * & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{PULSE} & \multicolumn{9}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline ES & EX & SS & SA & SX & SC & EH & SV & EH3
SV2 & ES & EX & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & SX & SC & EH & SV & \[
\mathrm{EH} 3
\]
SV2 \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(\mathbf{S}_{1}\) : Source device \(1 \quad \mathbf{S}_{2}\) : Source device \(2 \quad \mathbf{S}_{3}\) : Source device 3}

\section*{Explanations:}
1. EH3 V1.40 and SV2 V1.20 (and above) are supported.
2. The absolute value of the difference between \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) is compared with the absolute value of \(\mathbf{S}_{\mathbf{3}}\). Take ANDZ> for example. If the comparison result is that the absolute value of the difference between \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) is greater than the absolute value of \(\mathbf{S}_{\mathbf{3}}\), the condition of the instruction is met. If the comparison result is that the absolute value of the difference between \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) is less than or equal to the absolute value of \(\mathbf{S}_{\mathbf{3}}\), the condition of the instruction is not met.
3. The instruction ANDZ \(\%\) is connected to a contact in series.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{API No.} & \multirow[t]{2}{*}{16-bit instruction} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 32-bit } \\
\text { instruction }
\end{gathered}
\]} & \multicolumn{2}{|c|}{Comparison result} \\
\hline & & & On & Off \\
\hline 302 & ANDZ> & DANDZ> & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|>\left|S_{3}\right|\right.\) & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) \\
\hline 303 & ANDZ>= & DANDZ>= & \(S_{1}-S_{2}\left|\geqq\left|S_{3}\right|\right.\) & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) \\
\hline 304 & ANDZ< & DANDZ< & \(\left|S_{1}-S_{2}\right|<\left|S_{3}\right|\) & \(\mathbf{S}_{1}-\mathrm{S}_{2}\left|\geqq\left|S_{3}\right|\right.\) \\
\hline 305 & ANDZ<= & DANDZ<= & \(\left|S_{1}-S_{2}\right| \leqq\left|S_{3}\right|\) & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|>\left|\mathrm{S}_{3}\right|\right.\) \\
\hline 306 & ANDZ \(=\) & DANDZ= & \(\left|\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}\right|=\left|\mathbf{S}_{\mathbf{3}}\right|\) & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|\neq\left|\mathrm{S}_{3}\right|\right.\) \\
\hline 307 & ANDZ<> & DANDZ<> & \(\mathbf{S}_{1}-\mathbf{S}_{2}\left|\neq\left|\mathbf{S}_{3}\right|\right.\) & \(\left|\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}\right|=\left|\mathbf{S}_{\mathbf{3}}\right|\) \\
\hline
\end{tabular}
4. A 32-bit counter (C200~C255) must be used with the 32-bit instruction DANDZ※. If it is used with the 16-bit instruction ANDZ※, a program error will occur, and the ERROR LED indicator on the PLC will blink.

\section*{Program Example:}

If M0 is On, and the absolute value of the difference between D10 and D11 is greater than K200, Y0 will be On. If the absolute value of the difference between D10 and D11 is less than or equal to K200, Y0 will be Off.

\begin{tabular}{|c|c|c|c|c|}
\hline API & \multicolumn{2}{|r|}{Mnemonic} & Operands & Function \\
\hline \[
\begin{array}{|c}
\hline 308 ~ \\
313
\end{array}
\] & D & ORZ※ & (S1) S \(\mathbf{S}_{3}\) & Comparing contact type absolute values ORZ \(\%\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Type OP} & \multicolumn{6}{|c|}{Bit Devices} & \multicolumn{15}{|c|}{Word devices} & \multicolumn{9}{|c|}{Program Steps} \\
\hline & X & Y & M & & & S & K & H & KnX & & KnY & & nM & Kn & & T & C & & D & E & F & \multicolumn{9}{|l|}{\multirow[t]{2}{*}{ORZ※: 7 steps}} \\
\hline \(\mathrm{S}_{1}\) & & & & & & & * & * & * & & * & & * & * & & * & * & & * & & & \multicolumn{2}{|r|}{DORZ※: 13 steps} & & & & & & & \\
\hline \(\mathrm{S}_{2}\) & & & & & & & * & * & * & & * & & * & * & & * & * & & * & & & & & & & & & & & \\
\hline \(\mathrm{S}_{3}\) & & & & & & & * & * & * & & * & & * & * & & * & * & & * & & & & & & & & & & & \\
\hline & & \multicolumn{10}{|c|}{PULSE} & \multicolumn{10}{|c|}{16-bit} & \multicolumn{9}{|c|}{32-bit} \\
\hline & & & & & SS & SA & SX & SC & EH & SV & \[
\begin{array}{|l|l|}
\hline \text { EH3 } \\
\text { SV2 }
\end{array}
\] & ES & EX & SS & SA & S & S & C & EH & SV & \[
\begin{aligned}
& \mathrm{EH} 3 \\
& \mathrm{SV} 2 \\
& \hline
\end{aligned}
\] & ES & EX & SS & SA & sX & SC & EH & SV & \[
\begin{array}{|l|}
\hline \mathrm{EH} 3 \\
\mathrm{SV} 2 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\section*{Operands:}

\section*{\(\mathbf{S}_{1}\) : Source device \(1 \quad \mathbf{S}_{2}\) : Source device \(2 \quad \mathbf{S}_{3}\) : Source device 3}

\section*{Explanations:}
1. EH3 V1.40 and SV2 V1.20 (and above) are supported.
2. The absolute value of the difference between \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) is compared with the absolute value of \(\mathbf{S}_{\mathbf{3}}\). Take ORZ> for example. If the comparison result is that the absolute value of the difference between \(\mathbf{S}_{\mathbf{1}}\) and \(\mathbf{S}_{\mathbf{2}}\) is greater than the absolute value of \(\mathbf{S}_{3}\), the condition of the instruction is met. If the comparison result is that the absolute value of the difference between \(\mathbf{S}_{1}\) and \(\mathbf{S}_{\mathbf{2}}\) is less than or equal to the absolute value of \(\mathbf{S}_{3}\), the condition of the instruction is not met.
3. The instruction ORZ \(\%\) is connected to a contact in parallel.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{API No.} & \multirow[t]{2}{*}{16-bit
instruction} & \multirow[t]{2}{*}{32-bit instruction} & \multicolumn{2}{|c|}{Comparison result} \\
\hline & & & On & Off \\
\hline 302 & ORZ> & DORZ> & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|>\left|\mathrm{S}_{3}\right|\right.\) & \(\mathbf{S}_{1}-\mathbf{S}_{2}\left|\leqq\left|\mathbf{S}_{3}\right|\right.\) \\
\hline 303 & ORZ>= & DORZ>= & \(\left|S_{1}-S_{2}\right| \geqq\left|S_{3}\right|\) & \(\mathbf{S}_{1}-\mathbf{S}_{2}\left|<\left|S_{3}\right|\right.\) \\
\hline 304 & ORZ< & DORZ< & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|<\left|\mathrm{S}_{3}\right|\right.\) & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|\geqq\left|\mathrm{~S}_{3}\right|\right.\) \\
\hline 305 & ORZ<= & DORZ<= & \(\left|S_{1}-\mathbf{S}_{2}\right| \leqq\left|S_{3}\right|\) & \(\mathbf{S}_{1}-\mathbf{S}_{2}\left|>\left|\mathbf{S}_{3}\right|\right.\) \\
\hline 306 & ORZ= & DORZ = & \(\left|\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}\right|=\left|\mathbf{S}_{3}\right|\) & \(\mathbf{S}_{1}-\mathrm{S}_{2}\left|\neq\left|\mathrm{S}_{3}\right|\right.\) \\
\hline 307 & ORZ<> & DORZ<> & \(\mathrm{S}_{1}-\mathrm{S}_{2}\left|\neq\left|\mathrm{S}_{3}\right|\right.\) & \(\mathbf{S}_{\mathbf{1}}-\mathbf{S}_{\mathbf{2}}\left|=\left|\mathbf{S}_{3}\right|\right.\) \\
\hline
\end{tabular}
4. A 32-bit counter (C200~C255) must be used with the 32-bit instruction DORZ \(\%\). If it is used with the 16 -bit instruction ORZ※, a program error will occur, and the ERROR LED indicator on the PLC will blink.

\section*{Program Example:}

If \(M 0\) is On, or the absolute value of the difference between D 10 and D 11 is greater than \(\mathrm{K} 200, \mathrm{Y} 0\) will be On.


MEMO

\subsection*{11.1 Appendix A: Table for Self-detecting Abnormality}

When you encounter abnormality using the product, you can analyze the problem first by doing the self detections below.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Abnormality } & \multicolumn{1}{c|}{ Possible cause } & \multicolumn{1}{c|}{ Suggested correction } \\
\hline \multirow{3}{*}{ Output point abnormality } & Loosened terminal block & \begin{tabular}{l} 
Check if the removable terminal block is \\
loosened.
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
The input counting specification may not \\
match the pulse output frequency of the \\
PLC model in use.
\end{tabular} & \begin{tabular}{l} 
Check if the hardware is normal by \\
low-frequency pulse counting.
\end{tabular} \\
\hline \begin{tabular}{l} 
Communication \\
abnormality
\end{tabular} & The length of communication cable & \begin{tabular}{l} 
Make sure the RS-232 cable is at least 3 \\
meters long to ensure normal \\
communication (specification unknown).
\end{tabular} \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Incorrect communication protocol or \\
address setting
\end{tabular} & \begin{tabular}{l} 
Broadcast from station 0 first by RS-232 \\
to search for communication protocol and \\
address and later confirm by RS-485 \\
communication.
\end{tabular} \\
\hline \begin{tabular}{l} 
Extension module unable \\
to work
\end{tabular} & Poor connection or MPU problem & \begin{tabular}{l} 
Make sure the MPU is tightly connected \\
to the extension module and compare to \\
make sure whether the problem lies in \\
the MPU or the extension module.
\end{tabular} \\
\hline \begin{tabular}{l} 
Counter (input point) \\
abnormality
\end{tabular} & \begin{tabular}{l} 
The applicable frequency exceeds the \\
maximum bandwidth.
\end{tabular} & \begin{tabular}{l} 
The frequency should be within the \\
allowed PLC specifications.
\end{tabular} \\
\hline ERROR LED flashes & Incorrect program syntax & \begin{tabular}{l} 
Record the error code first, and write \\
whether the ERROR LED should not \\
flash anymore by syntactically correct \\
program. Model with battery should be \\
checked whether the time of RTC is \\
correct (not being correct means the \\
battery might once be unattached, \\
causing reset of time).
\end{tabular} \\
\hline \begin{tabular}{l} 
L.V. LED On
\end{tabular} & \begin{tabular}{l} 
Make sure the power supply voltage is \\
normal.
\end{tabular} \\
\hline RUN LED Off after & \begin{tabular}{l} 
There is no program inside the new \\
PLC, resulting in misjudgment.
\end{tabular} & \begin{tabular}{l} 
Write in the program first.
\end{tabular} \\
\hline
\end{tabular}

\section*{11 Appendix}

\subsection*{11.2 Appendix B: MPU Terminal Layout}
- For ES series MPU





\begin{tabular}{|c|c|}
\hline \multirow{3}{*}{DVP30ES00T2} &  \\
\hline & \begin{tabular}{l}
DVP-30ES-T \\
(AC Power IN, DC Signal IN )
\end{tabular} \\
\hline &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DVP32ES00R2/T2 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DVP40ES00R2/T2 &  \\
\hline DVP60ES00R2/T2 &  \\
\hline
\end{tabular}
- For EH2/EH3 series MPU



\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{DVP32EH00T2} & \begin{tabular}{l}
 \\

\end{tabular} \\
\hline & DVP-32EH (16in/16out) \\
\hline DVP32EH00T3 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DVP32EH00M2 &  \\
\hline DVP32EH00M3 & \begin{tabular}{l}
 \\
\(\square|Y 0+|Y 1+|S G d| Y 2+|Y 3+|C 0| Y 6| \cdot| C 1| Y 12|\cdot| C 2|Y 16| \cdot(1)\)
\end{tabular} \\
\hline
\end{tabular}

\section*{11 Appendix}

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{DVP48EH00R2/T2} &  \\
\hline & DVP-48EH (24in/24out) \\
\hline DVP48EH00R3/T3 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DVP64EH00R2/T2 &  \\
\hline & DVP-64EH (32in/32out) \\
\hline DVP64EH00R3/T3 &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DVP80EH &  \\
\hline 00R2/T2 &  \\
\hline & DVP-80EH (40in/40out) \\
\hline \[
\begin{gathered}
\text { DVP80EH } \\
\text { 00R3/T3 }
\end{gathered}
\] &  \\
\hline
\end{tabular}

For SS/SA/SC/SX series MPU

DVP14SS
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{\[
8
\]} & S/S \\
\hline & X0 \\
\hline & X1 \\
\hline & X2 \\
\hline & X3 \\
\hline & X4 \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
RUN \\
STOP
\end{tabular}} & X5 \\
\hline & X6 \\
\hline & X7 \\
\hline & C0 \\
\hline & Y0 \\
\hline & C1 \\
\hline & Y1 \\
\hline & C2 \\
\hline & Y2 \\
\hline & Y3 \\
\hline & Y4 \\
\hline & Y5 \\
\hline & \(\square\) \\
\hline
\end{tabular}

DVP12SC-T


DVP10SX


■ For SV/SV2 series MPU

DVP28SV11R


DVP28SV11T


\section*{11 Appendix}

\subsection*{11.3 Appendix C: Terminal Layout for Digital I/O Modules}
- For ES/EX series digital I/O modules
\begin{tabular}{|c|c|c|c|}
\hline DVP08XM11N &  & DVP08XN11R/T &  \\
\hline DVP08XP11R/T &  & DVP16XM11N &  \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline DVP32XP00R/T &  \\
\hline DVP32XP11R/T &  \\
\hline
\end{tabular}

For EH2/EH3 series digital I/O modules



\begin{tabular}{|c|c|}
\hline DVP48HP00R/T &  \\
\hline
\end{tabular}
- For Slim (SS/SA/SC/SX/SV/SV2) series digital I/O modules

DVP08SM11N
DVP08SM10N
DVP16SM11N
DVP08SN11R DVP08SN11T


\begin{tabular}{|c|c|}
\hline : & \begin{tabular}{|l|}
\hline S/S \\
\hline\(\times 0\) \\
\hline 1 \\
\hline 1
\end{tabular} \\
\hline & \(\times 1\) \\
\hline & \(\times 2\) \\
\hline & \begin{tabular}{l}
X 3 \\
\(\times 4\) \\
\(\times 4\) \\
\hline
\end{tabular} \\
\hline & X
\(\times 4\)
\(\times 5\) \\
\hline & ¢ \(\times 6\) \\
\hline & X7 \\
\hline & S/S \\
\hline & \(\times 10\) \\
\hline & X12 \\
\hline & -12 \\
\hline & \(\times 14\) \\
\hline & \(\times 15\)
\(\times 16\)
\(\times 17\) \\
\hline & \begin{tabular}{|l|}
\hline\(\times 17\) \\
\hline\(\times 17\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
0 \\
0 \\
1 \\
1 \\
1 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

DVP08SP11R
DVP08SP11T

\begin{tabular}{|c|c|}
\hline \multirow[t]{15}{*}{:} & S/ \\
\hline & \begin{tabular}{l} 
X0 \\
\(\times 1\) \\
\hline 1
\end{tabular} \\
\hline & +1 \\
\hline & \(\times 3\) \\
\hline & \(\times 4\)
\(\times 5\)
\(\times 5\) \\
\hline & X
\(\times 6\)
\(\times 6\) \\
\hline & X7 \\
\hline & C0 \\
\hline & Y0 \\
\hline & Y1 \\
\hline & Y3 \\
\hline & Y4 \\
\hline & Y5 \\
\hline & Y6 \\
\hline & Y7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\bigcirc\) & \begin{tabular}{|l|}
\hline \(\mathrm{S} / \mathrm{S}\) \\
\hline\(\times 0\) \\
\hline 1
\end{tabular} \\
\hline & \begin{tabular}{|l|}
\hline\(\times 1\) \\
\hline\(\times 1\) \\
\hline
\end{tabular} \\
\hline & \(\times 2\) \\
\hline & \(\times 3\) \\
\hline & \begin{tabular}{l}
\(\times 3\) \\
\(\times 4\) \\
\(\times 5\) \\
\hline
\end{tabular} \\
\hline & \(\begin{array}{r}\times 5 \\ \times 5 \\ \times 6 \\ \hline\end{array}\) \\
\hline & X7 \\
\hline & UP \\
\hline & Y0 \\
\hline & Y2 \\
\hline & Y3 \\
\hline & Y4 \\
\hline & Y5 \\
\hline & Y6 \\
\hline & ZP \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multirow[t]{15}{*}{-} & \begin{tabular}{|l|}
\hline C0 \\
\hline Y0 \\
\hline
\end{tabular} \\
\hline & \(\stackrel{-}{\square}\) \\
\hline & C1 \\
\hline & Y1 \\
\hline & C2 \\
\hline & Y2 \\
\hline & \(\bullet\) \\
\hline & C3 \\
\hline & Y3 \\
\hline & \(\stackrel{\bullet}{C 4}\) \\
\hline & Y4 \\
\hline & \(\bullet\) \\
\hline & \(\stackrel{\text { C5 }}{ }\) \\
\hline & \(\stackrel{Y}{\square}\) \\
\hline & \\
\hline
\end{tabular}

\subsection*{11.4 Appendix D: Difference between EH2 and EH3}
- The capacity of the program is upgraded to \(30 k\) Steps, and the number of \(D\) devices is increased to 12000 .
- The capacity of the memory card has doubled. To prevent the wrong insertion, the new memory card and the old one are not interchangeable
- Some function cards of DVP-EH2 can not be used in DVP-EH3. The function cards which can be used are all communication cards, 02AD card and 02DA card.
- When the position of the basic instruction is below 16k Step, the execution speed does not make any change. When its position is above 16k Step, the execution speed becomes \(2.8 \mu \mathrm{~s}\).
- The execution speed of MOV instruction is improved to \(4.8 \mu \mathrm{~s}\), and that of other application instructions is also improved by 4~5 times.
- The high-speed input/output functions of DVP-EH3
A. The number of external input interruptions is 16. (Please refer to section 2.1.)
B. There are 3 sets of masking functions of the interruption. (Please refer to section 2.11.)
C. Newly added CSFO instruction has the speed-tracing function and can be used with the manual pulse generator. (Please refer to API 207.)
D. Newly added DVSPO and DICF instructions have various speed-changing functions. (Please refer to API 198 and API 199.)
E. The zero return instruction (DZRN) has the function of detecting limit switches, stopping at the positive position, seeking Z phase, and outputting the displacement. (Please refer to API 156.)
F. The direction outputs of DZRN instruction are used with Y1, Y3, Y5, and Y7. (Please refer to API 156.)
G. That special \(M\) can set the start and reset functions of \(\mathrm{C} 235 \sim \mathrm{C} 240\) is cancelled. The bandwidth of C235~C240can be up to 10 KHz .

\section*{- Other newly added functions of DVP-EH3}
A. COM1 card and COM3 card can be masters. COM3 is an independent communication port which does not occupy COM2. The flag of the transmitting function in the master is the same as that in DVP-ES2.
B. The GPS instruction is added. (Please refer to API 177)
C. We add the \(m\) servo convenience instruction ASDRW. (Please refer to API 206.)
D. The program can be automatically backed up, and will not disappear even if the battery has run down.
E. The second-backup function can store the second program and data.
F. We add the basic instructions which are used exclusively for words. For example, BLD, BOUT, and etc. (Please refer to API 266~274)
G. The comparison instruction of the floating point number (FLD>=...). is added. (Please refer to API 275~292)
H. M1356 can be used in PLC-LINK to designate the station numbers. Only when M1353 is on can D1900~D1931 be used.
I. ISPSoft and WPLSoft can set the read-only function of the communication and function of downloading the program.

\subsection*{11.5 Appendix E: Current Consumption of a Slim PLClan Extension Module}

Users can calculate the maximum current consumed by the combination of a slim PLC and modules by means of the data in the table below.

\section*{Current supply and current consumption of a PLC (+24VDC)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Item Model & \[
\begin{aligned}
& \hline \text { 14SS2 } \\
& \text { 11R/T }
\end{aligned}
\] & \[
\begin{gathered}
\text { 12SS2 } \\
11 \mathrm{~S}
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { 12SA2 } \\
& \text { 11R/T }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 12SE } \\
& \text { 11R/T }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { 20SX2 } \\
\text { 11R/T/S }
\end{gathered}
\] & \[
\begin{gathered}
\text { 28SV } \\
\text { 11R/T/S/R2/T2/S2 }
\end{gathered}
\] \\
\hline Internal maximum current consumed (mA) & \[
\begin{gathered}
\text { R: } 100 \\
\text { T: } 50
\end{gathered}
\] & S: 50 & \[
\begin{gathered}
\mathrm{R}: 100 \\
\mathrm{~T}: 70
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{R}: 110 \\
\mathrm{~T}: 80
\end{gathered}
\] & \[
\begin{aligned}
& \mathrm{R}: 220 \\
& \mathrm{~T}: 170 \\
& \mathrm{~S}: 170
\end{aligned}
\] & \[
\begin{aligned}
& \text { R: } 210 \\
& \text { T: } 170 \\
& \text { S: } 170
\end{aligned}
\] \\
\hline Maximum current consumed by the external DIO (A) (The current consumption of all inputs and outputs is calculated.) \#1 & \[
\begin{gathered}
\text { R: } 9.1 \\
\text { T: } 3.1
\end{gathered}
\] & S: 2.1 & \[
\begin{gathered}
\text { R: } 5.1 \\
\text { T: } 2.1
\end{gathered}
\] & \[
\begin{gathered}
\text { R: } 5.1 \\
\text { T: } 2.1
\end{gathered}
\] & \[
\begin{aligned}
& \text { R: } 9.1 \\
& \text { T: } 3.1 \\
& \text { S: } 1.9
\end{aligned}
\] & \[
\begin{gathered}
\text { R: } 18.1 \\
\text { T: } 3.8 \\
\text { S: } 3.8
\end{gathered}
\] \\
\hline
\end{tabular}
\#1: The external maximum current consumed is estimated on the basis of a worst condition. It is suggested that users should calculate the maximum current consumed according to the actual arrangement.

\section*{Current supply and current consumption of a digital input/output module (+24VDC)}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & \begin{tabular}{c}
08 SM \\
11 N
\end{tabular} & \begin{tabular}{c}
08 SP \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} & \begin{tabular}{c}
08 SN \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} & \begin{tabular}{c}
08 ST \\
11 N
\end{tabular} & \begin{tabular}{c}
16 SM \\
11 N
\end{tabular} & \begin{tabular}{c}
16 SP \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} & \begin{tabular}{c}
16 SP \\
11 TS
\end{tabular} \\
\hline \begin{tabular}{l} 
Internal maximum current \\
consumed by the IO-BUS \\
(mA)
\end{tabular} & 15 & \begin{tabular}{c}
\(\mathrm{R}: 35\) \\
\(\mathrm{~T}: 35\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{R}: 55\) \\
\(\mathrm{~T}: 55\)
\end{tabular} & 55 & 25 & \begin{tabular}{c}
\(\mathrm{R}: 65\) \\
\(\mathrm{~T}: 65\)
\end{tabular} & 30 \\
\hline \begin{tabular}{l} 
Maximum current \\
consumed by the external \\
DIO (A)
\end{tabular} & 0.05 & \begin{tabular}{c} 
R: 5 \\
\(\mathrm{~T}: 1.2\)
\end{tabular} & \begin{tabular}{c} 
R: 5 \\
\(\mathrm{~T}: 1.2\)
\end{tabular} & 0 & 0.1 & \begin{tabular}{c}
\(\mathrm{R}: 5\) \\
\(\mathrm{~T}: 1.2\)
\end{tabular} & \(\mathrm{~T}: 2\) \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline Item Model & 32SM11N & 32SN11TN \\
\hline \begin{tabular}{l} 
Internal maximum current \\
consumed by the IO-BUS (mA)
\end{tabular} & 40 & 40 \\
\hline \begin{tabular}{l} 
Maximum current consumed by \\
the external DIO (A)
\end{tabular} & 0.16 & 2 \\
\hline
\end{tabular}

\section*{Current consumption of a special input/output module (+24VDC)}

A special input/output module must be supplied with +24VDC power.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & 04AD-S & 06AA-S & 04DA-S & 06XA-S & 04PT-S & 04TC-S & 01PU-S \\
\hline \begin{tabular}{l} 
Internal maximum current \\
consumed by the IO-BUS (mA)
\end{tabular} & 30 & 30 & 30 & 30 & 30 & 30 & 30 \\
\hline \begin{tabular}{l} 
Maximum current consumed by \\
the external AIO (mA)
\end{tabular} & 83 & 83 & 167 & 83 & 83 & 83 & 105 \\
\hline
\end{tabular}

Current consumption of a left-side high-speed special module (+24VDC)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Item Model & EN01-SL & COPM-SL & DNET-SL & 04AD-SL & 04DA-SL & 02LC-SL & 01LC-SL \\
\hline \begin{tabular}{l} 
Internal maximum current \\
consumed by the IO-BUS (mA)
\end{tabular} & 60 & 50 & 50 & 40 & 40 & 40 & 40 \\
\hline \begin{tabular}{l} 
Maximum current consumed by \\
the external AIO (mA)
\end{tabular} & 0 & 0 & 0 & 15 & 80 & 125 & 125 \\
\hline
\end{tabular}

\section*{Calculating the maximum current consumed by a system}

Example: \(28 \mathrm{SV} 2+16 \mathrm{SP}+04 \mathrm{AD}-\mathrm{S}+04 \mathrm{TC}-\mathrm{S}+\mathrm{EN} 01-\mathrm{SL}\)
The power module optionally purchased is DVPPS02. (It supplies 2A current.)
\begin{tabular}{|c|c|c|}
\hline Model & Internal current consumption & External current consumption \\
\hline DVP28SV11T2 & 170 mA & 3.8 A \\
\hline DVP16SP11R & 65 mA & 5 A \\
\hline DVP04AD-S & 30 mA & 83 mA \\
\hline DVP04TC-S & 30 mA & 83 mA \\
\hline DVPEN01-SL & 60 mA & 0 \\
\hline
\end{tabular}

Maximum current consumed: Internal \(\rightarrow \quad 170+65+30+30+60=355(\mathrm{~mA})<2 \mathrm{~A} \quad\) Pass External \(\rightarrow 3.8 \mathrm{~A}+5 \mathrm{~A}+83 \mathrm{~mA}+83 \mathrm{~mA}=9 \mathrm{~A}>2 \mathrm{~A}\) Not pass
Conclusion: The 2A current supplied by DVPPS02 is sufficient for the PLC and the special modules. If the external I/O terminals are connected to loads, it is suggested that users should purchase an extra power module.

\subsection*{11.6 Appendix F: Current Consumption of an EH2/EH3 Series PLClan Extension Module}

Users can calculate the maximum current consumed by an EH2/EH3 system by means of the data in the table below.

\section*{Current supply and current consumption of a PLC (+24VDC)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Item Model & \[
\begin{aligned}
& \text { 16EH00 } \\
& \text { R } \square / \mathrm{T} \square \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 20EH00 } \\
& \text { R } \square / \mathrm{T} \square \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { 32EH00 } \\
& \text { R } \square / \mathrm{T} \square \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 40EH00 } \\
& \text { R } \square / T \square \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { 48EH00 } \\
& \text { R } \square / \mathrm{T} \square \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
64EH00 \\
R \(\square / T \square\)
\end{tabular} & \[
\begin{aligned}
& \hline \text { 80EH00 } \\
& \text { R } \square / \mathrm{T} \square \\
& \hline
\end{aligned}
\] \\
\hline Internal current supplied \({ }^{\# 1}\) (A) & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 1 & 1 \\
\hline External current supplied \({ }^{\text {\#2 }}\) (A) & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 & 0.5 \\
\hline Internal maximum current & R: 104 & R: 104 & R: 148 & R: 148 & R: 190 & R: 234 & R: 277 \\
\hline consumed (mA) & T: 140 & T: 140 & T: 180 & T: 180 & T: 220 & T: 260 & T: 300 \\
\hline Maximum current consumed & R: 14 & R: 14 & R: 20 & R: 23 & R: 25 & R: 30 & R: 40 \\
\hline by the external DIO (A) \({ }^{\# 3}\) & T: 2.6 & T: 2.6 & T: 4.7 & T: 5 & T: 9 & T: 13 & T: 14 \\
\hline
\end{tabular}
\#1: Internal current supplied \(\rightarrow\) Internal maximum current consumed + Internal maximum current consumed by the
IO-BUS
\#2: External current supplied \(\rightarrow\) Maximum current consumed by the external DIO + Maximum current consumed by the external digital input/output module + Maximum current consumed by the external special input/output module (AIO module)
\#3: The external maximum current consumed is estimated on the basis of a worst condition. It is suggested that users should calculate the maximum current consumed according to the actual arrangement.

Current supply and current consumption of a digital input/output module (+24VDC)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & \begin{tabular}{c}
08 HM \\
11 N
\end{tabular} & \begin{tabular}{c}
08 HP \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} & \begin{tabular}{c}
08 HN \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} & \begin{tabular}{c}
16 HM \\
11 N
\end{tabular} & \begin{tabular}{c}
16 HP \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} & \begin{tabular}{c}
32 HP \\
\(11 \mathrm{R} / \mathrm{T}\)
\end{tabular} \\
\hline \begin{tabular}{l} 
Item \\
Internal maximum current \\
consumed by the IO-BUS (mA)
\end{tabular} & 15 & 35 & 55 & 25 & 65 & 100 \\
\hline \begin{tabular}{l} 
Maximum current consumed by \\
the external DIO (A)
\end{tabular} & 0.05 & \begin{tabular}{c}
\(\mathrm{R}: 5\) \\
\(\mathrm{~T}: 1.2\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{R}: 10\) \\
\(\mathrm{~T}: 2.4\)
\end{tabular} & 0.1 & \(\mathrm{R}: 10\) & \(\mathrm{R}: 20\) \\
T: 2.4 & \(\mathrm{~T}: 4.8\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Item Model & \[
\begin{gathered}
\hline 32 \mathrm{HN} \\
\text { OOR }
\end{gathered}
\] & \[
\begin{aligned}
& \hline 32 \mathrm{HP} \\
& 00 \mathrm{R} / \mathrm{T}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 48HP } \\
& 00 \mathrm{R} / \mathrm{T}
\end{aligned}
\] \\
\hline Current supplied (mA) & 0 & \multicolumn{2}{|c|}{500} \\
\hline Internal maximum current consumed by the IO-BUS (mA) & 20 & 20 & 20 \\
\hline Maximum current consumed by the external DIO (A) & 40 & 20 & 30 \\
\hline
\end{tabular}

\section*{Current consumption of a special input/output module (+24VDC)}

A special input/output module must be supplied with +24VDC power.
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Item Model & 04AD-H2 & 04DA-H2 & 06XA-H2 & 04PT-H2 & 04TC-H2 & 01HC-H2 & \(01 P U-H 2\) \\
\hline \begin{tabular}{l} 
Internal maximum current \\
consumed by the IO-BUS (mA)
\end{tabular} & 30 & 30 & 30 & 30 & 30 & 30 & 30 \\
\hline \begin{tabular}{l} 
Maximum current consumed by \\
the external AIO (mA)
\end{tabular} & 105 & 188 & 145 & 105 & 105 & 125 & 125 \\
\hline
\end{tabular}

\section*{Calculating the maximum current consumed by a system}

Example: 32EH00R3 + 16HM11N + 16HP11R + 04AD-H2 + 04DA-H2
\begin{tabular}{|c|c|c|}
\hline Model & Internal current consumption & External current consumption \\
\hline DVP32EH00R3 & 148 mA & 20 A \\
\hline DVP16HM11N & 25 mA & 0.1 A \\
\hline DVP16HP11R & 65 mA & 10 A \\
\hline DVP04AD-H2 & 30 mA & 105 mA \\
\hline DVP04DA-H2 & 30 mA & 188 mA \\
\hline \begin{tabular}{c} 
Maximum current \\
consumed by the system
\end{tabular} & 298 mA & 30.3 A \\
\hline
\end{tabular}

Maximum current consumed: Internal \(\rightarrow\) 298mA < 500(mA) Pass
The internal current supplied by the PLC is sufficient for the modules.
External \(\rightarrow\) 30.3A \(>500(\mathrm{~mA})\) Not pass
The PLC can only supply sufficient power to the three modules \(16 \mathrm{HM}+04 \mathrm{AD}+04 \mathrm{DA}\). The other I/O terminals must be supplied with extra power.

\section*{11 Appendix}

\subsection*{11.7 Appendix G: Using Ethernet Communication}

The specifications for a DVP series Ethernet port and the functions of a DVP series Ethernet port are listed below. Specifications for an Ethernet interface:
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \\
\hline Interface & RJ-45 with Auto MDI/MDIX Specifications \\
\hline Number of ports & 1 Port \\
\hline Transmission method & IEEE802.3, IEEE802.3u \\
\hline Transmission cable & Category 5e \\
\hline Transmission rate & \(10 / 100\) Mbps Auto-Defect \\
\hline Protocol & ICMP, IP, TCP, UDP, DHCP, SMTP, NTP, MODBUS TCP \\
\hline
\end{tabular}

Ethernet functions:
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Function } & \begin{tabular}{c} 
Built-in Ethernet port in a \\
DVP-SE series PLC
\end{tabular} & DVPEN01-SL & \begin{tabular}{c} 
DVP-FEN01 \\
(Function card for a \\
DVP-EH3 series PLC)
\end{tabular} \\
\hline MODBUS/TCP & Master \& Slave & Master \& Slave & Master \& Slave \\
\hline Number of servers & 16 & 16 & 4 \\
\hline Number of clients & 8 & 16 & 4 \\
\hline \begin{tabular}{c} 
Number of data \\
exchanged
\end{tabular} & 8 & 24 & 8 \\
\hline RTU mapping & - & 4 & - \\
\hline E-mail & - & 4 & - \\
\hline SNMP & - & 8 & 4 \\
\hline IP filter & 4 & & - \\
\hline
\end{tabular}

\section*{Station Addresses of Ethernet Modules and Control Registers}

\section*{Station Addresses of Ethernet Modules}
\begin{tabular}{|c|c|c|c|}
\hline Model name & \begin{tabular}{c} 
Built-in Ethernet port in a \\
DVP-SE series PLC
\end{tabular} & DVPEN01-SL & \begin{tabular}{c} 
DVP-FEN01 \\
(Function card for a \\
DVP-EH3 series PLC)
\end{tabular} \\
\hline \begin{tabular}{c} 
FROM/TO station \\
address
\end{tabular} & K108 & See example 1. & K108 \\
\hline
\end{tabular}

Example 1. Suppose a DVP-SV series PLC is connected to three left-side communication modules.
\begin{tabular}{|c|c|c|c|c|}
\hline PLC/Module name & DVPEN01-SL & DVPCOPM-SL & DVPEN01-SL & DVP28SV11R \\
\hline \begin{tabular}{c} 
FROM/TO station \\
address
\end{tabular} & K 102 & K 101 & K 100 & -- \\
\hline
\end{tabular}

\section*{DVP-SE Series PLC (Ethernet PLC)}

In order to control and monitor Ethernet communication, users can read the data in the control registers listed below by means of the instruction FROM, and write data into the control registers listed below by means of the instruction TO. (Please refer to the explanation of API 78 and that of API 79 in chapter 3 for more information about FROM/TO.) [Note] Please refer to DVPEN01-SL Manual for more information about control registers.
\begin{tabular}{|c|c|c|l|l|}
\hline \multicolumn{2}{|c|}{ CR number } & Attribute & \multicolumn{1}{|c|}{ Register name } & \multicolumn{1}{c|}{ Description } \\
\hline HW & LW & & \multicolumn{1}{|c|}{} \\
\hline\(\# 12\) & \(\# 0\) & - & Reserved & \begin{tabular}{l} 
Users can set CR\#13 to "sending the data" or "not sending the \\
data".
\end{tabular} \\
\hline & \(\# 13\) & R/W & \begin{tabular}{l} 
Enabling the data \\
exchange
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{CR number} & \multirow[t]{2}{*}{Attribute} & \multirow[t]{2}{*}{Register name} & \multirow[t]{2}{*}{Description} \\
\hline HW & LW & & & \\
\hline & \#14 & R/W & Writing function of the RTU mapping & \begin{tabular}{l}
0: The PLC writes data continually. \\
1: The PLC writes data when the input changes.
\end{tabular} \\
\hline & \#15 & R/W & Enabling flag for RTU mapping & 1: Enable; 0: Disable. Default = 1 \\
\hline & \#16 & R/W & Connection status of RTU mapping slave & \begin{tabular}{l}
b0: Status of RTU slave 1 \\
b1: Status of RTU slave 2 \\
b2: Status of RTU slave 3 \\
b3: Status of RTU slave 4
\end{tabular} \\
\hline & \#17 & R/W & Execution cycle of the data exchange & Time unit: ms \\
\hline & \#18 & - & \multicolumn{2}{|l|}{Reserved} \\
\hline & \#19 & R & States of the slaves involved in the data exchange & If the value of a bit is 1 , an error occurs in the slave corresponding to the bit. \(\mathrm{b}[0: 7]\) indicate the states of the slaves 1~8 involved in the data exchange. \\
\hline \multicolumn{2}{|l|}{\#86 ~ \#20} & - & \multicolumn{2}{|l|}{Reserved} \\
\hline & \#87 & R/W & IP address setting mode & \[
\begin{array}{|l|}
\hline \text { 0: Static IP } \\
\text { 1: DHCP } \\
\hline
\end{array}
\] \\
\hline \#89 & \#88 & R/W & IP address & When the IP address is 192.168.1.5, the data in CR\#89 is 192.168, and the data in CR\#88 is 1.5 . \\
\hline \#91 & \#90 & R/W & Mask address & When the mask address is 255.255 .255 .0 the data in CR\#91 is 255.255, and the data in CR\#90 is 255.0. \\
\hline \multirow[t]{3}{*}{\#93} & \#92 & R/W & Gateway IP address & When the GIP address is 192.168.1.1, the data in CR\#89 is 192.168, and the data in CR\#88 is 1.1. \\
\hline & \#94 & R/W & Enabling the IP address setting & \begin{tabular}{l}
0 : The setting of the IP address is not executed. \\
1: The setting of the IP address is executed.
\end{tabular} \\
\hline & \#95 & R & IP address setting status & \begin{tabular}{l}
0 : The setting is unfinished. \\
1: The setting is being executed. \\
2 : The setting is complete.
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\#113 ~ \#96} & - & \multicolumn{2}{|l|}{Reserved} \\
\hline & \#114 & R/W & MPDBUS TCP time-out & \begin{tabular}{l}
Setting up MODBUS TCP time-out (in ms) \\
Default: 3000
\end{tabular} \\
\hline & \#115 & R/W & MODBUS TCP trigger & Setting up whether to send out data in MODBUS TCP mode \\
\hline & \#116 & R/W & MODBUS TCP status & Displaying current status of MODBUS TCP mode \\
\hline \#118 & \#117 & R/W & MODBUS TCP destination IP & Setting up destination IP address for MODBUS TCP transaction \\
\hline & \#119 & R/W & MODBUS TCP data length & Setting up the data length for MODBUS TCP transaction \\
\hline \multicolumn{2}{|l|}{\#219~\#120} & R/W & MODBUS TCP data buffer & Data buffer of MODBUS TCP for storing sending/receiving data \\
\hline \multicolumn{2}{|l|}{\#248~\#220} & - & \multicolumn{2}{|l|}{Reserved} \\
\hline & \#249 & R & Sub-version & \\
\hline & \#250 & R & Update date & 0xC820 (April 8, 2012) \\
\hline & \#251 & R & Error code & Displaying the errors. See the error code table for more information. \\
\hline \multicolumn{2}{|l|}{\#255~\#252} & - & \multicolumn{2}{|l|}{Reserved} \\
\hline \multicolumn{5}{|l|}{Symbols "R" refers to "able to read data by FROM instrcution"; "W" refers to "able to write data by TO instrcution".} \\
\hline
\end{tabular}

\section*{DVPEN01-SL (Ethernet Communication Module)}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{DVPEN01-SL Ethernet communication module} \\
\hline \multicolumn{2}{|l|}{CR number} & \multirow[t]{2}{*}{Attribute} & \multirow[t]{2}{*}{Register name} & \multirow[t]{2}{*}{Description} \\
\hline HW & LW & & & \\
\hline & \#116 & R/W & MODBUS TCP status & Displaying current status of MODBUS TCP mode \\
\hline \#118 & \#117 & R/W & MODBUS TCP destination IP & Setting up destination IP address for MODBUS TCP transaction \\
\hline & \#119 & R/W & MODBUS TCP data length & Setting up the data length for MODBUS TCP transaction \\
\hline & & R/W & MODBUS TCP data buffer & Data buffer of MODBUS TCP for storing sending/receiving data \\
\hline & & - & \multicolumn{2}{|l|}{Reserved} \\
\hline & \#251 & R & Error code & Displaying the errors. See the error code table for more information. \\
\hline & & - & \multicolumn{2}{|l|}{Reserved} \\
\hline
\end{tabular}

\section*{DVP-FEN01 (DVP-EH3 Series Ethernet Communication Card)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|r|}{DVP-FEN01 Ethernet communication card} \\
\hline CR number & \multirow[t]{2}{*}{Attribute} & \multirow[t]{2}{*}{Register name} & \multirow[t]{2}{*}{Description} \\
\hline HW LW & & & \\
\hline \#0 & R & Model name & Undefined \\
\hline \#1 & R & Firmware version & It adopts the hexadecimal system, and the present firmware version is stored in it. \\
\hline \#2~\#12 & - & \multicolumn{2}{|l|}{Reserved} \\
\hline \#13 & R/W & Enabling the data exchange & Users can set CR\#13 to "sending the data" or "not sending the data". \\
\hline \#16~\#14 & - & \multicolumn{2}{|l|}{Reserved} \\
\hline \#17 & R/W & \multicolumn{2}{|l|}{Execution cycle of the data exchange (ms)} \\
\hline \#18 & - & \multicolumn{2}{|l|}{Reserved} \\
\hline \#19 & R & States of the slaves involved in the data exchange & \(\mathrm{b}[0: 7]\) indicate the states of the slaves 1~8 involved in the data exchange. \\
\hline \#20~\#86 & - & \multicolumn{2}{|l|}{Reserved} \\
\hline \#87 & R/W & IP address setting mode & \begin{tabular}{l}
0: Static IP \\
1: DHCP
\end{tabular} \\
\hline \#89 \#88 & R/W & IP address & When the IP address is 192.168.1.5, the data in CR\#89 is 192.168, and the data in CR\#88 is 1.5 . \\
\hline \#91 \#90 & R/W & Mask address & When the mask address is 255.255 .255 .0 the data in CR\#91 is 255.255, and the data in CR\#90 is 255.0. \\
\hline \#93 \#92 & R/W & Gateway IP address & When the GIP address is 192.168.1.1, the data in CR\#89 is 192.168, and the data in CR\#88 is 1.1. \\
\hline \#94 & R/W & Enabling the IP address setting & 0 : The setting of the IP address is not executed. 1: The setting of the IP address is executed. \\
\hline \#95 & R & IP address setting status & \begin{tabular}{l}
0 : The setting is unfinished. \\
1: The setting is being executed. \\
2: The setting is complete.
\end{tabular} \\
\hline \#96~\#250 & - & \multicolumn{2}{|l|}{Reserved} \\
\hline \#251 & R & Error status & \begin{tabular}{l}
bit 0: The network is unconnected. \\
bit 3: CR\#13 is set to "sending the data", but the data exchange is not enabled. \\
bit 8: DHCP does not acquire the correct network parameter.
\end{tabular} \\
\hline \#255~\#252 & - & Reserved & \\
\hline
\end{tabular}

\section*{Searching for an Ethernet PLC}

This section introduces how to search for and set an Ethernet PLC by DCISoft. Before you start a setup page, you have to select Ethernet in the Communication Setting window. Next, you can search by a broadcast, or an IP

\section*{11 Appendix}
address. An Ethernet PLC is set up by UDP port 20006; therefore, you have to be aware of the relevant settings of the firewall.

\section*{Communication setting}
(1) Start DCISoft in your PC, and click Communication Setting on the Tools menu.

(2) Select Ethernet in the Type drop-down list box.


\section*{Broadcast Search}
(1) Click Search on the toolbar in DCISoft to search for all Delta Ethernet products on the network. The window on the left hand side shows the models found, and the window on the right hand side displays the device list of all models.

(2) Click a model on the left hand side, and you will see the device list of the model selected on the right hand side. Click the device to be set up to enter the setup page.


\section*{11 Appendix}


\section*{Searching for a Model Specified}
(1) Right-click Ethernet in the left hand side window, and click Configure to designate a model to be searched for.

(2) After users select a model which will be searched for, they can click OK to auto-search for the model on the network. In the window shown below, the DVPEN01-SL checkbox is selected.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Configure} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Module Selection \\
Network Type \\
或角 Ethernet
DVPENO1-SL
IFD9506
IFD9507
RTU-EN01
MOD01C
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}
(3) A list of specified devices is in the window. If the users have selected several models, they can view these models.


\section*{Searching by an IP Address}
(1) Select Ethernet in the Type drop-down list box, type an IP address in the IP Address box, and click OK.


\section*{11 Appendix}
(2) Click Search on the toolbar to start searching for the designated IP address.

(3) The model found will be displayed in the right hand side window. Double-click the device to enter the setup page.

\section*{Data Exchange}

A Delta Ethernet master can read/write data from/into a slave by means of instructions. It can also read/write data from/into a slave by means of tables. The number of data exchanges that models provide is different. Please refer to the information provided above for more information about the number of data exchanged.
(1) Enable:

Users can enable or disable a data exchange. After a data exchange is enabled, the data will be exchanged.
(2) Enable Condition:

You can select Always Enable or Program Control. If Always Enable is selected, DVPEN01-SL will execute data exchange continuously until the setting in DCISoft is changed. If Program Control is selected, DVPEN01-SL will execute data exchange according to the program setting. The internal registers in different models used to enable data exchanges are different. Please refer to section B. 2 for more information. (In DVPEN01-SL, the data exchange is executed if CR\#13=2, and the data exchanged is not executed if CR\#13=0.)
(3) Station Address-IP Address:

You have to type the IP address of a slave. If the IP address of a slave is 192.168.0.1, and the station number of the slave is 1 , you can type 1 in the first Station Address cell, select the box in the first Enable cell, and type 192.168.0.1 in the first IP Address cell.
(4) Master Device, Slave Device, and Quantity:

Reading \((\leftarrow)\) : Initial reception register in a master \(\leftarrow\) Initial transmission register in a slave Writing \((\rightarrow)\) : Initial transmission register in a master \(\rightarrow\) Initial reception register in a slave If a data exchange is enabled, the Ethernet PLC will write data, and then read data.

Quantity: A slave station can send 100 pieces of data at most and receive 100 pieces of data at most simultaneously.
※ If a device which is not a Delta PLC is connected, users can type a hexadecimal four-digit MODBUS absolute position in the Slave Device cell.

\section*{EtherNet/IP List}

EtherNet/IP is a communication protocol defined by ODVA, and is different from the Ethernet mentioned in the previous sections. DVP-SE series PLCs (whose version are 1.20 or above) supports the EtherNet/IP slave communication protocol. The other DVP series PLCs can communicate with products related to EtherNet/IP through IFD9507 (an EtherNet/IP-MODBUS converter). The EtherNet/IP objects which are supported are described below.

\section*{EtherNet/IP Information Supported by DVP-SE series PLCs}

\section*{(1) Object list}
\begin{tabular}{|l|l|l|}
\hline Object Name & Class Code & \#of Instance \\
\hline Identity & \(0 \times 01\) & 7 \\
\hline Message Router & \(0 \times 02\) & NA \\
\hline Assembly & \(0 \times 04\) & 7 \\
\hline Connection Manager & \(0 \times 06\) & NA \\
\hline X input & \(0 \times 64\) & 256 \\
\hline Y output & \(0 \times 65\) & 256 \\
\hline T Timer & \(0 \times 66\) & 256 \\
\hline M Relay & \(0 \times 67\) & 4096 \\
\hline C Counter & \(0 \times 68\) & 256 \\
\hline D Register & \(0 \times 69\) & 12000 \\
\hline TCP/IP Interface & \(0 \times F 5\) & 6 \\
\hline Ethernet Link & \(0 \times F 6\) & 3 \\
\hline
\end{tabular}
(2) Data types
\begin{tabular}{|l|l|l|l|}
\hline 8-bit & 16 -bit & 32-bit & 64 -bit \\
\hline USINT & WORD & UDINT & ULINT \\
\hline SINT & UINT & DWORD & LINT \\
\hline BYTE & INT & DINT & \\
\hline
\end{tabular}
(3) Error codes
\begin{tabular}{|l|l|l|}
\hline Value & Name & Description \\
\hline 0 & Success & Success \\
\hline \(0 \times 01\) & Connection Failure & The forwarding function can not be enabled. \\
\hline \(0 \times 04\) & Path Segment Error & \begin{tabular}{l} 
The segment type is not supported. \\
(ref. V1 C-1.4)
\end{tabular} \\
\hline \(0 \times 05\) & Path Destination Unknown & The instance is not supported. \\
\hline \(0 \times 08\) & Service Not Supported & The service (Get or Set) is not supported. \\
\hline \(0 \times 09\) & Invalid Attribute Value & The value written is incorrect. \\
\hline \(0 \times 0\) E & Attribute Not Settable & The setting of the attribute is not allowed. \\
\hline \(0 \times 13\) & Not Enough Data & The length of the data written is too short. \\
\hline \(0 \times 14\) & Attribute Not Supported & The attribute is not supported. \\
\hline \(0 \times 15\) & Too Much Data & The length of the data written is too long. \\
\hline \(0 \times 16\) & Object Not Exist & The object is not supported. \\
\hline \(0 \times 20\) & Invalid Parameter & \begin{tabular}{l} 
The service parameter is not supported. \\
(ref. V1 5-2.3.1)
\end{tabular} \\
\hline \(0 \times 26\) & Path Size Invalid & Incorrect item length \\
\hline
\end{tabular}

\section*{11 Appendix}

\section*{EtherNet/IP Objects Supported by DVP-SE series PLCs}
(1) Identity Object (0x01)

Instance: 0x01
\begin{tabular}{|l|l|l|l|l|}
\hline Attribute & Name & Access & Data Type & Value \\
\hline \(0 \times 01\) & Vendor ID & Get & UINT & \begin{tabular}{l}
799 \\
(Delta Electronics, inc.)
\end{tabular} \\
\hline \multirow{3}{*}{\(0 \times 02\)} & Device Type & Get & UINT & \begin{tabular}{l}
14 \\
(Programmable Logic \\
Controller )
\end{tabular} \\
\hline \multirow{3}{*}{\(0 \times 03\)} & & Product Code & Get & UINT
\end{tabular}
(2) Message Router ( \(0 \times 02\) )

Instance: 0x01
\begin{tabular}{|l|l|l|l|l|}
\hline Attribute & Name & Access & Data Type & Value \\
\hline \(0 \times 01\) & Not Support & NA & NA & NA \\
\hline
\end{tabular}
(3) Assembly ( \(0 \times 04\) )

Explicit message
Conformance Test is not supported.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Instance & Attribute & Name & Access & Data Type & Data \\
\hline 0x65 & \multirow[t]{7}{*}{0x03} & D Block 1 & Set & 10 words & D500~D509 \\
\hline \(0 \times 66\) & & D Block 2 & Set & 30 words & D510~D539 \\
\hline \(0 \times 67\) & & D Block 3 & Set & 60 words & D540~D599 \\
\hline 0x68 & & D Block 4 & Set & 100 words & D600~D699 \\
\hline 0x69 & & D Block 5 & Set & 100 words & D700~D799 \\
\hline \(0 \times 6 \mathrm{~A}\) & & D Block 6 & Set & 100 words & D800~D899 \\
\hline 0x6B & & D Block 7 & Set & 100 words & D900~D999 \\
\hline
\end{tabular}
(4) X input ( \(0 \times 64\) )
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 64\) & X0 & Get & BYTE \\
\hline 2 & \(0 \times 64\) & X1 & Get & BYTE \\
\hline\(\ldots \ldots\) & \multicolumn{4}{|l|}{} \\
\hline 256 & \(0 \times 64\) & X377 & Get & BYTE \\
\hline
\end{tabular}
(5) Y output ( \(0 \times 65\) )
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 64\) & Y0 & Set & BYTE ( 0x00 or 0x01) \\
\hline 2 & \(0 \times 64\) & Y1 & Set & BYTE ( 0x00 or 0x01) \\
\hline\(\ldots \ldots\) & \multicolumn{4}{|l|}{} \\
\hline 256 & \(0 \times 64\) & Y377 & Set & BYTE ( 0x00 or 0x01) \\
\hline
\end{tabular}
(6) T timer ( 0x66)
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 64\) & T0 & Set & INT \\
\hline 2 & \(0 \times 64\) & T1 & Set & INT \\
\hline\(\ldots \ldots\) & \\
\hline 256 & \(0 \times 64\) & T255 & Set & INT \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 65\) & T0 & Set & BYTE ( 0x00 or 0x01) \\
\hline 2 & \(0 \times 65\) & T1 & Set & BYTE ( 0x00 or 0x01) \\
\hline\(\ldots \ldots\) & T25 & Set & BYTE ( 0x00 or 0x01) \\
\hline 256 & \(0 \times 65\) & T255
\end{tabular}
(7) M Relay ( 0x67 )
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 64\) & M0 & Set & BYTE \\
\hline 2 & \(0 \times 64\) & M1 & Set & BYTE \\
\hline\(\ldots \ldots\) & M \\
\hline 4096 & \(0 \times 64\) & M4095 & Set & BYTE \\
\hline
\end{tabular}
(8) C counter ( \(0 \times 68\) )
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 64\) & C0 & Set & INT \\
\hline 2 & \(0 \times 64\) & C1 & Set & INT \\
\hline\(\ldots \ldots\) & \multicolumn{5}{|l|}{} \\
\hline 200 & \(0 \times 64\) & C199 & Set & INT \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 201 & \(0 \times 64\) & C200 & Set & DINT \\
\hline 202 & \(0 \times 64\) & C201 & Set & DINT \\
\hline\(\ldots \ldots\) & C. \\
\hline 256 & \(0 \times 64\) & C255 & Set & DINT \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 65\) & C0 & Set & BYTE ( 0x00 or 0x01) \\
\hline 2 & \(0 \times 65\) & C1 & Set & BYTE ( 0x00 or 0x01) \\
\hline\(\ldots \ldots\) & \multicolumn{5}{|l|}{} \\
\hline 256 & \(0 \times 65\) & C255 & Set & BYTE ( 0x00 or 0x01) \\
\hline
\end{tabular}
(9) D Register ( 0x69 )
\begin{tabular}{|l|l|l|l|l|}
\hline Instance & Attribute & Name & Access & Data Type \\
\hline 1 & \(0 \times 64\) & M0 & Set & INT \\
\hline 2 & \(0 \times 64\) & M1 & Set & INT \\
\hline\(\ldots \ldots\) & \multicolumn{4}{|l|}{} \\
\hline 12000 & \(0 \times 64\) & M11999 & Set & INT \\
\hline
\end{tabular}

\section*{11 Appendix}
(10) TCP/IP Interface Object ( 0xF5 )

Instance: 0x01

(11) Ethernet Link Object ( OxF6 )

Instance: 0x01
\begin{tabular}{|l|l|l|l|l|}
\hline Attribute & Name & Access & Data Type & Value \\
\hline \(0 \times 01\) & Interface Speed & Get & UDINT & 10 or 100 Mbps \\
\hline \(0 \times 02\) & Interface Flag & Get & UDINT & \begin{tabular}{l} 
Bit 0: Link Status \\
Bit 1: Half/Full Duplex
\end{tabular} \\
\hline \(0 \times 03\) & MAC Address & Get & USINT[6] & \\
\hline
\end{tabular}

\subsection*{11.8 Appendix H: Revision History}
\begin{tabular}{|c|c|c|}
\hline Item & Revisions & Chapter \\
\hline \#1 & \begin{tabular}{l}
- Section 2.1: D5000~D9999 are added to SX V3.0 and above. \\
- Section 2.10: The descriptions of M1257, M1310, M1311, M1334, M1335, M1350, M1528, and M1529 are updated. \\
- Section 2.10: The descriptions of D1026, D1027, D1050~D1055, D1112, D1113, D1131, D1132, D1133, D1144, D1154, D1155, D1166, D1167, D1172~D1177, D1220, and D1480~D1991 are updated. \\
- Section 2.11: The program capacity of a DVP-SX series PLC in the description of D1002 is updated. The definitions of the pins in COM1 are added to the description of the functions of communication ports. More information is added to the description of the reading/writing of data from/into the memory card/backup area. Mode information is added to the descriptions of spcial high-speed pulse output and adjustable accelerated/decelerated pulse output. The description of the interrupts used for reading the number of pulses is updated. The description of the enabling of DICF to execute the constant speed/final output section is added. \\
- Section 2.13: The description of the error codes C41F and C450 is added. The method of finding out the module which is disconnected or damaged in an EH system is added.
\end{tabular} & Chapter 2 \\
\hline \#2 & - The descriptions of API 67, API 154, API 198, and API 199 are updated. & Chapter 5 \\
\hline \#3 & - The descriptions of API 22 and API 23 are updated. & Chapter 6 \\
\hline \#4 & - The descriptions of API 55, API 56, API 57, API 59, API 67, API 69, API 79, API 80, and API 83 are updated. & Chapter 7 \\
\hline \#5 & - The descriptions of API 101, API 112, API 114, API 148, and API 149 are updated. & Chapter 8 \\
\hline \#6 & - The descriptions of API 150, API 154, API 156, API 158, API 159, API 166, API 167, API 168, API 178, API 179, API 191, API 197, API 198, and API 199 are updated. & Chapter 9 \\
\hline \#7 & \begin{tabular}{l}
- Delete the instruction DSPA in chapter 5, 9 and appendix. \\
- Delete the item J from the section of the other newly added functions of DVP-EH3 in Appendix D.
\end{tabular} & \begin{tabular}{l}
Chapter 5 \\
Chapter 9 \\
Appendix
\end{tabular} \\
\hline
\end{tabular}

\section*{11 Appendix}

\section*{MEMO}```

